JPH0159235B2 - - Google Patents

Info

Publication number
JPH0159235B2
JPH0159235B2 JP59113922A JP11392284A JPH0159235B2 JP H0159235 B2 JPH0159235 B2 JP H0159235B2 JP 59113922 A JP59113922 A JP 59113922A JP 11392284 A JP11392284 A JP 11392284A JP H0159235 B2 JPH0159235 B2 JP H0159235B2
Authority
JP
Japan
Prior art keywords
weight
parts
magnesia
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59113922A
Other languages
Japanese (ja)
Other versions
JPS60260476A (en
Inventor
Yukio Sasagawa
Junpei Muto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11392284A priority Critical patent/JPS60260476A/en
Publication of JPS60260476A publication Critical patent/JPS60260476A/en
Publication of JPH0159235B2 publication Critical patent/JPH0159235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、塩基性の耐火セメント組成物に係
り、更に詳しくは、著しく高い耐火性及び耐食性
と高強度発現性及び容積安定性を示し、硬化遅れ
がなく施工上必要にして十分な作業性を有する塩
基性耐火セメント組成物に関する。 〔従来の技術〕 アルミナセメントは、耐火性骨材と配合しキヤ
スタブル耐火物として鉄鋼関係或いは非鉄金属関
係の炉材等に広く用いられているが、塩基性骨材
を用いると使用場所により著しく侵食され高温強
度も十分でなく耐スポーリング性も劣つており、
これを改良する為、マグネシアを60重量%以上含
有させたものが知られている(特開昭57−191256
号公報)。 しかしながら、この様にマグネシアを高含有さ
せたアルミナセメント組成物は、塩基性骨材の使
用には適しているが高温強度に欠け施工時に於け
る作業性も劣り成形しても十分な強度が得られな
い等の欠点があつた。 〔発明が解決しようとする問題点〕 本発明者らは、以上の欠点を解決するには、マ
グネシア含有量を20〜50重量%とし、かつ、その
含有させるマグネシアを特定のものに選択使用す
れば施工時に於ける作業性を低下させることなく
高温強度が著しく向上することを見い出したが、
マグネシアの選択使用に起因すると考えられる容
積安定性が十分でなかつた。 本発明の目的は、この不都合を解決することに
有り、施工時に於ける作業性と高温強度を低下さ
せることなく必要にして十分な容積安定性を備え
た塩基性耐火セメント組成物を提供することにあ
る。 〔問題点を解決するための手段〕 本発明は、少なくともAl2O3分を45重量%含有
し、比表面積がブレーン法で0.2〜1.2m2/gであ
るアルミナセメント粉50〜80重量部とマグネシア
粉20〜50重量部とからなる組成物100重量部に対
し、被膜防水剤又は被膜止水剤を0.1〜5重量部
含有してなつており、前記マグネシア粉は1100℃
以下の温度で焼成して得られた、比表面積がB.E.
T法で6m2/g以上であるマグネシア成分25〜75
重量%と1800℃以上の温度で焼成して得られた、
比表面積がB.E.T法で5m2/g以下のマグネシア
成分75〜25重量%の割合で構成してなることを特
徴とする塩基性耐火セメント組成物、及び該塩基
性耐火セメント組成物100重量部に対し、水溶性
のポリアクリル酸、ポリメタアクリル酸及びそれ
らの酸の塩類(以下ポリアクリル酸等という)の
少くとも一種を0.1〜3重量部及び/又はヒドロ
オキシカルボン酸及びその塩並びに炭酸及び無機
炭酸塩(以下ヒドロオキシカルボン酸等という)
から選ばれた少くとも一種を0.1〜2重量部とを
含有させて成る塩基性耐火セメント組成物であ
る。 本発明で使用するアルミナセメント粉は、溶融
法或いは焼成法によつて製造された物であつて、
通常、その鉱物組成は、CaO・Al2O3、CaO・
2Al2O312CaO・7Al2O3等の少くとも1種のカル
シウムアルミネートを主体としたもので、粒度
は、粒径88μ以下、比表面積がブレーン法で0.2〜
1.2m2/gである。 Al2O3分の含有量が45重量%未満であると耐火
性が悪化する。 一方、マグネシア粉は、1100℃以下の温度で焼
成して得られたマグネシア(以下活性マグネシア
という)と1800℃以上の温度で焼成して得られた
マグネシア(以下焼成マグネシアという)の二種
を併用する。 活性マグネシアは、水酸化マグネシウムを1100
℃以下好ましくは500〜1000℃の温度で焼成して
得られたものであり、通常、比表面積は、B.E.T
法で6m2/g以上、真比重はピクノメーター法で
3.57g/cm3以下を有するものである。1100℃を越
える温度で焼成したものであつては高温強度を著
しく向上させる効果はない。そのMgO純分とし
ては、70重量%以上であることが好ましくそれよ
り品質の悪いものであつては高温強度を著しく向
上させる効果は小さい。また、焼成マグネシア
は、水酸化マグネシア、炭酸マグネシア等のマグ
ネシア化合物を1800℃以上好ましくは1900℃以上
の温度で焼成して得られたものであつて、通常、
比表面積は、B.E.T法で5m2/g以下、真比重は
ピクノメーター法で3.58g/cm3以上を有するもの
である。1800℃未満の温度で得られたものであつ
ては高温強度を著しく向上させる効果は小さく、
同様な理由により、MgO純分は80重量%以上で
あることが好ましい。アルミナセメント粉とマグ
ネシア粉の配合割合はアルミナセメント粉50〜80
重量部、マグネシア粉20〜50重量部の範囲であ
る。マグネシア粉の割合が20重量部未満では、塩
基性の耐火骨材を用いると著しく侵食を受け高温
強度に欠け耐スポーリング性も低下する。また、
50重量部を越えると高温強度及び作業性が劣化す
る。 被膜防水剤は、水分散性高分子粉末及び水溶性
高分子粉末であつて、水分散性高分子粉末として
は、水分散性アクリル酸共重合体、水分散性ポリ
エチレン粉末、水分散性ポリ酢酸ビニル粉末等が
あり、また、水溶性高分子粉末としては、メチル
セルロース、カルボキシメチルセルロース等のセ
ルロース誘導体、アルフア化澱粉、エーテル化澱
粉等の澱粉誘導体、ポリビニルアルコール、プロ
ピレングリコール共重合体等がある。 被膜止水剤は粒子を被覆する性質を有するもの
であつて、例えば、ジエチレングリコール、トリ
エタノールアミン、E.D.T.A、ステアリン酸ナト
リウム、グルコン酸ナトリウム等がある。 被膜防水剤又は被膜止水剤の配合割合はアルミ
ナセメント粉とマグネシア粉から成る組成物100
重量部に対し0.1〜5重量部であつて0.1重量部未
満では十分な耐容積安定性は得られず5重量部を
越えると高温強度及び作業性が劣化する。好まし
くは1重量部をこえ4重量部特に好ましくは2重
量部をこえ4重量部である。 第2の発明は、前述したセメント組成物の高温
強度特性を損わせることなく作業性をさらに向上
させる為にポリアクリル酸等及び/又はヒドロオ
キシカルボン酸等の特定量を混在せしめたもので
ある。ポリアクリル酸等は主として酸化遅延剤と
して機能する。その重合度は50〜10000であるこ
とが好ましいが配合量は前述したセメント組成物
100重量部に対し0.1〜3重量部とする。0.1重量
部未満では硬化遅延効果がなく、また3重量部を
越えると強度発現が悪くなる。 ポリアクリル酸又はその水溶性塩としてナトリ
ウム、カリウム、アンモニウム等の塩があるが性
能と取り扱い易さから考えるとナトリウム塩が好
ましい。ヒドロオキシカルボン酸等は主として減
水分散剤として機能する。例示すれば、クエン
酸、酒石酸、リンゴ酸、グルコン酸等のヒドロオ
キシカルボン酸やナトリウム、カリウム、アンモ
ニウム等のそれらの水溶性塩さらには炭酸、炭酸
ナトリウム、炭酸水素ナトリウム、炭酸カリウ
ム、炭酸水素カリウム等をあげることができる。
性能と取り扱い易さの点から炭酸ナトリウムが好
ましい。配合量は、前述したセメント組成物100
重量部に対し0.1〜2重量部である。0.1重量部未
満では減水分散効果がなく、また2重量部を越え
て添加する利点はない。好ましくは0.3〜1重量
部である。 以上の2成分を第1の発明のセメント組成物に
さらに含有せしめることにより硬化遅れがなく施
工上必要にして十分な作業性を有するものとな
る。 本発明のセメント組成物は、アルミナセメント
粉とマグネシア粉及び被膜被水剤又は被膜防止剤
の所定量を配合し混合粉砕するか、又はアルミナ
セメント、マグネシア各々の粉砕物と被膜防水剤
又は被膜止水剤とを混合することによつて製造す
ることができ、ポリアクリル酸等とヒドロオキシ
カルボン酸等はあらかじめセメント組成物に配合
しておいてもよく、また、混練時に添加してもよ
い。 〔実施例〕 次に本発明を実施例、比較例で説明する。 表1に示す種類Aのアルミナセメント、表2の
活性マグネシアと表3の焼成マグネシアの混合物
に被膜防水剤又は被膜止水剤として水分散性ポリ
エチレン粉末(PE)、メチルセルロース(MC)、
アルフア化澱粉(α−S)、ジエチレングリコー
ル(DEG)、グルコン酸ナトリウム(GS)を
各々所定量混合し表4に示すアルミナセメント組
成物を得た。 表4に示すアルミナセメント組成物20重量部と
マグネシア骨材80重量部を配合して得られたキヤ
スタブル耐火物の諸物性の測定結果を同じく表4
に示す。
[Industrial Application Field] The present invention relates to a basic fire-resistant cement composition, and more specifically, it exhibits extremely high fire resistance and corrosion resistance, high strength development, and volume stability, and has no hardening delay and is necessary for construction. The present invention relates to a basic refractory cement composition having sufficient workability. [Prior art] Alumina cement is widely used as a castable refractory material in furnace materials for iron and steel or non-ferrous metals by blending it with refractory aggregate. However, when basic aggregate is used, it can be severely eroded depending on the location where it is used. It has insufficient high-temperature strength and poor spalling resistance.
To improve this, it is known to contain 60% by weight or more of magnesia (Japanese Patent Application Laid-Open No. 57-191256
Publication No.). However, although such alumina cement compositions with a high content of magnesia are suitable for use as basic aggregates, they lack high-temperature strength, have poor workability during construction, and do not have sufficient strength even when molded. There were drawbacks such as not being able to [Problems to be Solved by the Invention] The present inventors have proposed that in order to solve the above drawbacks, the magnesia content should be 20 to 50% by weight, and the magnesia to be contained should be selectively used in a specific product. We found that high-temperature strength was significantly improved without reducing workability during construction.
The volume stability was not sufficient, which may be due to the selective use of magnesia. The purpose of the present invention is to solve this inconvenience, and to provide a basic refractory cement composition that has the necessary and sufficient volumetric stability without reducing workability during construction and high-temperature strength. It is in. [Means for Solving the Problems] The present invention provides 50 to 80 parts by weight of alumina cement powder containing at least 45% by weight of Al 2 O 3 and having a specific surface area of 0.2 to 1.2 m 2 /g by Blaine method. The composition contains 0.1 to 5 parts by weight of a film waterproofing agent or a film waterproofing agent to 100 parts by weight of a composition consisting of 20 to 50 parts by weight of magnesia powder, and the magnesia powder is heated at 1100°C.
The specific surface area obtained by firing at the following temperature is BE
Magnesia component 25 to 75 with an amount of 6 m 2 /g or more by T method
% by weight and obtained by firing at a temperature of 1800℃ or higher,
A basic refractory cement composition comprising 75 to 25% by weight of a magnesia component having a specific surface area of 5 m 2 /g or less by the BET method, and 100 parts by weight of the basic refractory cement composition. On the other hand, at least 0.1 to 3 parts by weight of water-soluble polyacrylic acid, polymethacrylic acid, and salts of these acids (hereinafter referred to as polyacrylic acid, etc.) and/or hydroxycarboxylic acid and its salts and carbonic acid and Inorganic carbonates (hereinafter referred to as hydroxycarboxylic acids, etc.)
A basic refractory cement composition containing 0.1 to 2 parts by weight of at least one selected from the following. The alumina cement powder used in the present invention is produced by a melting method or a sintering method, and
Usually, its mineral composition is CaO・Al 2 O 3 , CaO・
It is mainly composed of at least one kind of calcium aluminate such as 2Al 2 O 3 12CaO, 7Al 2 O 3 , etc., the particle size is 88μ or less, and the specific surface area is 0.2 to 0.2 by Blaine method.
It is 1.2m 2 /g. If the content of Al 2 O 3 is less than 45% by weight, the fire resistance will deteriorate. On the other hand, magnesia powder is a combination of two types: magnesia obtained by firing at a temperature of 1100°C or lower (hereinafter referred to as activated magnesia) and magnesia obtained by firing at a temperature of 1800°C or higher (hereinafter referred to as fired magnesia). do. Activated Magnesia 1100 Magnesium Hydroxide
℃ or less, preferably 500 to 1000℃, and the specific surface area is usually BET
6 m 2 /g or more by method, true specific gravity by pycnometer method
3.57g/cm 3 or less. If it is fired at a temperature exceeding 1100°C, it will not have the effect of significantly improving high-temperature strength. The pure MgO content is preferably 70% by weight or more, and if the quality is lower than that, the effect of significantly improving high temperature strength will be small. Calcined magnesia is obtained by calcining magnesia compounds such as magnesia hydroxide and magnesia carbonate at a temperature of 1800°C or higher, preferably 1900°C or higher, and usually
The specific surface area is 5 m 2 /g or less by the BET method, and the true specific gravity is 3.58 g/cm 3 or more by the pycnometer method. If it is obtained at a temperature below 1800℃, the effect of significantly improving high temperature strength is small;
For the same reason, the pure MgO content is preferably 80% by weight or more. The mixing ratio of alumina cement powder and magnesia powder is 50 to 80% of alumina cement powder.
parts by weight, magnesia powder ranges from 20 to 50 parts by weight. If the proportion of magnesia powder is less than 20 parts by weight, basic refractory aggregates will be severely eroded and will lack high-temperature strength and will also have reduced spalling resistance. Also,
If it exceeds 50 parts by weight, high temperature strength and workability will deteriorate. The film waterproofing agent is a water-dispersible polymer powder and a water-soluble polymer powder, and examples of the water-dispersible polymer powder include water-dispersible acrylic acid copolymer, water-dispersible polyethylene powder, and water-dispersible polyacetic acid. Examples of water-soluble polymer powders include cellulose derivatives such as methyl cellulose and carboxymethyl cellulose, starch derivatives such as alpha starch and etherified starch, polyvinyl alcohol, and propylene glycol copolymers. The coating water-stopping agent has the property of coating particles, and includes, for example, diethylene glycol, triethanolamine, EDTA, sodium stearate, sodium gluconate, and the like. The blending ratio of the film waterproofing agent or film waterproofing agent is 100% of the composition consisting of alumina cement powder and magnesia powder.
If the amount is 0.1 to 5 parts by weight, and if it is less than 0.1 part by weight, sufficient volumetric stability will not be obtained, and if it exceeds 5 parts by weight, high temperature strength and workability will deteriorate. Preferably it is more than 1 part by weight and more than 4 parts by weight, particularly preferably more than 2 parts by weight and more than 4 parts by weight. The second invention is a cement composition in which a specific amount of polyacrylic acid, etc. and/or hydroxycarboxylic acid, etc. is mixed in order to further improve the workability without impairing the high temperature strength characteristics of the cement composition. be. Polyacrylic acid and the like mainly function as oxidation retarders. The degree of polymerization is preferably 50 to 10,000, but the blending amount is the same as that of the cement composition described above.
The amount is 0.1 to 3 parts by weight per 100 parts by weight. If it is less than 0.1 part by weight, there will be no curing retardation effect, and if it exceeds 3 parts by weight, strength development will be poor. Polyacrylic acid or its water-soluble salts include sodium, potassium, and ammonium salts, but sodium salts are preferred in terms of performance and ease of handling. Hydroxycarboxylic acids and the like mainly function as water-reducing and dispersing agents. Examples include hydroxycarboxylic acids such as citric acid, tartaric acid, malic acid, and gluconic acid; their water-soluble salts such as sodium, potassium, and ammonium; and carbonic acid, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. etc. can be given.
Sodium carbonate is preferred in terms of performance and ease of handling. The blending amount is 100% of the cement composition mentioned above.
It is 0.1 to 2 parts by weight. If it is less than 0.1 part by weight, there is no water-reducing and dispersing effect, and if it is added in excess of 2 parts by weight, there is no advantage. Preferably it is 0.3 to 1 part by weight. By further containing the above two components in the cement composition of the first invention, there is no curing delay and it has sufficient workability necessary for construction. The cement composition of the present invention can be prepared by mixing and pulverizing alumina cement powder, magnesia powder, and predetermined amounts of a coating waterproofing agent or coating preventing agent, or by mixing and pulverizing alumina cement powder, magnesia powder, and a coating waterproofing agent or coating preventing agent. It can be manufactured by mixing a cement composition with a water agent, and polyacrylic acid and the like and hydroxycarboxylic acid and the like may be blended into the cement composition in advance, or may be added during kneading. [Example] Next, the present invention will be explained with reference to Examples and Comparative Examples. Alumina cement of type A shown in Table 1, a mixture of activated magnesia shown in Table 2 and calcined magnesia shown in Table 3, water-dispersible polyethylene powder (PE), methylcellulose (MC) as a film waterproofing agent or film waterstop agent,
Predetermined amounts of alpha-starch (α-S), diethylene glycol (DEG), and sodium gluconate (GS) were mixed to obtain an alumina cement composition shown in Table 4. Table 4 also shows the measurement results of various physical properties of castable refractories obtained by blending 20 parts by weight of the alumina cement composition shown in Table 4 and 80 parts by weight of magnesia aggregate.
Shown below.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 次に表1のアルミナセメント種類A65重量部と
マグネシア35重量部(マグネシアの構成比につい
て表5参照)から成る組成物100重量部に対し被
膜防水剤又は被膜止水剤として水分散性ポリエチ
レン粉末(PE)、メチルセルロース(MC)、ア
ルフア化澱粉(α−S)、ジエチレングリコール
(DEG)、グルコン酸ナトリウム(GS)を各々所
定量混合し、さらにポリアクリル酸ナトリウム
(PAS)、クエン酸ナトリウム(SC)、炭酸ナトリ
ウム(Na2CO3)を種々配合して得られたアルミ
ナセメント組成物20重量部とマグネシア骨材80重
量部を混合して得られたキヤスタブル耐火物につ
いて物性を測定した。 その添加剤の配合割合とその結果を表5に示
す。
[Table] Next, 100 parts by weight of a composition consisting of 65 parts by weight of alumina cement type A in Table 1 and 35 parts by weight of magnesia (see Table 5 for the composition ratio of magnesia) is water-dispersible as a film waterproofing agent or a film waterproofing agent. Polyethylene powder (PE), methylcellulose (MC), alpha-starch (α-S), diethylene glycol (DEG), and sodium gluconate (GS) are mixed in predetermined amounts, and then sodium polyacrylate (PAS) and sodium citrate are mixed together. The physical properties of a castable refractory obtained by mixing 20 parts by weight of an alumina cement composition obtained by blending various types of sodium carbonate (SC) and sodium carbonate (Na 2 CO 3 ) with 80 parts by weight of magnesia aggregate were measured. Table 5 shows the blending ratio of the additives and the results.

〔発明の効果〕〔Effect of the invention〕

本発明による塩基性耐火セメント組成物は、著
しく高い耐火性及び耐食性と高強度発現性及び優
れた容積安定性を示し、硬化遅れがなく施工上必
要にして十分な作業性を有しており、塩基性骨材
を用いたキヤスタブルに適する。この為、従来品
では使用困難とされていた塩基性キヤスタブルと
して均熱炉及び加熱炉等の鉄鋼関係或いは非鉄金
属関係の炉材用耐火物への使用が可能となり、優
れた耐食性及び容積安定性も合わせ持つており、
施工物の損傷が低減され、使用期間が大幅に延長
されるという効果を奏する。
The basic refractory cement composition according to the present invention exhibits extremely high fire resistance and corrosion resistance, high strength development, and excellent volumetric stability, and has no curing delay and sufficient workability necessary for construction. Suitable for castables using basic aggregate. Therefore, as a basic castable, which was difficult to use with conventional products, it can be used as refractories for steel-related or non-ferrous metal-related furnace materials such as soaking furnaces and heating furnaces, and has excellent corrosion resistance and volume stability. It also has
This has the effect of reducing damage to the construction material and significantly extending its useful life.

Claims (1)

【特許請求の範囲】 1 少なくともAl2O3分を45重量%含有し、比表
面積がブレーン法で0.2〜1.2m2/gであるアルミ
ナセメント粉50〜80重量部とマグネシア粉20〜50
重量部とからなる組成物100重量部に対し、被膜
防水剤又は被膜止水剤を0.1〜5重量部含有して
なつており、前記マグネシア粉は1100℃以下の温
度で焼成して得られた、比表面積がB.E.T法で6
m2/g以上であるマグネシア成分25〜75重量%と
1800℃以上の温度で焼成して得られた、比表面積
がB.E.T法で5m2/g以下のマグネシア成分75〜
25重量%の割合で構成してなることを特徴とする
塩基性耐火セメント組成物。 2 少なくともAl2O3分を45重量%含有し、比表
面積がブレーン法で0.2〜1.2m2/gであるアルミ
ナセメント粉50〜80重量部とマグネシア粉20〜50
重量部とからなる組成物100重量部に対し、被膜
防水剤又は被膜止水剤を0.1〜5重量部、並びに
水溶性のポリアクリル酸、ポリメタアクリル酸及
びそれらの酸の塩類から選ばれた少なくとも一種
を0.1〜3重量部及び/又はヒドロオキシカルボ
ン酸及びその塩並びに炭酸及び無機炭酸塩から選
ばれた少なくとも一種を0.1〜2重量部含有して
なつており、前記マグネシア粉は1100℃以下の温
度で焼成して得られた、比表面積がB.E.T法で6
m2/g以上であるマグネシア成分25〜75重量%と
1800℃以上の温度で焼成して得られた、比表面積
がB.E.T法で5m2/g以下のマグネシア成分75〜
25重量%の割合で構成してなることを特徴とする
塩基性耐火セメント組成物。
[Claims] 1. 50 to 80 parts by weight of alumina cement powder containing at least 45% by weight of Al 2 O 3 and having a specific surface area of 0.2 to 1.2 m 2 /g by Blaine method and 20 to 50 parts by weight of magnesia powder.
The magnesia powder contains 0.1 to 5 parts by weight of a film waterproofing agent or a film waterproofing agent per 100 parts by weight of a composition consisting of , the specific surface area is 6 by BET method.
m 2 /g or more and a magnesia component of 25 to 75% by weight.
Magnesia component 75 ~ obtained by firing at a temperature of 1800°C or higher and having a specific surface area of 5 m 2 /g or less by BET method
A basic refractory cement composition characterized by comprising 25% by weight. 2 50 to 80 parts by weight of alumina cement powder containing at least 45% by weight of Al 2 O 3 and a specific surface area of 0.2 to 1.2 m 2 /g by Blaine method and 20 to 50 parts by weight of magnesia powder.
0.1 to 5 parts by weight of a film waterproofing agent or a film waterproofing agent, and water-soluble polyacrylic acid, polymethacrylic acid, and salts of these acids, per 100 parts by weight of the composition. The magnesia powder contains 0.1 to 3 parts by weight of at least one kind and/or 0.1 to 2 parts by weight of at least one selected from hydroxycarboxylic acids and their salts, carbonic acid and inorganic carbonates, and the magnesia powder has a temperature of 1100°C or less. The specific surface area obtained by firing at a temperature of 6 is determined by the BET method.
m 2 /g or more and a magnesia component of 25 to 75% by weight.
Magnesia component 75 ~ obtained by firing at a temperature of 1800°C or higher and having a specific surface area of 5 m 2 /g or less by BET method
A basic refractory cement composition characterized by comprising 25% by weight.
JP11392284A 1984-06-05 1984-06-05 Basic refractory cement composition Granted JPS60260476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11392284A JPS60260476A (en) 1984-06-05 1984-06-05 Basic refractory cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11392284A JPS60260476A (en) 1984-06-05 1984-06-05 Basic refractory cement composition

Publications (2)

Publication Number Publication Date
JPS60260476A JPS60260476A (en) 1985-12-23
JPH0159235B2 true JPH0159235B2 (en) 1989-12-15

Family

ID=14624549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11392284A Granted JPS60260476A (en) 1984-06-05 1984-06-05 Basic refractory cement composition

Country Status (1)

Country Link
JP (1) JPS60260476A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126048A (en) * 1993-10-29 1995-05-16 Toyo Chem Co Ltd Inorganic curing composition
ES2733944T3 (en) * 2015-12-01 2019-12-03 Imertech Cement of refractory magnesia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113812A (en) * 1977-03-17 1978-10-04 Nippon Kokan Kk Indefinite form and nonnburnt basic refractory material
JPS57191256A (en) * 1981-04-29 1982-11-25 Uss Eng & Consult Material having basic refractory cement properties and component substance therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113812A (en) * 1977-03-17 1978-10-04 Nippon Kokan Kk Indefinite form and nonnburnt basic refractory material
JPS57191256A (en) * 1981-04-29 1982-11-25 Uss Eng & Consult Material having basic refractory cement properties and component substance therefor

Also Published As

Publication number Publication date
JPS60260476A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
JPH0159235B2 (en)
JP3348813B2 (en) Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same
JPH0357067B2 (en)
JP4070287B2 (en) Alumina cement composition and amorphous refractory using the same
JP4056170B2 (en) Calcium aluminate, alumina cement, alumina cement composition, and amorphous refractory using the same
JP3526315B2 (en) Alumina cement composition and amorphous refractory using the same
JPH09301780A (en) Lightweight monolithic refractory
CA1144187A (en) Refractory gun mix
JP2000351662A (en) Alumina cement composition and amorphous refractory using the same
JP2747297B2 (en) Cement admixture
JPH0469114B2 (en)
CA2201992C (en) Set modifying admixtures for refractory shotcreting
JP2972179B1 (en) Amorphous refractory composition for wet spraying
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP3305444B2 (en) Alumina cement composition and amorphous refractory using the same
JP2005194119A (en) Method of wet-spraying premix material
JPH0625015B2 (en) Alumina cement composition
JP3026640B2 (en) Zirconia material added basic pouring material
JP3165171B2 (en) Castable composition
JP4027487B2 (en) Alumina cement composition and amorphous refractory using the same
JPH0359034B2 (en)
JP2001278654A (en) Alumina cement composition and monolithic refractories using same
JP3531748B2 (en) Cement composition
JP3310099B2 (en) Alumina cement and amorphous refractories using it
JPH10167791A (en) Additive for alumna cement, alumina cement composition containing the same and amorphous refractory material by using the same composition