JPH0359034B2 - - Google Patents

Info

Publication number
JPH0359034B2
JPH0359034B2 JP58231793A JP23179383A JPH0359034B2 JP H0359034 B2 JPH0359034 B2 JP H0359034B2 JP 58231793 A JP58231793 A JP 58231793A JP 23179383 A JP23179383 A JP 23179383A JP H0359034 B2 JPH0359034 B2 JP H0359034B2
Authority
JP
Japan
Prior art keywords
weight
parts
zirconia
cement composition
zircon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58231793A
Other languages
Japanese (ja)
Other versions
JPS60122773A (en
Inventor
Yukio Sasagawa
Masaomi Hasegawa
Junpei Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23179383A priority Critical patent/JPS60122773A/en
Publication of JPS60122773A publication Critical patent/JPS60122773A/en
Publication of JPH0359034B2 publication Critical patent/JPH0359034B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、塩基性の耐火セメント組成物に関
し、詳しくは、著しく高い耐火性と耐食性と高強
度発現性を示し、硬化遅れがなく施工上必要にし
て十分な作業性を有するセメント組成物に関す
る。 従来から、アルミナセメントは、耐火性骨材と
配合しキヤスタブル耐火物として鉄鋼関係或いは
非鉄金属関係の炉材等に広く用いられているが、
塩基性骨材を用いると使用場所により著しく耐火
性、耐食性、高強度発現性等の物性が劣り、特に
塩基性の鉱滓には非常に弱いという欠点があつ
た。 本発明者らはこれら欠点を解決すべく鋭意研究
を進めた結果、アルミナセメントにジルコニア及
び/又はジルコンを含有せしめることにより耐食
性と高温強度等が著しく向上し、また、作業性は
特殊な添加剤の使用によつて改善できることを見
い出し、本発明を完成したものである。 すなわち、本発明は、少なくともAl2O3分を45
重量%含有して成るアルミナセメント40〜95重量
部とジルコニア及び/又はジルコン5〜60重量部
から成る塩基性耐火セメント組成物、及び該組成
物100重量部に対し、ポリアクリル酸、ポリメタ
クリル酸及びそれらの酸の塩類(以下、ポリアク
リル酸等という)の少くとも一種を0.1〜3重量
部及び/又はヒドロオキシカルボン酸及びその塩
並びに無機炭酸塩(以下、ヒドロオキシカルボン
酸等という)から選ばれた少くとも一種を0.1〜
3重量部とを含有させて成る塩基性耐火セメント
組成物である。 以下、本発明をさらに詳しく説明する。 本発明で使用するアルミナセメントは、溶融法
或いは焼成法によつて製造することができ、通常
その鉱組成物は、CaO・Al2O3,CaO・2Al2O3
12CaO・7Al2O3等の少くとも一種のカルシウム
アルミネートを主体としたもので、粒度は粒径
88μ以下、比表面積がブレーン法で0.2〜1.2m2
gである。本発明では、Al2O3分の含有量が重要
であつて、45重量%未満であると耐火性が劣る。 一方、ジルコニアは、ZrO2成分として70重量
%以上含むものであつて、天然ジルコニア或いは
電融法、乾式法及び湿式法によつて得られたジル
コニア等が使用される。ジルコニアは、1000〜
1200℃間で結晶転移を起こし、その際に3〜4%
の体積膨張収縮を示すので、それを防止するため
少量のCaO又はMgOで固溶させたものが特に望
ましい。また、ジルコンは、ジルコンサンド、イ
ルメナント及びルチルサンド等の重砂から精鉱に
よつて得られ、ZrO2・SiO2成分として80重量%
以上含有するものが使用される。ジルコニアとジ
ルコンは単独使用してもよく、また、両者の併用
であつてもよい。 アルミナセメントとジルコニア及び/又はジル
コンの配合割合は、アルミナセメント40〜95重量
部、ジルコニア及び/又はジルコン5〜60重量部
の範囲である。ジルコニア及び/又はジルコンの
割合が5重量部未満では塩基性骨材による耐食性
等の特性が劣化し、また、60重量部をこえると高
温強度及び作業性が低下する。好ましい配合割合
は、アルミナセメント45〜80重量部、ジルコニア
及び/又はジルコン20〜55重量部である。 以上述べた如く本発明は、高温強度、耐食性及
び作業性に著しく優れた塩基性耐火セメント組成
物である。すなわち、従来、キヤスタブル用骨材
として塩基性骨材を使用すると使用場所により著
しくその特性の劣化を呈し、従来品では使用困難
とされていた均熱炉及び加熱炉等の鉄鋼関係或い
は非鉄金属関係の炉材や塩基性鉱滓を取扱う耐火
物としての使用が可能となり、極めて大なる効果
を有するものである。 第2の発明は、前述した第1の発明のセメント
組成物の作業性と強度発現性をさらに向上させる
ために、ポリアクリル酸等及び/又はヒドロオキ
シカルボン酸等の特定量を混在せしめたものであ
る。 ポリアクリル酸等は主として硬化遅延剤として
機能する。その重合度は50〜10000で水溶性であ
ることが望ましいが、配合量は、前述したセメン
ト組成物100重量部に対し0.1〜3重量部とする。
0.1重量部未満では硬化遅延効果が全くなく添加
しない場合よりも劣り、また、3重量部をこえる
と強度発現が悪くなる。ポリアクリル酸又はポリ
メタアクリル酸の水溶性塩としては、ナトリウ
ム、カリウム、アンモニウム等の塩があるが、性
能と取り扱い易さから考えるとナトリウム塩が好
ましい。 ヒドロオキシカルボン酸等は主として減水分散
剤として機能する。例示すれば、クエン酸、酒石
酸、リンゴ酸、グルコン酸などのヒドロオキシカ
ルボン酸やそれらの酸のナトリウム、カリウム、
アンモニウム等の水溶性塩、さらには、炭酸ナト
リウム、炭酸水素ナトリウム、炭酸カリウム、炭
酸水素カリウムなどの無機炭酸塩をあげることが
できる。性能と取り扱い易さの点から、クエン酸
ナトリウムと炭酸ナトリウムが好ましい。配合量
は、前述したセメント組成物100重量部に対し0.1
〜3重量部である。0.1重量部未満では効果がな
く、また、3重量部をこえて添加すると実用性に
欠け高温強度も低下する。 以上の2つの成分を第1の発明のセメント組成
物にさらに含有せしめることにより、硬化遅れが
なく施工上必要にして十分な作業性を有するもの
となる。 本発明のセメント組成物は、アルミナセメント
とジルコニア及び/又はジルコンの所定量を配合
し混合粉砕するか、又はそれぞれの粉砕物を混合
することによつて製造することができ、ポリアク
リル酸等とヒドロオキシカルボン酸等はあらかじ
めセメント組成物に配合しておいてもよく、ま
た、混練時に添加してもよい。 次に、本発明を実施例と比較例をあげて説明す
る。 実施例 1 表1に示すアルミナセメントと表2のジルコニ
ア(ブラジル酸)又はジルコンを混合し表3に示
すセメント組成物を得た。
The present invention relates to a basic fire-resistant cement composition, and more particularly, to a cement composition that exhibits extremely high fire resistance, corrosion resistance, and high strength development, and has no curing delay and sufficient workability necessary for construction. Traditionally, alumina cement has been widely used as a castable refractory by mixing it with refractory aggregates in furnace materials for steel and non-ferrous metals.
When basic aggregates are used, physical properties such as fire resistance, corrosion resistance, and high strength development are significantly inferior depending on the place of use, and there is a drawback that they are particularly weak against basic slag. As a result of intensive research by the present inventors to solve these shortcomings, we found that corrosion resistance and high-temperature strength were significantly improved by incorporating zirconia and/or zircon into alumina cement, and workability was improved using special additives. The present invention was completed based on the discovery that improvements could be made by using the following methods. That is, the present invention provides at least 3 minutes of Al 2 O
A basic refractory cement composition consisting of 40 to 95 parts by weight of alumina cement and 5 to 60 parts by weight of zirconia and/or zircon, and 100 parts by weight of the composition, polyacrylic acid, polymethacrylic acid and 0.1 to 3 parts by weight of at least one kind of salts of these acids (hereinafter referred to as polyacrylic acid, etc.) and/or hydroxycarboxylic acids and their salts and inorganic carbonates (hereinafter referred to as hydroxycarboxylic acids, etc.) 0.1 to at least one selected type
3 parts by weight of a basic refractory cement composition. The present invention will be explained in more detail below. The alumina cement used in the present invention can be produced by a melting method or a calcination method, and its mineral composition is usually CaO・Al 2 O 3 , CaO・2Al 2 O 3 , CaO・2Al 2 O 3 ,
It is mainly composed of at least one type of calcium aluminate such as 12CaO・7Al 2 O 3 , and the particle size is determined by the particle size.
88μ or less, specific surface area is 0.2 to 1.2m 2 /
It is g. In the present invention, the content of Al 2 O 3 is important, and if it is less than 45% by weight, the fire resistance will be poor. On the other hand, the zirconia contains 70% by weight or more as the ZrO2 component, and natural zirconia, zirconia obtained by an electrofusion method, a dry method, a wet method, etc. are used. Zirconia is 1000~
Crystal transition occurs between 1200℃ and 3-4%
To prevent this, it is particularly desirable to use a solid solution with a small amount of CaO or MgO. In addition, zircon is obtained by concentrating from heavy sand such as zircon sand, ilmenant, and rutile sand, and contains 80% by weight as ZrO 2 / SiO 2 component.
Those containing the above are used. Zirconia and zircon may be used alone or in combination. The mixing ratio of alumina cement and zirconia and/or zircon is in the range of 40 to 95 parts by weight of alumina cement and 5 to 60 parts by weight of zirconia and/or zircon. If the proportion of zirconia and/or zircon is less than 5 parts by weight, properties such as corrosion resistance due to the basic aggregate will deteriorate, and if it exceeds 60 parts by weight, high temperature strength and workability will decrease. A preferred mixing ratio is 45 to 80 parts by weight of alumina cement and 20 to 55 parts by weight of zirconia and/or zircon. As described above, the present invention is a basic refractory cement composition that has excellent high-temperature strength, corrosion resistance, and workability. In other words, when basic aggregates are conventionally used as castable aggregates, their properties deteriorate significantly depending on the location of use, and conventional products are difficult to use in steel-related or non-ferrous metal-related applications such as soaking furnaces and heating furnaces. It can be used as a furnace material and as a refractory for handling basic slag, and has an extremely large effect. The second invention is a cement composition in which a specific amount of polyacrylic acid, etc. and/or hydroxycarboxylic acid, etc. is mixed in order to further improve the workability and strength development of the cement composition of the first invention. It is. Polyacrylic acid and the like mainly function as a curing retarder. It is desirable that the degree of polymerization is 50 to 10,000 and that it is water-soluble, and the amount to be blended is 0.1 to 3 parts by weight per 100 parts by weight of the above-mentioned cement composition.
If it is less than 0.1 parts by weight, there will be no curing retardation effect and it will be inferior to the case where it is not added, and if it exceeds 3 parts by weight, strength development will deteriorate. Water-soluble salts of polyacrylic acid or polymethacrylic acid include sodium, potassium, and ammonium salts, but sodium salts are preferred in terms of performance and ease of handling. Hydroxycarboxylic acids and the like mainly function as water-reducing and dispersing agents. For example, hydroxycarboxylic acids such as citric acid, tartaric acid, malic acid, and gluconic acid, and sodium, potassium,
Examples include water-soluble salts such as ammonium, and further inorganic carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. Sodium citrate and sodium carbonate are preferred in terms of performance and ease of handling. The blending amount is 0.1 per 100 parts by weight of the cement composition mentioned above.
~3 parts by weight. If it is less than 0.1 part by weight, it will not be effective, and if it is added in excess of 3 parts by weight, it will be impractical and its high-temperature strength will decrease. By further containing the above two components in the cement composition of the first invention, there is no curing delay and it has sufficient workability necessary for construction. The cement composition of the present invention can be produced by blending predetermined amounts of alumina cement and zirconia and/or zircon, and mixing and pulverizing the mixture, or by mixing the pulverized products of each of them. Hydroxycarboxylic acids and the like may be blended into the cement composition in advance, or may be added during kneading. Next, the present invention will be explained with reference to Examples and Comparative Examples. Example 1 The alumina cement shown in Table 1 and the zirconia (brasilic acid) or zircon shown in Table 2 were mixed to obtain the cement composition shown in Table 3.

【表】【table】

【表】【table】

【表】 表3に示したセメント組成物20重量部とマグネ
シア骨材80重量部を配合して得られたキヤスタブ
ル耐火物の諸物性の測定結果を表4に示す。
[Table] Table 4 shows the measurement results of various physical properties of a castable refractory obtained by blending 20 parts by weight of the cement composition shown in Table 3 and 80 parts by weight of magnesia aggregate.

【表】 表4に示した通り、本発明のセメント組成物
は、比較例に比べて、高温強度と作業性はいずれ
も著しく優れていることがわかる。 次に表3の実験No.1−3(アルミナセメント
A50重量部とジルコニア50重量部)及び実験No.1
−5(アルミナセメントA70重量部とジルコン30
重量部)のセメント組成物100重量部に、ポリア
クリル酸ナトリウム(PAS)、クエン酸ナトリウ
ム(SC)、炭酸ナトリウム(Na2CO3)を種々配
合して得られたセメント組成物20重量部とマグネ
シア骨材80重量部を混合してなるキヤスタブル耐
火物について、同様な物性を測定した。 実験No.1−3のセメント組成物についての結果
を表5に、実施例5のセメント組成物についての
結果を表6にそれぞれ示す。 表5と表6に示したように、ポリアクリル酸等
やヒドロオキシカルボン酸等の添加量が0.1重量
部未満では瞬結性となり高温強度も低下し、ま
た、3重量部をこえると硬化時間が長くなり実用
性に欠け高温強度も低下することがわかる。
[Table] As shown in Table 4, it can be seen that the cement composition of the present invention is significantly superior in both high temperature strength and workability as compared to the comparative example. Next, Experiment No. 1-3 in Table 3 (alumina cement
50 parts by weight of A and 50 parts by weight of zirconia) and Experiment No. 1
-5 (alumina cement A70 parts by weight and zircon 30
20 parts by weight of a cement composition obtained by blending various sodium polyacrylate (PAS), sodium citrate (SC), and sodium carbonate (Na 2 CO 3 ) to 100 parts by weight of a cement composition (parts by weight). Similar physical properties were measured for a castable refractory made by mixing 80 parts by weight of magnesia aggregate. The results for the cement composition of Experiment No. 1-3 are shown in Table 5, and the results for the cement composition of Example 5 are shown in Table 6. As shown in Tables 5 and 6, if the amount of polyacrylic acid or hydroxycarboxylic acid added is less than 0.1 part by weight, it will cause instant setting and the high temperature strength will decrease, and if it exceeds 3 parts by weight, it will take a long time to harden. It can be seen that the length becomes longer, impractical, and the high-temperature strength also decreases.

【表】【table】

【表】【table】

【表】【table】

【表】 なお、以上の実験において、成分の測定と物性
の測定は次の方法によつた。 1 成分の測定:JISR2522に準ずる。 2 物性の測定 (1) フロー値の測定:耐火セメントを耐火性骨材
と配合し、JISR2553の方法にて水を加え3分
間混練しこの混合物をフローコーンに充填し表
面をならした後、フローコーンを垂直方向に抜
き取り15秒間に15回落下運動を与えキヤスタブ
ルの広がつた径の長さ(mm)を最大と認められ
る方向とこれに垂直な方向について計り長さの
平均値を整数に丸めフロー値とした。 (2) 1000℃焼成強度:4×4×16cmの供試体を
1000℃で焼成した後の強度をJISR2553に準じ
て測定した。 (3) その他の物性の測定:JISR2553に準じて測
定した。 実施例 2 表1に示すアルミナセメントを用い、表3実験
No.3記載のセメント組成物を作製し、その組成物
を用いて表6実験No.21に記載のように添加剤を混
合し、キヤスタブル耐火物とした。 このキヤスタブル耐火物を用いて、JISM8512
記載の方法で耐火度を測定した。その結果を表7
に示す。 一方、化学組成が、CaO41.5%、SiO233.7%、
Al2O314%、MgO6.5%、及びTiO21.3%の新日鉄
製高炉スラブを高周波炉の黒鉛ルツボ内、1550℃
で溶解し、その中へ、前記キヤスタブル耐火物の
硬化後100℃で2時間焼成した4×4×16cmの試
片を10時間浸漬し、損耗状態を目視で観擦し耐食
性とした。結果を表7に併記する。 なお、耐食性の評価は、損耗が少なければ◎、
それほどでなければ〇、損耗が多ければ△、損耗
が非常に多ければ×とした。
[Table] In the above experiments, the following methods were used to measure the components and physical properties. 1 Measurement of components: According to JISR2522. 2 Measurement of physical properties (1) Measurement of flow value: Mix fire-resistant cement with fire-resistant aggregate, add water according to JISR2553 method, mix for 3 minutes, fill this mixture into a flow cone, smooth the surface, and then Pull out the cone vertically and give it a falling motion 15 times in 15 seconds. Measure the length (mm) of the expanded diameter of the caster in the maximum direction and in the direction perpendicular to this. Round the average length to an integer. It was taken as a flow value. (2) 1000℃ firing strength: 4 x 4 x 16 cm specimen
The strength after firing at 1000°C was measured according to JISR2553. (3) Measurement of other physical properties: Measured according to JISR2553. Example 2 Table 3 experiment using alumina cement shown in Table 1
A cement composition described in No. 3 was prepared, and additives were mixed with the composition as described in Experiment No. 21 in Table 6 to obtain a castable refractory. Using this castable refractory, JISM8512
The fire resistance was measured by the method described. Table 7 shows the results.
Shown below. On the other hand, the chemical composition is CaO41.5%, SiO2 33.7%,
A Nippon Steel blast furnace slab containing 14% Al 2 O 3 , 6.5% MgO, and 1.3% TiO 2 was placed in a graphite crucible in a high frequency furnace at 1550℃.
A 4 x 4 x 16 cm test piece of the castable refractory, which had been hardened and fired at 100°C for 2 hours, was immersed therein for 10 hours, and the state of wear was visually inspected to determine its corrosion resistance. The results are also listed in Table 7. In addition, the evaluation of corrosion resistance is ◎ if there is little wear and tear.
If it is not so bad, it is marked as ○, if there is a lot of wear and tear, it is marked as △, and if there is a lot of wear and tear, it is marked as ×.

【表】【table】

Claims (1)

【特許請求の範囲】 1 少なくともAl2O3分を45重量%含有して成る
アルミナセメント40〜95重量部とジルコニア及
び/又はジルコン5〜60重量部を含有して成る塩
基性耐火セメント組成物。 2 少なくともAl2O3分を45重量%含有して成る
アルミナセメント40〜95重量部とジルコニア及
び/又はジルコン5〜60重量部とから成る組成物
100重量部に対し、ポリアクリル酸、ポリメタク
リル酸及びそれらの酸の塩類から選ばれた少なく
とも一種を0.1〜3重量部及び/又はヒドロオキ
シカルボン酸及びその塩並びに無機炭酸塩から選
ばれた少くとも一種を0.1〜3重量部を含有させ
て成る塩基性耐火セメント組成物。
[Claims] 1. A basic refractory cement composition comprising 40 to 95 parts by weight of alumina cement containing at least 45% by weight of Al 2 O 3 and 5 to 60 parts by weight of zirconia and/or zircon. . 2. A composition comprising 40 to 95 parts by weight of alumina cement containing at least 45% by weight of Al 2 O 3 and 5 to 60 parts by weight of zirconia and/or zircon.
Per 100 parts by weight, 0.1 to 3 parts by weight of at least one selected from polyacrylic acid, polymethacrylic acid, and salts of these acids, and/or a small amount selected from hydroxycarboxylic acids, salts thereof, and inorganic carbonates. A basic refractory cement composition containing 0.1 to 3 parts by weight of one or more of the following.
JP23179383A 1983-12-08 1983-12-08 Basic refractory cement composition Granted JPS60122773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23179383A JPS60122773A (en) 1983-12-08 1983-12-08 Basic refractory cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23179383A JPS60122773A (en) 1983-12-08 1983-12-08 Basic refractory cement composition

Publications (2)

Publication Number Publication Date
JPS60122773A JPS60122773A (en) 1985-07-01
JPH0359034B2 true JPH0359034B2 (en) 1991-09-09

Family

ID=16929103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23179383A Granted JPS60122773A (en) 1983-12-08 1983-12-08 Basic refractory cement composition

Country Status (1)

Country Link
JP (1) JPS60122773A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234041A1 (en) * 2022-06-03 2023-12-07 デンカ株式会社 Cement material, cement composition, and hardened article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032223A (en) * 1973-05-17 1975-03-28
JPS5343162A (en) * 1976-09-30 1978-04-19 Borsig Gmbh Apparatus for sealing drive journal shaft of boll cock
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS55144456A (en) * 1979-04-26 1980-11-11 Nihon Cement Alumina cement composition
JPS5792583A (en) * 1980-12-01 1982-06-09 Nippon Crucible Co Binder for formless refractories and formless refractories
JPS5832079A (en) * 1982-04-12 1983-02-24 イソライト工業株式会社 Fire resistant heat insulating spray material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032223A (en) * 1973-05-17 1975-03-28
JPS5343162A (en) * 1976-09-30 1978-04-19 Borsig Gmbh Apparatus for sealing drive journal shaft of boll cock
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS55144456A (en) * 1979-04-26 1980-11-11 Nihon Cement Alumina cement composition
JPS5792583A (en) * 1980-12-01 1982-06-09 Nippon Crucible Co Binder for formless refractories and formless refractories
JPS5832079A (en) * 1982-04-12 1983-02-24 イソライト工業株式会社 Fire resistant heat insulating spray material

Also Published As

Publication number Publication date
JPS60122773A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
EP0364640B1 (en) Hard setting refractory composition
JPH0420871B2 (en)
JP7341771B2 (en) castable refractories
GB1598000A (en) High alumina-chromia plastic refractory mix
JPH0357067B2 (en)
JP2874831B2 (en) Refractory for pouring
US3379544A (en) Refractory bonding mortar
JPH0359034B2 (en)
JPH0348156B2 (en)
CA1144187A (en) Refractory gun mix
JPH0469114B2 (en)
JP2747297B2 (en) Cement admixture
JP4070287B2 (en) Alumina cement composition and amorphous refractory using the same
JP3126003B2 (en) Sprayed refractory
JPH03159967A (en) Lining material of container for molten metal
JP3308632B2 (en) High fire resistant composition and fire resistant structural material
JPH0625015B2 (en) Alumina cement composition
JPH0159235B2 (en)
JPS6120511B2 (en)
SU1102785A1 (en) Concrete mix
JPH01282143A (en) Refractory mortar composition
JPH0229630B2 (en)
AU7452698A (en) Cement clinker and cement containing the same
JPH05139795A (en) Quick-setting cement composition
CA1298323C (en) Hard setting refractory composition