JPH0213217B2 - - Google Patents

Info

Publication number
JPH0213217B2
JPH0213217B2 JP57147548A JP14754882A JPH0213217B2 JP H0213217 B2 JPH0213217 B2 JP H0213217B2 JP 57147548 A JP57147548 A JP 57147548A JP 14754882 A JP14754882 A JP 14754882A JP H0213217 B2 JPH0213217 B2 JP H0213217B2
Authority
JP
Japan
Prior art keywords
air
exhaust
air supply
constant
signal contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57147548A
Other languages
Japanese (ja)
Other versions
JPS5938541A (en
Inventor
Takaki Yoshida
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP57147548A priority Critical patent/JPS5938541A/en
Publication of JPS5938541A publication Critical patent/JPS5938541A/en
Publication of JPH0213217B2 publication Critical patent/JPH0213217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は、気密性能が要求される施設の各室に
おいて、定風量定差圧を維持するさいにこれを省
エネルギー的に実施できるようにして空調設備の
定風量微差圧制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention makes it possible to maintain a constant air volume and constant differential pressure in each room of a facility that requires airtight performance in an energy-saving manner, thereby reducing slight differences in the constant air volume of air conditioning equipment. This invention relates to a pressure control method.

バイオハザード、P3またはP4レベルの実験室
などの高度安全設備、高レベル放射性廃棄処理施
設、実験動物飼育室、などはもとより、一般の建
物においても、気密性能が要求される室または室
の集合に対する空調設備としては、定められた差
圧に一定に制御されることが望ましい。
In addition to high safety equipment such as biohazard, P 3 or P 4 level laboratories, high-level radioactive waste treatment facilities, laboratory animal breeding rooms, etc., it is also used in rooms or rooms that require airtightness in general buildings. As for air conditioning equipment for gatherings, it is desirable that the differential pressure be controlled at a constant level.

本発明の目的とするところは、この室間差圧を
少なくしながら定風量制御を省エネルギー的に行
なうことである。
An object of the present invention is to perform constant air volume control in an energy-saving manner while reducing this pressure difference between rooms.

この目的において本発明は、図面の実施例に示
したように、給気フアン1の吐出側に給気主ダク
ト2を施設し、この給気主ダクト2から各室の吹
出口に通ずる給気分岐ダクト3を施設してなる給
気系統と、排気フアン4の吸込側に排気主ダクト
5から各室の吸込口に通ずる排気分岐ダクト6を
施設してなる排気系統と、からなる空調設備にお
いて、各々の給気分岐ダクト3に定風量弁7を介
装し、定風量弁7のいづれもが全開に至らないと
きは給気フアン1の送風能力を減じ、定風量弁7
のいづれか1つが過開状態となつたときに給気フ
アン1の送風能力を増加する給気系送風量制御
と、各々の排気分岐ダクト6に各室の室間微差圧
に応じて開度調整されるダンパ8を介装し、この
ダンパ8のいづれもが全開に至らないときは排気
フアン4の送風能力を減じ、ダンパ8いづれか1
つが過開状態となつたときに排気フアン4の送風
能力を増加する排気系送風量制御と、を各々独立
して行なうようにした定風量室間微差圧制御空調
方法を提供するものである。
For this purpose, the present invention provides an air supply main duct 2 on the discharge side of the air supply fan 1, as shown in the embodiment of the drawings, and supplies air from this main air supply duct 2 to the outlet of each room. In an air conditioning system consisting of an air supply system including a branch duct 3 and an exhaust system including an exhaust branch duct 6 on the suction side of an exhaust fan 4 leading from an exhaust main duct 5 to the inlet of each room. , a constant air volume valve 7 is installed in each supply air branch duct 3, and when none of the constant air volume valves 7 is fully opened, the air blowing capacity of the air supply fan 1 is reduced, and the constant air volume valve 7 is
The air supply system air flow control increases the air blowing capacity of the air supply fan 1 when any one of them becomes over-open, and the opening degree of each exhaust branch duct 6 is adjusted according to the slight differential pressure between the rooms. A damper 8 to be adjusted is installed, and when none of the dampers 8 are fully opened, the air blowing capacity of the exhaust fan 4 is reduced, and one of the dampers 8 is
To provide an air conditioning method for controlling a slight differential pressure between rooms with a constant air volume, in which the air flow rate control of the exhaust system increases the air blowing capacity of the exhaust fan 4 when the exhaust fan 4 becomes over-open. .

より具体的に説明すると、第1図は説明の便宜
上3室を定風量室間定微差圧制御する場合の機器
配置系統を示しており、給気系と排気系は相互に
独立した系統を構成している。給気系において
は、空調機16から給気フアン1を用いて各室に
調和空気を供給し、この給気系に示された17は
風量制御コントローラ、18は風量センサー、1
9は給気フアン能力制御器を示している。一方、
排気系に示された20は差圧センサー、21は差
圧制御用コントローラ、22は排気フアンの能力
制御器を示している。差圧センサー20は、各室
への通路(前室)と各室との間の差圧を検出す
る。
To explain more specifically, for convenience of explanation, Figure 1 shows the equipment arrangement system when controlling three rooms with constant air volume and a constant slight differential pressure between the rooms, and the air supply system and exhaust system are independent systems. It consists of In the air supply system, conditioned air is supplied from the air conditioner 16 to each room using the air supply fan 1, and 17 shown in this air supply system is an air volume control controller, 18 is an air volume sensor, 1
9 indicates a supply air fan capacity controller. on the other hand,
20 shown in the exhaust system is a differential pressure sensor, 21 is a differential pressure control controller, and 22 is an exhaust fan capacity controller. The differential pressure sensor 20 detects the differential pressure between the passage (front chamber) to each chamber and each chamber.

給気分岐ダクト3の各々に介装される定風量弁
7は、送風量制御ダンパまたはVAVユニツトを
使用し、排気分岐ダクト6に介装されるダンパ8
は、室間差圧に応じて開度調整されるダンパを使
用する。これらはいづれも、全開信号接点および
過開信号接点を備えたものに構成する。
The constant air flow valve 7 installed in each of the supply air branch ducts 3 uses an air flow control damper or VAV unit, and the damper 8 installed in the exhaust air branch duct 6 uses an air flow control damper or a VAV unit.
uses a damper whose opening is adjusted according to the differential pressure between rooms. Each of these is configured with a fully open signal contact and an overly open signal contact.

給気系の定風量弁7として送風量制御ダンパを
使用する場合は、排気系の室圧制御ダンパ8と同
じ機構の全開および過開信号接点とすることがで
きる。これを第2図に示した。ダンパ翼12は、
定風量弁7の場合は風量センサー18の信号を受
けたコントローラ17によつてその開度が調整さ
れ、排気系の室圧制御ダンパ8として使用される
場合は、差圧センサー20の信号を受けたコント
ローラ21によつてその開度が調整されるが、こ
のダンパ内には、流路断面が最大となつたときに
閉じる過開信号接点10と、流路断面が最大の1
歩手前になつたときに閉じる全開信号接点11と
が、ダンパ翼12によつて導通または遮断動作さ
れるように設置される。
When an air flow control damper is used as the constant air flow valve 7 in the air supply system, the full open and over open signal contacts may have the same mechanism as the room pressure control damper 8 in the exhaust system. This is shown in Figure 2. The damper blade 12 is
In the case of a constant air volume valve 7, its opening degree is adjusted by the controller 17 which receives a signal from an air volume sensor 18, and when used as a room pressure control damper 8 in an exhaust system, it receives a signal from a differential pressure sensor 20. The opening degree is adjusted by the controller 21, which has an overopen signal contact 10 that closes when the flow passage cross section reaches its maximum, and an overopen signal contact 10 that closes when the flow passage cross section reaches its maximum.
A fully open signal contact 11 that closes when the user is about to take a step is installed so that the damper blade 12 conducts or interrupts the conduction.

給気系の定風量弁7として、絞り型VAV(また
はCAV)ユニツトを使用する場合は、第3図に
示すように、流路断面が最大となつたときに閉じ
る過開信号接点13と、流路断面が最大の1歩手
前になつたときに閉じる全開信号接点14が、こ
の絞り型VAV(またはCAV)ユニツトの羽根1
5によつて導通または遮断するように設置され
る。羽根15の開度は、このユニツト上流側の静
圧に応じて変動すると共に、室内サーモの指令に
よりレバー16を動作させることによつて調整さ
れる。室内サーモによる設定値が定まると、ユニ
ツト上流側の静圧が変動した場合、この羽根15
の開度は風量が一定となるように変化する。24
はこの羽根17の開度動作を調節するスプリング
であるが、本発明の設備にこのユニツトを適用す
るさいには、排気系の制御の影響が給気系に現わ
れないようにするために、このスプリング24に
緩衝器25を取付けるとよい。第4図は羽根15
が最大に絞られ流路断面が最大となつた過開状態
を示しており、この場合、接点14と共に接点1
3も導通し、過開信号を発する。第5図は全開状
態を示しており、全開接点14は閉じているが過
開接点13は開いたままであり、全開信号を発す
る。
When using a throttle type VAV (or CAV) unit as the constant air volume valve 7 in the air supply system, as shown in Fig. 3, an over-open signal contact 13 that closes when the flow passage cross section reaches its maximum, The fully open signal contact 14, which closes when the flow path cross section is one step short of the maximum, is connected to the blade 1 of this aperture type VAV (or CAV) unit.
5 so as to conduct or interrupt the conduction. The opening degree of the blade 15 varies depending on the static pressure upstream of this unit, and is adjusted by operating the lever 16 in response to a command from the indoor thermostat. Once the set value is determined by the indoor thermostat, if the static pressure on the upstream side of the unit fluctuates, this blade 15
The opening degree changes so that the air volume remains constant. 24
is a spring that adjusts the opening operation of this vane 17, but when this unit is applied to the equipment of the present invention, this spring is used to prevent the influence of the control of the exhaust system from appearing on the air supply system. It is preferable to attach a shock absorber 25 to the spring 24. Figure 4 shows the blade 15
This shows an over-open state in which the flow path cross-section is maximized and the flow path cross-section is maximized.
3 is also conductive and generates an over-open signal. FIG. 5 shows a fully open state, in which the fully open contact 14 is closed, but the overopen contact 13 remains open and generates a fully open signal.

以下に、本設備の制御動作について説明する。
制御は給気系と排気系をそれぞれ独立に行ない、
給気系と排気系のそれぞれの制御動作が相互に干
渉しないように制御パラメータの設定を行なう。
The control operation of this equipment will be explained below.
The air supply system and exhaust system are controlled independently,
Control parameters are set so that the control operations of the air supply system and the exhaust system do not interfere with each other.

(A) 給気系の制御 給気フアン1を1基用いた給気系統におい
て、各室(使用中の室)への給気風量は、外乱
や系圧損の経時変化にかかわらず、一定とす
る。非使用室に対しては供給を停止または減少
させる制御を行なう。これらの制御を本発明で
は給気フアン1の動力の低減を図りながら行
う。第6図に給気風量制御のフローを、また第
7図に給気フアン1の能力制御のフローをそれ
ぞれ示した。
(A) Control of the air supply system In an air supply system using one air supply fan 1, the amount of air supplied to each room (room in use) remains constant regardless of disturbances or changes in system pressure drop over time. do. Control is performed to stop or reduce the supply to unused rooms. In the present invention, these controls are performed while reducing the power of the air supply fan 1. FIG. 6 shows the flow of air supply air volume control, and FIG. 7 shows the flow of capacity control of the air supply fan 1.

まず第6図の給気風量制御においては、各室
ごとに行ない、前述の定風量弁7によつて設定
風量に制御する。定風量弁として開度調整ダン
パを使用する場合は、風量センサー18の指令
によりコントローラ17により設定風量になる
ようにダンパの開度を調整する。このコントロ
ーラ17としては、公知のPPIやPID動作コン
トローラを使用することができる。定風量弁と
して絞り型VAVユニツトを使用する場合は、
サーモ指令による設定風量に定められるとダク
ト内静圧が変化しても風量は一定になるように
羽根の開き角度が自動的に調整される。いづれ
の場合も、このようにして設定風量に一定とな
るように給気風量が制御される。この場合、室
の使用状況を検出し、送風を要しない室に対し
ては定風量弁7を全閉して送風を停止する。
First, the air supply air volume control shown in FIG. 6 is performed for each room, and the air volume is controlled to a set air volume using the constant air volume valve 7 described above. When using an opening adjustment damper as a constant air volume valve, the controller 17 adjusts the opening of the damper according to a command from the air volume sensor 18 so that the set air volume is achieved. As this controller 17, a known PPI or PID operation controller can be used. When using a throttle type VAV unit as a constant air volume valve,
Once the set air volume is determined by the thermocommand, the opening angle of the blades is automatically adjusted so that the air volume remains constant even if the static pressure inside the duct changes. In either case, the supply air volume is controlled in this way so that it remains constant at the set air volume. In this case, the usage status of the room is detected, and the constant air volume valve 7 is fully closed to stop blowing air to rooms that do not require air blowing.

第7図の給気フアンの能力制御においては、
定風量弁7のいづれか1つが過開信号を発した
ときは、この信号を受けた給気フアン能力制御
器19が給気フアン1の能力を上げるために制
御する。この制御動作はフローテイング動作等
の簡単な制御でよく、給気フアンの能力制御は
例えば可変速モータの回転数制御、可変ピツチ
制御、ピツチ角制御等によつて行なう。そし
て、過開信号を発するものがなく全開信号を発
するものがないときは、給気フアン1の能力を
下げるように制御する。これにより、給気系に
おいて、各室の要求風量を必要最小限の給気フ
アン動力によつてまかなうことができることに
なる。
In the capacity control of the air supply fan shown in Fig. 7,
When any one of the constant air volume valves 7 issues an over-open signal, the air supply fan capacity controller 19 receives this signal and performs control to increase the capacity of the air supply fan 1. This control operation may be a simple control such as a floating operation, and the capacity control of the air supply fan is performed, for example, by controlling the rotational speed of a variable speed motor, variable pitch control, pitch angle control, etc. Then, when there is nothing that issues an over-open signal and nothing that issues a full-open signal, control is performed to lower the capacity of the air supply fan 1. As a result, in the air supply system, the air volume required for each room can be met by the minimum required air supply fan power.

(B) 排気系の制御 排気フアン4を1基用いた排気系統におい
て、対象とする空間の差圧を一定とする制御を
行なうが、本発明ではこれを排気フアン4の動
力の低減を図りながら行う。排気系に設置され
る制御システムは室間定微差圧システムと排気
フアン能力制御システムである。前者の制御フ
ローを第8図に、また後者の制御フローを第9
図に示した。
(B) Exhaust system control In an exhaust system using one exhaust fan 4, the differential pressure in the target space is controlled to be constant, but in the present invention, this is done while reducing the power of the exhaust fan 4. conduct. The control systems installed in the exhaust system are a constant slight differential pressure system between rooms and an exhaust fan capacity control system. The former control flow is shown in Figure 8, and the latter control flow is shown in Figure 9.
Shown in the figure.

第8図の室間定微差圧システムにおいては、
各室ごとにこれを行ない、ダンパ8の開度調整
により対象空間の差圧が微差圧となるように制
御する。すなわち、差圧検出センサー20によ
り対象室間の差圧を検出し、コントローラ21
によりダンパ開度を制御する。この場合も、室
の使用状況を検出し、排気を要しない室に対し
てはダンパ8を全閉とする。
In the room constant slight differential pressure system shown in Figure 8,
This is done for each chamber, and the differential pressure in the target space is controlled to be a slight differential pressure by adjusting the opening degree of the damper 8. That is, the differential pressure between the target chambers is detected by the differential pressure detection sensor 20, and the controller 21
The damper opening degree is controlled by In this case as well, the usage status of the room is detected and the damper 8 is fully closed for rooms that do not require evacuation.

第9図の排気フアン能力制御においては、ダ
ンパ8のいづれか1つが過開信号を発したとき
は、この信号を受けた排気フアン能力制御器2
2が排気フアン4の能力を上げるように制御す
る。この制御動作は給気フアン1の場合と同様
の機構を用いて行なうことができる。そして、
過開信号と全開信号の両方がキヤツチされない
場合は、排気フアン能力制御器22は排気フア
ン4の能力を下げる。これにより、排気系にお
いて室間定微差圧を保持するに必要な要求排風
量を、必要最小限の排気フアン動力によつてま
かなうことができる。
In the exhaust fan capacity control shown in FIG. 9, when any one of the dampers 8 issues an over-open signal, the exhaust fan capacity controller 2
2 controls the exhaust fan 4 to increase its capacity. This control operation can be performed using the same mechanism as in the case of the air supply fan 1. and,
If both the over-open signal and the full-open signal are not captured, the exhaust fan capacity controller 22 reduces the capacity of the exhaust fan 4. Thereby, the required exhaust air volume necessary to maintain a constant slight differential pressure between rooms in the exhaust system can be covered by the minimum necessary exhaust fan power.

以上のようにして本発明によると、冒頭に述べ
た省エネルギー的に各室の定微差圧制御を行なう
という目的が、効果的に達成される。
As described above, according to the present invention, the object of controlling the constant slight differential pressure in each chamber in an energy-saving manner as described at the beginning is effectively achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す機器配置系統
図、第2図は全開信号接点および過開信号接点を
備えたダンパの略縦断面図、第3図は本発明の定
風量弁として適用可能な絞り型VAV(または
CAV)ユニツトの略縦断面図、第4図は第3図
のユニツトの過開信号接点が閉じた状態図、第5
図は第3図のユニツトの全開信号接点が閉じた状
態図、第6図は給気風量の制御フロー図、第7図
は給気フアン能力の制御フロー図、第8図は排気
風量の制御フロー図、第9図は排気フアン能力の
制御フロー図である。 1…給気フアン、2…給気主ダクト、3…給気
分岐ダクト、4…排気フアン、5…排気主ダク
ト、6…排気分岐ダクト、7…定風量弁、8…開
度調整ダンパ、11,14…全開信号接点、1
0,13……全開信号接点、17…コントロー
ラ、18…風量センサー、19…給気フアン能力
制御器、20…差圧検出センサー、21…コント
ローラ、22…排気フアン能力制御器。
Fig. 1 is an equipment layout system diagram showing one embodiment of the present invention, Fig. 2 is a schematic vertical sectional view of a damper equipped with a fully open signal contact and an overly open signal contact, and Fig. 3 is a diagram showing a constant air volume valve of the present invention. Applicable aperture type VAV (or
CAV) unit, Figure 4 is a state diagram of the unit in Figure 3 when the over-open signal contact is closed, Figure 5 is
The figure shows the state in which the fully open signal contact of the unit shown in Fig. 3 is closed, Fig. 6 shows the control flow for supply air volume, Fig. 7 shows the control flow for supply air fan capacity, and Fig. 8 shows the control flow for exhaust air volume. Flowchart FIG. 9 is a control flowchart of exhaust fan capacity. 1...Air supply fan, 2...Air supply main duct, 3...Air supply branch duct, 4...Exhaust fan, 5...Exhaust main duct, 6...Exhaust branch duct, 7...Constant air volume valve, 8...Opening adjustment damper, 11, 14... Fully open signal contact, 1
0, 13...Full open signal contact, 17...Controller, 18...Air volume sensor, 19...Air supply fan capacity controller, 20...Differential pressure detection sensor, 21...Controller, 22...Exhaust fan capacity controller.

Claims (1)

【特許請求の範囲】 1 給気フアン1の吐出側に給気主ダクト2を施
設し、この給気主ダクト2から各室の吹出口に通
ずる給気分岐ダクト3を施設してなる給気系統
と;排気フアン4の吸込側に排気主ダクト5を施
設し、この排気主ダクト5から各室の吸込口に通
ずる排気分岐ダクト6を施設してなる排気系統
と;からなる空調設備において、各々の給気分岐
ダクト3に定風量弁7を介装し、各定風量弁7の
いづれもが全開に至らないときは給気フアン1の
送風能力を減じ、定風量弁7のいづれか1つが過
開状態となつたときに給気フアン1の送風能力を
増加する給気系送風量制御と、各々の排気分岐ダ
クト6に各室の室間微差圧に応じて開度調整され
るダンパ8を介装し、このダンパ8のいづれもが
全開に至らないときは排気フアン4の送風能力を
減じ、ダンパ8のいづれか1つが過開状態となつ
たときに排気フアン4の送風能力を増加する排気
系送風量制御と、を各々独立して行うようにした
定風量室間微差圧制御空調方法。 2 定風量弁は、流路断面が最大となつたときに
閉じる過開信号接点10と、流路断面が最大の1
歩手前になつたときに閉じる全開信号接点11
を、ダンパ翼12によつて導通または遮断動作す
る送風量制御ダンパである特許請求の範囲第1項
に記載の定風量室間微差圧制御空調方法。 3 定風量弁は、流路断面が最大となつたときに
閉じる過開信号接点13と、流路断面が最大の1
歩手前になつたときに閉じる全開信号接点14
を、絞り型VAVユニツトの羽根15によつて導
通または遮断動作する絞り型VAVユニツトであ
る特許請求の範囲第1項に記載の定風量室間微差
圧制御空調方法。
[Scope of Claims] 1. An air supply system in which a main air supply duct 2 is provided on the discharge side of the air supply fan 1, and an air supply branch duct 3 is provided from the main air supply duct 2 to the outlet of each room. In an air conditioning system consisting of a system, and an exhaust system comprising a main exhaust duct 5 installed on the suction side of the exhaust fan 4 and an exhaust branch duct 6 leading from the main exhaust duct 5 to the suction port of each room, A constant air volume valve 7 is installed in each air supply branch duct 3, and when none of the constant air volume valves 7 are fully opened, the air blowing capacity of the air supply fan 1 is reduced, and any one of the constant air volume valves 7 is Supply air system air flow control that increases the air blowing capacity of the air supply fan 1 when the air is over-opened, and a damper that adjusts the opening degree of each exhaust branch duct 6 according to the slight differential pressure between each room. 8, the blowing capacity of the exhaust fan 4 is reduced when none of the dampers 8 are fully opened, and the blowing capacity of the exhaust fan 4 is increased when any one of the dampers 8 is over-opened. An air conditioning method that controls the air flow rate of the exhaust system and controls the slight differential pressure between rooms at a constant air volume. 2 The constant air volume valve has an over-open signal contact 10 that closes when the flow passage cross section reaches its maximum, and an overopen signal contact 10 that closes when the flow passage cross section reaches its maximum.
Fully open signal contact 11 that closes when you are about to step forward
2. The air-conditioning method according to claim 1, wherein the damper is an airflow control damper which is operated to conduct or cut off by damper blades 12. 3 The constant air flow valve has an over-open signal contact 13 that closes when the flow passage cross section reaches its maximum, and an overopen signal contact 13 that closes when the flow passage cross section reaches its maximum.
Fully open signal contact 14 that closes when you are about to step forward
2. The air conditioning method for controlling a slight differential pressure between rooms at a constant air volume as set forth in claim 1, wherein the air conditioning method is a throttle type VAV unit which conducts or shuts off by a blade 15 of the throttle type VAV unit.
JP57147548A 1982-08-27 1982-08-27 Constant air quantity and minute inter-room pressure difference control type air conditioning method Granted JPS5938541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147548A JPS5938541A (en) 1982-08-27 1982-08-27 Constant air quantity and minute inter-room pressure difference control type air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147548A JPS5938541A (en) 1982-08-27 1982-08-27 Constant air quantity and minute inter-room pressure difference control type air conditioning method

Publications (2)

Publication Number Publication Date
JPS5938541A JPS5938541A (en) 1984-03-02
JPH0213217B2 true JPH0213217B2 (en) 1990-04-03

Family

ID=15432809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147548A Granted JPS5938541A (en) 1982-08-27 1982-08-27 Constant air quantity and minute inter-room pressure difference control type air conditioning method

Country Status (1)

Country Link
JP (1) JPS5938541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210434A (en) * 1996-01-31 1997-08-12 Yamatake Honeywell Co Ltd Vav control system
JP2002188838A (en) * 2000-12-19 2002-07-05 Sanken Setsubi Kogyo Co Ltd Operation control system for centralized exhaust equipment

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741257A (en) * 1985-01-09 1988-05-03 Air Monitor Corporation Fume hood air flow control
JPS62217043A (en) * 1986-03-17 1987-09-24 Shinko Kogyo Kk Method of controlling flow quantity
JPS6433462A (en) * 1987-07-28 1989-02-03 Taikisha Kk Air conditioner
JPH0827043B2 (en) * 1987-07-29 1996-03-21 株式会社大氣社 Air conditioner
DE3827377A1 (en) * 1988-08-12 1990-02-15 Audi Ag AIR-CONDITIONING DEVICE FOR MOTOR VEHICLES
JP2737342B2 (en) * 1990-02-07 1998-04-08 松下電器産業株式会社 Air conditioner
JPH0373848U (en) * 1990-11-07 1991-07-25
US5511263A (en) * 1993-05-10 1996-04-30 Reinert, Sr.; Gary L. Laundering liquids process and decontamination facility
US5329659A (en) * 1993-05-10 1994-07-19 Reinert Sr Gary L Laundering facility and method
US5513407A (en) * 1993-05-10 1996-05-07 Reinert, Sr.; Gary L. Reinforced full body suit
US5538471A (en) * 1994-11-15 1996-07-23 Innovative Air Systems, Inc. Dynamic particulate control system and method of operation
JPH09273800A (en) * 1996-04-05 1997-10-21 Tadahiko Ibamoto Device for emitting variable air current
KR100531300B1 (en) * 2003-09-08 2005-11-29 엘지전자 주식회사 method for controlling airflow of inhalation and exhaustion in ventilation system
KR100546670B1 (en) 2003-09-15 2006-01-26 엘지전자 주식회사 air cleaner
JP4433463B2 (en) * 2004-05-14 2010-03-17 五洋建設株式会社 Washable room structure and room washing method
JP2006144585A (en) * 2004-11-17 2006-06-08 Tokyo Seimitsu Co Ltd Fan device
CN102519120B (en) * 2011-12-09 2013-09-18 上海市隧道工程轨道交通设计研究院 Open-closed system station subway platform ventilation and smoke exhaust method
CN103673231B (en) * 2013-12-27 2016-06-08 联方云天科技(北京)有限公司 A kind of new wind temperature-controlling system of data center and temperature control method
CN105841286A (en) * 2016-04-28 2016-08-10 潘经坤 Intelligent linked control system for firefighting smoke control
JP6842858B2 (en) * 2016-08-04 2021-03-17 三菱電機株式会社 Ventilation device and air supply adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210434A (en) * 1996-01-31 1997-08-12 Yamatake Honeywell Co Ltd Vav control system
JP2002188838A (en) * 2000-12-19 2002-07-05 Sanken Setsubi Kogyo Co Ltd Operation control system for centralized exhaust equipment

Also Published As

Publication number Publication date
JPS5938541A (en) 1984-03-02

Similar Documents

Publication Publication Date Title
JPH0213217B2 (en)
US4821526A (en) Air conditioning apparatus
US6386281B1 (en) Air handler with return air bypass for improved dehumidification
US6126540A (en) Staged power exhaust for HVAC air handling units
US4836096A (en) Variable air volume air distribution system
CN109556219B (en) Variable air volume air conditioning unit and control method thereof
JPH09159208A (en) Air conditioning ventilation device
JPH06193958A (en) Air conditioning blowing device
JPH05264092A (en) Air conditioning apparatus
JPH026425B2 (en)
JPH0252775B2 (en)
JPH07332737A (en) Air conditioning installation
JPS59153046A (en) Concentrated suction/exhaust air device
JPH0118341B2 (en)
JPH02290454A (en) Air conditioner
JPS6262269B2 (en)
JPH0692835B2 (en) Room pressure control system
JPH10300121A (en) Air conditioner with spacer for introducing outer air
JP7041596B2 (en) Air conditioning system
JP3100181B2 (en) Ventilation volume control device for variable air volume type air conditioner
JP4346295B2 (en) Air volume control device for air conditioner
JPS5969645A (en) Air-conditioner
JPH0875231A (en) Variable air quantity air conditioning system
JPH0144972B2 (en)
JP2022025268A (en) Air conditioning unit