JPH0359131B2 - - Google Patents

Info

Publication number
JPH0359131B2
JPH0359131B2 JP16790287A JP16790287A JPH0359131B2 JP H0359131 B2 JPH0359131 B2 JP H0359131B2 JP 16790287 A JP16790287 A JP 16790287A JP 16790287 A JP16790287 A JP 16790287A JP H0359131 B2 JPH0359131 B2 JP H0359131B2
Authority
JP
Japan
Prior art keywords
iron
copper
chromium
strength
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16790287A
Other languages
Japanese (ja)
Other versions
JPS6415340A (en
Inventor
Kunio Watanabe
Satoru Nishimura
Kunishige Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16790287A priority Critical patent/JPS6415340A/en
Priority to DE3854682T priority patent/DE3854682T2/en
Priority to EP88304700A priority patent/EP0299605B1/en
Priority to US07/198,496 priority patent/US4869758A/en
Publication of JPS6415340A publication Critical patent/JPS6415340A/en
Priority to US07/527,710 priority patent/US5085712A/en
Publication of JPH0359131B2 publication Critical patent/JPH0359131B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度リードフレーム用鉄銅クロム合
金に関する。 (従来の技術) 鉄銅合金は導電率が優れ、耐摩耗性に優れてい
るため摺動接触子などの用途に使用されることが
多く、特に耐食性が悪いというその欠点をクロム
の添加によつて補つた銅鉄クロム合金がたとえば
特開昭49−91025号公報に示されているように知
られている。 一方、半導体IC、LSI等用のリードフレーム材
としては従来鉄ニツケル係合金が使われることが
多かつたが、コストが高いためにそれまで高い
熱・電気伝導性を必要とするICに使用されてい
た銅系リードフレームに移行する傾向がある。し
かし、一般に銅合金は耐熱性ならびに強度が劣る
ために、CA−195合金をはじめ多くの錫、鉄、珪
素、燐、コバルトなどを添加した合金が開発され
ているが、これらの元素添加により合金コストが
上昇し、さらに熱・電気伝導性を劣化させるなど
多くの短所があつた。 より低いコストで強度と導電性が良好な鉄銅合
金がリードフレーム材料として注目されるが、そ
のままでは耐食性に劣りリードフレームの用途に
適さない。そこでクロムを添加して耐食性を改善
できることは摺動接触子の場合と同様に考えられ
る。 (発明が解決しようとする問題点) しかし、鉄銅クロム合金は鉄クロム相と銅相に
分離し、それぞれの相の半田付け性、メツキ性な
どの表面特性が大きく異なることが問題となる。
また、組成いかんによつては充分の強度・導電性
が得られにくい。 本発明は鉄銅を主要な構成元素とする合金にク
ロムを添加することによつて、製造工程ならびに
使用環境劣化時に問題となる耐食性を改善した、
リードフレームとして充分な熱・電気伝導性およ
び高い強度と良好な加工性を兼ね備えた高強度リ
ードフレーム用鉄銅クロム合金を提供することを
目的とする。 (問題点を解決するための手段) 本発明はこれらの先行技術の問題点を克服し、
リードフレーム用材料として優れた特性を有する
鉄銅クロム合金が具備すべき条件を明らかにする
ために、発明者らは種々の組合せの合金を用いて
問題点解決のため多くの研究を行い、鉄クロム相
および銅相を細粒化すれば上記の諸問題点が解決
されることを明らかにすることにより、高強度リ
ードフレーム用鉄銅クロム合金を発明するに至つ
た。 すなわち本発明が構成するところは、Cuを20
重量%以上90重量%以下、Crを2.5重量%以上12
重量%以下含み、残部が主としてFeからなる組
成を持ち、鉄クロム、銅相のそれぞれの結晶粒度
番号が平均で10番以上であることを特徴とする高
強度リードフレーム用鉄銅クロム合金である。 以下本構成要件の限定理由を説明する。 まず、合金の化学組成の限定理由は以下の通り
である。 銅は熱・電気伝導性を向上させるためには含有
量が高いほど好ましいが、用途上強度の要求が強
い場合には鉄の含有量を高めることが望ましい。
銅含有量が20重量%未満ではICリードフレーム
として必要な熱・電気伝導性が得られないのでこ
れを下限とする。また上限を90重量%とするの
は、鉄およびクロムの含有量が10重量%では組織
の微細化に有効に働く鉄クロム富化相の量および
分布が不十分になり、本合金特有の強度と導電性
の組合せが得られなくなるからである。 つぎに、クロムを2.5重量%以上添加するのは
材料の耐食性を改善するためであり、2.5%未満
ではその効果が充分でない。また、上限を12%と
するのは耐食性改善効果が飽和する上、半田付け
性が非常に低下するからである。鉄の耐食性を改
善するのに必要なクロム量は通常下限よりかなり
多いと考えられているが、本発明においては全合
金中の鉄分が相対的に低いこと、凝固時にクロム
の鉄中への配分がより多くなるため少ない添加量
で大きな効果が見出されるのである。 さらに、Si、Al、Ti、Ni、Zn、Sn、Nb、Zr、
Pの一種および二種以上をAl、Ti、Nb、Zr、P
は0.5%以下、Zn、Siは1%以下、Ni、Snは4%
以下の範囲で添加することは強度上昇、加工性、
メツキ性などの改善に有用な場合が多いので行つ
てよい。それ以外は原料および溶製およびその後
の工程で不可避的に混入される不純物元素とす
る。 つぎに本発明の特徴である結晶粒度番号を10番
以上とするのは、結晶粒度により半田付け性、メ
ツキ性が大きく変化するからである。これを第1
表に示す。これから必要な結晶粒度番号は10番以
上と定められる。
(Industrial Application Field) The present invention relates to an iron-copper-chromium alloy for high-strength lead frames. (Prior art) Iron-copper alloys have excellent electrical conductivity and excellent wear resistance, so they are often used for applications such as sliding contacts. Copper-iron-chromium alloys supplemented with copper are known, as shown, for example, in Japanese Unexamined Patent Publication No. 49-91025. On the other hand, iron-nickel alloys have often been used as lead frame materials for semiconductor ICs, LSIs, etc., but due to their high cost, they have not been used for ICs that require high thermal and electrical conductivity. There is a tendency to shift to copper-based lead frames. However, since copper alloys generally have poor heat resistance and strength, many alloys containing tin, iron, silicon, phosphorus, cobalt, etc. have been developed, including CA-195 alloy. It had many disadvantages, including increased cost and poor thermal and electrical conductivity. Iron-copper alloys are attracting attention as lead frame materials due to their lower cost and good strength and conductivity, but as they are, they have poor corrosion resistance and are not suitable for lead frame applications. Therefore, it is thought that corrosion resistance can be improved by adding chromium, as in the case of sliding contacts. (Problems to be Solved by the Invention) However, the problem is that the iron-copper-chromium alloy is separated into an iron-chromium phase and a copper phase, and the surface properties of each phase, such as solderability and plating properties, are significantly different.
Furthermore, depending on the composition, it is difficult to obtain sufficient strength and conductivity. The present invention improves corrosion resistance, which is a problem during the manufacturing process and when the environment in which it is used deteriorates, by adding chromium to an alloy whose main constituent elements are iron and copper.
The object of the present invention is to provide a high-strength iron-copper-chromium alloy for lead frames that has sufficient thermal and electrical conductivity, high strength, and good workability. (Means for solving the problems) The present invention overcomes these problems of the prior art,
In order to clarify the conditions that an iron-copper-chromium alloy that has excellent properties as a material for lead frames should have, the inventors conducted a number of studies using various combinations of alloys to solve problems. By finding that the above-mentioned problems can be solved by making the chromium phase and copper phase finer, the inventors have invented an iron-copper-chromium alloy for high-strength lead frames. In other words, the present invention consists of Cu 20
Weight% or more and 90% or less, Cr 2.5% or more by weight12
It is an iron-copper-chromium alloy for high-strength lead frames, which has a composition in which the balance is mainly Fe, and the average grain size number of each of the iron-chromium and copper phases is No. 10 or more. . The reasons for limiting this configuration requirement will be explained below. First, the reason for limiting the chemical composition of the alloy is as follows. A higher copper content is preferable in order to improve thermal and electrical conductivity, but if the application requires strong strength, it is desirable to increase the iron content.
If the copper content is less than 20% by weight, the thermal and electrical conductivity necessary for an IC lead frame cannot be obtained, so this is set as the lower limit. The upper limit is set at 90% by weight because if the content of iron and chromium is 10% by weight, the amount and distribution of the iron-chromium enriched phase, which works effectively to refine the structure, will be insufficient, and the unique strength of this alloy will be reduced. This is because a combination of conductivity and conductivity cannot be obtained. Next, the reason why chromium is added in an amount of 2.5% by weight or more is to improve the corrosion resistance of the material, and if it is less than 2.5%, the effect is not sufficient. Further, the reason why the upper limit is set to 12% is because not only the corrosion resistance improvement effect is saturated, but also the solderability is significantly reduced. The amount of chromium required to improve the corrosion resistance of iron is usually considered to be much higher than the lower limit, but in the present invention, the iron content in the entire alloy is relatively low, and the distribution of chromium into the iron during solidification is improved. Since the amount increases, a large effect can be found even with a small amount added. Furthermore, Si, Al, Ti, Ni, Zn, Sn, Nb, Zr,
One or more types of P are Al, Ti, Nb, Zr, P
is 0.5% or less, Zn, Si is 1% or less, Ni, Sn is 4%
Adding in the following range increases strength, processability,
It is often useful for improving plating properties, so it may be used. The rest are raw materials and impurity elements that are inevitably mixed in during melting and subsequent steps. Next, the reason why the crystal grain size number, which is a feature of the present invention, is set to 10 or more is because the solderability and plating properties vary greatly depending on the crystal grain size. This is the first
Shown in the table. From now on, the required grain size number is determined to be number 10 or higher.

【表】 そして細粒化をはかる手段としては大圧下冷延
−焼鈍などの方法があるが、材料の板面内の異方
性が大きくなるのであまり好ましくない。一方、
双ロール法などにより直接薄板に鋳造することは
細粒化する方法として優れており、熱間加工性が
乏しい鉄銅クロム合金において熱間加工を省略で
きるという利点も有している。そしてこのときの
冷却速度は100℃/秒以上にすることが有効であ
る。その理由は一般に凝固時の冷却速度が大きい
ほど、凝固組織のサイズは微細化し、その後に後
処理または冷間圧延−焼鈍を行つてもその効果は
保存される。 このように、直接鋳造で薄鋳片を製造する場合
でも鋳片の酸洗、所要の最終板厚にあわせて冷延
を行うこと、冷延時の割れ発生防止に必要な熱処
理および冷延後の焼鈍・時効処理を必要に応じて
行うこと、さらに形状矯正・強度調整のための最
終冷延を行うことは通常通りして良い。 また本発明においては酸洗、冷延、熱処理の適
当な組合せにより、材料の表面に安定な銅相が形
成されて、リードフレーム材料に重量な半田付け
性、メツキ性が一層改善されるのでこの点からも
優れた材料である。 (実施例) 以下本発明の効果を実施例により説明する。 実施例 第2表に本発明の成分範囲の合金B〜Fと比較
の成分範囲の比較材Aの化学成分を示す。
[Table] As a means for grain refinement, there are methods such as large reduction cold rolling and annealing, but this is not very preferable because it increases the anisotropy within the plate plane of the material. on the other hand,
Casting directly into a thin plate using a twin-roll method or the like is an excellent method for grain refinement, and also has the advantage that hot working can be omitted in iron-copper-chromium alloys that have poor hot workability. It is effective to set the cooling rate at this time to 100° C./second or more. The reason for this is generally that the larger the cooling rate during solidification, the finer the size of the solidified structure, and the effect is preserved even if post-treatment or cold rolling-annealing is performed thereafter. In this way, even when producing thin slabs by direct casting, it is necessary to pickle the slabs, cold-roll them to the required final thickness, perform heat treatment necessary to prevent cracking during cold rolling, and perform post-cold rolling. Annealing and aging treatments may be performed as necessary, and final cold rolling for shape correction and strength adjustment may be performed as usual. In addition, in the present invention, a stable copper phase is formed on the surface of the material by an appropriate combination of pickling, cold rolling, and heat treatment, which further improves the solderability and plating properties of lead frame materials. It is also an excellent material. (Example) The effects of the present invention will be explained below with reference to Examples. Examples Table 2 shows the chemical compositions of alloys B to F having the composition range of the present invention and comparative material A having the composition range of comparison.

【表】 第3表には得られた鉄銅クロム合金薄帯の結晶
粒度番号およびその材質特性を示す。ここで、試
料番号1、2、4、6、8、9の鋳造は双ロール
鋳造機を用いて、3.5×102/秒の冷却速度で板厚
1.8mmに連続鋳造したものである。また、最終板
厚は0.25mmまで冷延した。耐食性は24時間の塩水
噴霧試験(JIS Z2371)に従つて赤錆発生率
(%)で評価したものである。表中にはFe−Niお
よびCu−Fe−Sn合金の特性も比較に加えた。 また、ここで、試料番号1はクロム量が低い比
較例であつて塩水噴霧試験で評価した耐食性が劣
ること、試料番号3、5、7はそれぞれ同成分の
本発明試料番号2、4、6に比べて結晶粒が大き
く、引張強さ・導電率において劣つており、本発
明の特性が優れていることは明瞭である。
[Table] Table 3 shows the grain size number and material properties of the obtained iron-copper-chromium alloy ribbon. Here, sample numbers 1, 2, 4, 6, 8, and 9 were cast using a twin-roll casting machine at a cooling rate of 3.5 x 10 2 /sec.
Continuously cast to 1.8mm. In addition, the final plate thickness was cold rolled to 0.25 mm. Corrosion resistance was evaluated by red rust occurrence rate (%) according to a 24-hour salt spray test (JIS Z2371). In the table, the characteristics of Fe-Ni and Cu-Fe-Sn alloys are also included for comparison. In addition, sample number 1 is a comparative example with a low chromium content and has poor corrosion resistance evaluated by a salt spray test, and sample numbers 3, 5, and 7 are inventive sample numbers 2, 4, and 7 with the same components, respectively. It is clear that the crystal grains are larger and the tensile strength and electrical conductivity are inferior compared to that of the present invention.

【表】 (発明の効果) 本発明は高強度リードフレームに適した鉄銅ク
ロム合金であつて、従来のFe−Ni合金および高
強度リードフレーム用銅合金に代替し得る材料を
経済的に提供し得る工業的に価値のある発明であ
る。
[Table] (Effects of the Invention) The present invention is an iron-copper-chromium alloy suitable for high-strength lead frames, and provides an economical material that can replace conventional Fe-Ni alloys and copper alloys for high-strength lead frames. This is an industrially valuable invention.

Claims (1)

【特許請求の範囲】[Claims] 1 Cuを20重量%以上90重量%以下、Crを2.5重
量%以上12重量%以下含み、残部が主としてFe
からなる組成を持ち、鉄クロム、銅相のそれぞれ
の結晶粒度番号が平均で10番以上であることを特
徴とする高強度リードフレーム用鉄銅クロム合
金。
1 Contains Cu from 20% to 90% by weight, Cr from 2.5% to 12% by weight, and the balance is mainly Fe.
An iron-copper-chromium alloy for high-strength lead frames, which has a composition consisting of
JP16790287A 1987-05-26 1987-07-07 Iron-copper-chromium alloy for high-strength lead frame Granted JPS6415340A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP16790287A JPS6415340A (en) 1987-07-07 1987-07-07 Iron-copper-chromium alloy for high-strength lead frame
DE3854682T DE3854682T2 (en) 1987-05-26 1988-05-24 Iron-copper-chromium alloy for a high-strength lead frame or a pin grid and process for their production.
EP88304700A EP0299605B1 (en) 1987-05-26 1988-05-24 Iron-copper-chromium alloy for high-strength lead frame or pin grid array and process for preparation thereof
US07/198,496 US4869758A (en) 1987-05-26 1988-05-25 Iron/copper/chromium alloy material for high-strength lead frame or pin grid array
US07/527,710 US5085712A (en) 1987-05-26 1990-05-23 Iron/copper/chromium alloy material for high-strength lead frame or pin grid array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16790287A JPS6415340A (en) 1987-07-07 1987-07-07 Iron-copper-chromium alloy for high-strength lead frame

Publications (2)

Publication Number Publication Date
JPS6415340A JPS6415340A (en) 1989-01-19
JPH0359131B2 true JPH0359131B2 (en) 1991-09-09

Family

ID=15858170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16790287A Granted JPS6415340A (en) 1987-05-26 1987-07-07 Iron-copper-chromium alloy for high-strength lead frame

Country Status (1)

Country Link
JP (1) JPS6415340A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559914B2 (en) * 1990-04-09 1996-12-04 新日本製鐵株式会社 Method for producing Fe-Cu alloy plate excellent in homogeneity
JPH05214489A (en) * 1992-02-04 1993-08-24 Nippon Steel Corp Steel sheet for spring excellent in spring limit value and shape freezability and its production

Also Published As

Publication number Publication date
JPS6415340A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
US7351372B2 (en) Copper base alloy and method for producing same
CN111485132B (en) Copper alloy strip with excellent comprehensive performance and preparation method thereof
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JPS6039139A (en) Softening resistant copper alloy with high conductivity
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPS61143566A (en) Manufacture of high strength and highly conductive copper base alloy
US5085712A (en) Iron/copper/chromium alloy material for high-strength lead frame or pin grid array
JPS6338412B2 (en)
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JPS63105943A (en) Copper alloy for semiconductor device and its production
JPH0359131B2 (en)
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
JPH02111829A (en) Copper alloy for lead frame
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH0424420B2 (en)
JPS6142772B2 (en)
JPH0469217B2 (en)
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPS63312936A (en) Copper alloy material for semiconductor lead frame and its production
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JP6600401B1 (en) Method for producing age-hardening type copper alloy
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term