JPH0358492A - Manufacture of printed wiring board - Google Patents
Manufacture of printed wiring boardInfo
- Publication number
- JPH0358492A JPH0358492A JP19505289A JP19505289A JPH0358492A JP H0358492 A JPH0358492 A JP H0358492A JP 19505289 A JP19505289 A JP 19505289A JP 19505289 A JP19505289 A JP 19505289A JP H0358492 A JPH0358492 A JP H0358492A
- Authority
- JP
- Japan
- Prior art keywords
- conductive plate
- printed wiring
- wiring board
- metal base
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 28
- 230000001070 adhesive effect Effects 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 abstract description 17
- 239000007767 bonding agent Substances 0.000 abstract 1
- 238000010297 mechanical methods and process Methods 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 230000017525 heat dissipation Effects 0.000 description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- 238000007650 screen-printing Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 101100298295 Drosophila melanogaster flfl gene Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
Description
【発明の詳細な説明】
C産業上の利用分野〕
本発明は放熱効果の優れたプリント配線板の製法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a printed wiring board with excellent heat dissipation effects.
〔従釆の技術コ
近年、電源回路、各種モータの駆動回路または電力増幅
回路といった分野で代表されるような使用電力の増大、
回路の高密度実装あるいは機器の小型化のニーズ等に対
応するためには放熱性の良いプリント配41板が必要で
あり、このようなプリント配線版を提供するための製法
として第5図(a)乃至(d)および第6図に断面図で
示す製法が知られている。[Subject technology] In recent years, the amount of power used has increased, as typified by fields such as power supply circuits, drive circuits for various motors, and power amplifier circuits.
In order to meet the needs for high-density packaging of circuits and miniaturization of equipment, a printed circuit board with good heat dissipation is required, and the manufacturing method for providing such a printed circuit board is shown in Figure 5 (a). ) to (d) and the manufacturing method shown in cross-sectional view in FIG. 6 are known.
即ち、第5図(a)は金属ベースのa張り積層板の断面
図である。放熱性の要求されるプリント配線板では金!
14基材エエとしてはアルミ板あるいは銅板を使用し、
絶縁材l2は銅l3と金X基材1lの接着と電気的絶縁
の両la能を持ったエボキシ系の樹脂を使用しているが
、絶縁性を更に強化ずるためにガラスエボキシプリプレ
グ等を使用することもある。銅工3は厚みが30〜10
0μmの銅箔であり、絶縁材12の厚みは40〜150
μmである。この銅張りlA層板に第5図(b) iこ
示すようにエッチングレジストエ4を回路lくターン状
l.′形成する。次に、第5図(c)に示すように銅1
3の露出した部分を工・ンチング除去し、更にエッチン
グレジストエ4を剥離すること番こより銅工3の回路パ
ターンが形成される。次Iこ第5図(d)に示すように
材質が銅であり、厚み力<0.5〜3rnm、大きさが
数m1〜数一であるヒートシンク15が半田付けにより
回路ノくターン上Iこ接着される。このヒートシンクエ
5上にノくワートランジスタ、パワーMOS−FETあ
るいはサイリスタ等の高発熱素子が組み込まれる。That is, FIG. 5(a) is a cross-sectional view of a metal-based A-stripe laminate. Gold for printed wiring boards that require heat dissipation!
14 Use an aluminum plate or a copper plate as the base material,
The insulating material 12 uses an epoxy resin that has both the ability to bond the copper 13 and the gold X base material 1 1 and electrically insulate it, but glass epoxy prepreg is used to further strengthen the insulation. Sometimes I do. Copperwork 3 has a thickness of 30 to 10
It is a copper foil of 0 μm, and the thickness of the insulating material 12 is 40 to 150 μm.
It is μm. As shown in FIG. 5(b), an etching resist 4 is applied to this copper-clad 1A layer board to form a circuit pattern 1. 'Form. Next, as shown in FIG. 5(c), copper 1
By etching and removing the exposed portion of the copper plate 3 and peeling off the etching resist 4, a circuit pattern of the copper plate 3 is formed. Next, as shown in FIG. 5(d), a heat sink 15 made of copper, with a thickness of <0.5 to 3 nm and a size of several m1 to several meters is soldered onto a circuit nozzle. This will be glued. A high heat generating element such as a power transistor, a power MOS-FET, or a thyristor is incorporated on the heat sink 5.
次に第6図は銅工3として銅箔を用(1る代わりにその
ままヒートシンクにもなり得る厚II1銅板を使用し、
プリント配線板を形成したものである。Next, in Figure 6, copper foil is used as the copper work 3 (instead of 1, a thick II1 copper plate that can also be used as a heat sink is used).
A printed wiring board is formed.
製法は第5図(a)乃至(C)と同じであり、銅工3の
エッチングを終え、エッチングレジストも除去した後の
第5図(c)の図面に相当するものである。The manufacturing method is the same as that shown in FIGS. 5(a) to 5(C), and the drawing corresponds to FIG. 5(c) after the etching of the copperwork 3 has been completed and the etching resist has also been removed.
[発明が解決しようとする課H]
このような高発熱素子の組み込まれるプリント配線板に
おいて、本発明が解決しようとする課題の第一は回路パ
ターンが高精度であり、高密度実装のできるプリント配
線板の簡単、安価な製法を提供することである。つまり
、?15図(a)乃至(d)に示す製法においてはヒー
トシンクエ5を1個づつ回路パターン上に半田付けによ
り接着しなければならず、そのときの位置合せ、更には
回転等接着の位置精度が上らないだけでなく手間のかか
る工程である。[Problem H to be Solved by the Invention] The first problem to be solved by the present invention in printed wiring boards in which such high heat generation elements are incorporated is that the circuit pattern is highly accurate and the printed wiring board is capable of high-density mounting. To provide a simple and inexpensive manufacturing method for a wiring board. In other words,? In the manufacturing method shown in Figs. 15(a) to (d), the heat sinks 5 must be bonded one by one onto the circuit pattern by soldering, and the positional accuracy of the bonding due to alignment, rotation, etc. It is not only a difficult process, but also a time-consuming process.
一方、多数のヒートシンクを一度に形成しようとすると
第6図において説明した製法のようになり、銅工3が厚
いためエッチングに非常に長い時間を費やしてしまう。On the other hand, if a large number of heat sinks are to be formed at once, the manufacturing method shown in FIG. 6 will be used, and since the copper work 3 is thick, etching will take a very long time.
また、銅の厚みが厚いためエッチングの際に銅のサイド
エッチングが進み、上方で幅が狭く下方で裾野が広がっ
たような銅工3の断面となり、パターン精度が悪く細線
を形成ずることが困難になる。従って、高密度実装ので
きるプリント配線板を形成することができなt)。In addition, because the copper is thick, side etching of the copper progresses during etching, resulting in a cross section of the copperwork 3 that is narrow at the top and wide at the bottom, resulting in poor pattern accuracy and difficulty in forming fine lines. become. Therefore, it is not possible to form a printed wiring board that can be mounted at high density.
以上のような点を解決することと放熱性を更番こ改良す
ることが本発明の目的である。It is an object of the present invention to solve the above-mentioned problems and to further improve heat dissipation.
[課題解決のための手段コ
放熱性が良くて、しかも回路,?ターンが高精度であり
、iE”lB度実装のできるプリント配線板の簡単、安
価な製法を提供するために、回路lくターンを形成する
導電板をあらかじめ機械的に加工することによりヒート
シンク部、電路部、エッチング徐去される部分に分け各
部の銅厚みを変えるようにする。つまり、ヒートシンク
部は淳く、エッチング部は薄くあるいは除去してしまっ
て最小限しか残さず、電路部は流れる電流量に応じて厚
くしたり、あるいは薄くしたりするよう加工する。[Means for solving the problem: A circuit with good heat dissipation? In order to provide a simple and inexpensive manufacturing method for a printed wiring board that has highly accurate turns and can be mounted at an iE"lB degree, the heat sink portion, The copper thickness of each part is divided into the electrical circuit section and the section that will be removed by etching.In other words, the heat sink section is removed, the etched section is thinned or removed so that only a minimum remains, and the electrical circuit section is designed to absorb the current flowing through it. It is processed to make it thicker or thinner depending on the amount.
更に、金属基材には無機絶縁処理を施し、その後で前記
加工済みの導電板を貼り合わせ、導電板の薄くて不要な
部分をエッチング除去すること番こよりプリント配線板
を形成する。金IA基材の無機絶縁処理により有機接着
剤より成る有機TI!A縁層の厚みを薄くして、熱伝導
を良くし、放熱性の向上をはかる。Further, the metal base material is subjected to an inorganic insulation treatment, and then the processed conductive plates are bonded together, and the thin and unnecessary portions of the conductive plates are etched away to form a printed wiring board. Organic TI made of organic adhesive by inorganic insulation treatment of gold IA base material! A: Reduce the thickness of the edge layer to improve heat conduction and improve heat dissipation.
更に高密度実装プリント配線板とするために、導電板上
に絶縁層を形成し更にその上に導電層を形成する多層構
造とする。Furthermore, in order to obtain a high-density mounting printed wiring board, a multilayer structure is adopted in which an insulating layer is formed on a conductive plate and a conductive layer is further formed on the insulating layer.
[作用コ
特許請求の範囲第工項記載のように導電板に部分的に犀
みを薄くした部分および欠除した部分の少なくともどち
らか一方を機械的に形成する工程と、金属基材の表面に
無機絶縁化処理をする工程と、前記導電板を前記金属基
材に有機接着剤により接着する工程と、前記導電板の不
要部分を取り除いて回路パターンを形成する工程とを含
むプリント配線板の製法としたことにより、金属基材に
接着する前の導電板単独でヒートシンク部、電路部を形
成することができる。また回路パターン精度が上がり、
後工程の高発熱素子の実装までを含め工程の自動化がや
り易くなる。[Operations] A step of mechanically forming at least one of a partially thinned part and a missing part on a conductive plate as described in the claims 1 and 1, and the surface of a metal base material. A printed wiring board comprising the steps of: applying an inorganic insulation treatment to the conductive plate; adhering the conductive plate to the metal base material with an organic adhesive; and removing unnecessary parts of the conductive plate to form a circuit pattern. By using this manufacturing method, the heat sink portion and the electric circuit portion can be formed using the conductive plate alone before being bonded to the metal base material. In addition, the accuracy of the circuit pattern is improved,
It becomes easier to automate the process, including the mounting of high heat generation elements in the post-process.
更に、無機絶縁層の存在により有機接着剤より成る有機
絶縁層の厚みを薄くすることができ絶縁層全体での熱伝
導度が上がり放熱性が良くなってくる。樹脂、セラミッ
ク(無機絶縁層)では熱伝導・f・くにおいて概略次の
ような違いがある。Furthermore, the presence of the inorganic insulating layer allows the thickness of the organic insulating layer made of an organic adhesive to be reduced, increasing the thermal conductivity of the entire insulating layer and improving heat dissipation. There are roughly the following differences between resin and ceramic (inorganic insulating layer) in terms of heat conduction, f, and f.
樹脂 0. 1 〜0. 2 Kcal/m
−hr・”cセラミック 約1 0 Kcal
/m−hr・”c従って、樹脂のみで絶縁層を形成した
ものより熱伝導率がはるかに向上し、放熱性が良《なる
。Resin 0. 1 ~ 0. 2 Kcal/m
-hr・”c Ceramic Approximately 10 Kcal
/m-hr・"c Therefore, the thermal conductivity is much improved and the heat dissipation property is improved compared to the case where the insulating layer is formed only with resin.
特許請求の範囲第2項記載のように導電板の一部に絶縁
層を形成する工程と、前記絶縁層の上に導電層を形成す
る工程を含むようにしたことにより、積み上げ方式での
多層構造のプリント配線板を作ることができ、実装密度
を高くずることが可fl1になる。As described in claim 2, by including the steps of forming an insulating layer on a part of the conductive plate and forming a conductive layer on the insulating layer, the multilayer structure can be stacked. It is possible to make a printed wiring board with a high structure, and it is possible to increase the packaging density.
特許請求の範囲第3項記載のように金!!4基材がアル
ミであり、前記金属基材の少なくとも片面にアルマイト
処理をする工程を含む製法としたことによりアルミを基
材とし無機絶縁層として厚みのコントロールが簡単正確
で、絶縁性の高い酸化膜を容易に形成することができ、
更に熱伝導率の良いアルマイト層により放熱性に優れた
プリント配線板を提供することができる。As stated in claim 3, gold! ! 4 The base material is aluminum, and the manufacturing method includes a process of alumite treatment on at least one side of the metal base material, making it easy and accurate to control the thickness of the inorganic insulating layer using aluminum as the base material. A film can be easily formed,
Further, due to the alumite layer having good thermal conductivity, it is possible to provide a printed wiring board with excellent heat dissipation.
[実施例コ
以下本発明の実施例につき説明する。第一の実施例を示
す第1図(a)乃至(f)は工程順にプリント配線板の
断面図で示したものである。[Examples] Examples of the present invention will be described below. FIGS. 1(a) to 1(f) showing the first embodiment are sectional views of a printed wiring board in the order of steps.
第1図(a)に示す銅材でできた厚み2mmの導電板3
3を第工図(b)のようにプレス成形し片面に凹凸を形
成する。ここで凸部43はヒートシンクに相当する部分
である。圧縮変形される凹部53はできるだけ薄い方が
よく、望ましくは50μmである。凹部53は最終的に
エッチング除去される部分および比較的電流量の少ない
電路73となる部分から成る。凹部53のエッチング除
去される部分は凸部43または電路73のつなぎのため
の部分であり、そのための最小限を残せば十分である。Conductive plate 3 made of copper material with a thickness of 2 mm as shown in Fig. 1(a)
3 is press-formed as shown in drawing (b) to form unevenness on one side. Here, the convex portion 43 is a portion corresponding to a heat sink. The concave portion 53 to be compressed and deformed should be as thin as possible, preferably 50 μm. The recessed portion 53 consists of a portion that will be etched away in the end and a portion that will become an electric path 73 with a relatively small amount of current. The portion of the recess 53 that is removed by etching is a portion for connecting the convex portion 43 or the electric circuit 73, and it is sufficient to leave a minimum portion for this purpose.
それを図面として示したのが第2図であり、不要部分を
打ち抜いて欠除部63としたものである。第工図におい
ては凸部43および凹部53とに分けた例を示したが、
場合によってはその中間の厚み、あるいはもっと多種の
厚みの部分を設けてもよい。第3図がこのような例を示
すものであり中程度の電流を流す回路においてはこの中
間厚みの部分に電路73を形成する。なお、後工程61
11図(d)での貼り合わせの接着効果を高めるため導
電板33の接着面に微細な凹凸を形成した。形成方法は
プレス時に金型で形成する方法、電気めっきあるいは化
学的に形成する方法等が可能である。FIG. 2 shows this as a drawing, and an unnecessary part is punched out to form a cutout part 63. In the first drawing, an example is shown in which the convex part 43 and the concave part 53 are separated.
Depending on the case, portions with an intermediate thickness or a wider variety of thicknesses may be provided. FIG. 3 shows such an example, and in a circuit through which a medium current flows, an electric path 73 is formed in this intermediate thickness portion. Note that post-process 61
In order to enhance the adhesive effect of the bonding shown in FIG. 11(d), fine irregularities were formed on the bonding surface of the conductive plate 33. Possible forming methods include a method of forming using a mold during pressing, a method of forming by electroplating, or a method of forming chemically.
第1図(c)は金!A基材2工の表面に無機絶縁層3工
を形成した断面図である。この例として金属基材21に
板厚1.5mmのアルミを使用し、硫酸溶液中でM極酸
化法によりアルマイト(厚み20μm)の無機絶縁層3
1を形成し、更に電気絶縁性を確保するためにアクリル
系の電着塗料で封孔処理を行う。なお、無機絶縁層3工
の形成は溶射法,スパッタリング法等によって形成する
ことも可能である。Figure 1 (c) is gold! It is a sectional view in which three inorganic insulating layers are formed on the surface of two A base materials. In this example, aluminum with a plate thickness of 1.5 mm is used as the metal base material 21, and an inorganic insulating layer 3 of alumite (thickness 20 μm) is formed by M polar oxidation method in a sulfuric acid solution.
1, and sealing the holes with acrylic electrodeposition paint to ensure electrical insulation. Note that the three inorganic insulating layers can also be formed by a thermal spraying method, a sputtering method, or the like.
次に第1図(d)に示すように金属基材21と−J電板
33を貼り合わせる。接着には熱伝導性の良い有機接着
剤を使用する。有機接着剤の材料は例えばF−2(六都
産業製)のような有機接着剤であり、金aX材(アルミ
)2工上に塗布厚約50μmをロールコーターで塗布す
る。塗布後160℃、10分間の処理により溶剤を蒸発
させる。Next, as shown in FIG. 1(d), the metal base material 21 and the -J electric plate 33 are bonded together. For bonding, use an organic adhesive with good thermal conductivity. The organic adhesive material is an organic adhesive such as F-2 (manufactured by Rokuto Sangyo), and is applied to a coating thickness of about 50 μm on a gold aX material (aluminum) 2 piece using a roll coater. After coating, the solvent is evaporated by treatment at 160° C. for 10 minutes.
溶剤蒸発後のこの有機接着剤より成る有機絶縁肩22の
膜厚は約20μmであり、この上に凹凸を形成した導電
板33をのせプレス接着する。プレス条件は温度180
℃、圧力100kg/cafで時間は30分間である。The thickness of the organic insulating shoulder 22 made of this organic adhesive after the solvent has evaporated is approximately 20 μm, and a conductive plate 33 having irregularities is placed thereon and bonded by press. Pressing conditions are temperature 180
The time is 30 minutes at a temperature of 100 kg/caf and a pressure of 100 kg/caf.
次に第1図(e)に示すように導電板33上に回路パタ
ーン状のエッチングレジスト24を形成する。パターン
形成の方法はスクリーン印刷法、あるいは感光性レジス
トを用いる方法等であり、感光性レジストを使用する場
合露光マスクを当てかってのLIV光の照射あるいは直
接描画法等も可能である スクリーン印刷する場合のエ
ッチングレジストの例としてはX−77(大隅インキ製
)を使用し印刷後80℃、10分間乾爆する。Next, as shown in FIG. 1(e), an etching resist 24 in the form of a circuit pattern is formed on the conductive plate 33. The pattern formation method is screen printing or a method using a photosensitive resist. When using a photosensitive resist, irradiation with LIV light using an exposure mask or direct drawing method is also possible. When using screen printing As an example of the etching resist, X-77 (manufactured by Ohsumi Ink) is used, and after printing, dry explosion is carried out at 80° C. for 10 minutes.
次に第1図(f)に示すように電路73以外の導電板3
3の薄い部分をエッチングして、つながったパターンを
各々分離独立させる。導電板33が銅の場合のエッチン
グ液は次に示すようなものである。Next, as shown in FIG. 1(f), the conductive plate 3 other than the electric path 73
Etch the thin portions of 3 to separate the connected patterns. The etching solution used when the conductive plate 33 is made of copper is as shown below.
C u C 1 ! ・2 H ! 0 2 0
0 g / 137%HC1 150g
/1液温 45℃
エッチング後、エッチングレジストをflfl除去する
。レジスト剥離液は次に示すようなものである。C u C 1!・2H! 0 2 0
0 g / 137%HC1 150g
/1 Solution temperature: 45° C. After etching, remove the etching resist flfl. The resist stripping solution is as shown below.
NaOH 100g/1液fL
40℃
次にプリント配線板の高密度実装を目的とした本発明の
第二の実施例につき説明する。第4図(a).(b)に
示すように第二層目の導電層が電流量の比較的少ない回
路からなる多層化配線を行う。NaOH 100g/1 liquid fL
40°C Next, a second embodiment of the present invention aimed at high-density mounting on printed wiring boards will be described. Figure 4(a). As shown in (b), multilayer wiring is formed in which the second conductive layer consists of a circuit with a relatively small amount of current.
先ず第4図(a)に示すように前記実施例第1図(a)
乃至(f),第2図および第3図で作成したプリント配
線板の凸部(ヒートシンク部)43上に厚み約60μm
(乾燥硬化後)の絶縁層32をスクリーン印刷により部
分的に形成する。この絶縁層32の材料にもF−2(大
部産業製)のような接着剤が使用できる。First, as shown in FIG. 4(a), the embodiment shown in FIG. 1(a)
to (f), a thickness of approximately 60 μm is placed on the convex portion (heat sink portion) 43 of the printed wiring board created in FIGS. 2 and 3.
The insulating layer 32 (after drying and curing) is partially formed by screen printing. An adhesive such as F-2 (manufactured by Ohbe Sangyo) can be used as the material for this insulating layer 32.
次に第4図(b)に示すように前記絶R層32上に膜厚
が約35μmの導電層83を導電性ペースト(銅ペース
ト)をスクリーン印刷し、乾燥、焼付けて形成する。こ
の導電層83は絶縁層32上への無電解めっきまたは無
電解めっきの後に電気めっきをすることにより、あるい
は一旦、ステンレス板等の上に電気めっきにより導電層
を形成したものを転写することに上って形成することも
可能である。Next, as shown in FIG. 4(b), a conductive layer 83 having a thickness of about 35 μm is formed on the rounded layer 32 by screen printing a conductive paste (copper paste), drying and baking. This conductive layer 83 can be formed by electroless plating on the insulating layer 32 or by electroplating after electroless plating, or by transferring a conductive layer that has been formed by electroplating onto a stainless steel plate or the like. It is also possible to climb up and form.
[発明の効果]
特許請求の範囲第1項記載のように導電板に部分的に厚
みを薄くした部分および欠除した部分の少なくともどち
らか一方を機械的に形成する工程と、前記導電板を金属
基材に有機接着剤により接着する工程と、前記導電板の
不要部分を取り除いて回路パターンを形成する工程とを
含むプリント配線板の製法としたことにより金属基材に
接着する前の導電板単独で厚みの厚い部分(ヒートシン
ク部)、薄い部分(11路部)を形威することができる
ので、一括処理のできる量産に適した作り易い製法とな
り従ってコストも下げることがきる。[Effects of the Invention] A step of mechanically forming at least one of a partially thinned portion and a deleted portion on a conductive plate as described in claim 1; The method for producing a printed wiring board includes the step of bonding to a metal base material with an organic adhesive and the step of removing unnecessary parts of the conductive plate to form a circuit pattern, thereby making the conductive board before being bonded to the metal base material. Since the thick part (heat sink part) and the thin part (11-way part) can be formed independently, it becomes an easy-to-manufacture method suitable for mass production that can be processed in batches, and the cost can therefore be reduced.
更に、回路パターン精度が高く高密度配線が可能となり
、後工程の高発熱素子の実装までを含め工程の自動化が
やり易く、工程の安定および作業の高速化によりプリン
ト配線板に実装される部品の信頼性の向上が可能となる
。In addition, the circuit pattern accuracy is high and high-density wiring is possible, making it easier to automate the process including mounting high heat generation elements in the subsequent process, stabilizing the process and speeding up the work to reduce the number of parts mounted on printed wiring boards. It is possible to improve reliability.
特許請求の範囲第l項記載のように金R基材の表面に無
機絶縁化処理をすることによりプリント配線板の有機接
着剤から成る有機絶縁層の厚みを薄くすることができ絶
縁層全体での熱伝導度が上がり放熱性が良くなってくる
。このことはヒートシンクとして小さなものでよいと(
1うことを意味し、従って高密度実装プリント配線板と
しての利用が可能となる。As described in claim 1, by inorganically insulating the surface of the gold R base material, the thickness of the organic insulating layer made of the organic adhesive of the printed wiring board can be reduced, and the thickness of the entire insulating layer can be reduced. Thermal conductivity increases and heat dissipation improves. This means that a small heat sink is sufficient (
Therefore, it can be used as a high-density mounting printed wiring board.
特許請求の範囲第2項記載のように導電板の一部に絶&
1層を形成する工程と、前記絶縁層の上に導電層を形成
する工程とを含む製法としたこと番こより積み上げ方式
の多層構造のプリント配線板を作ることができ実装密度
を高くすることが可能になる。As stated in claim 2, a part of the conductive plate is
By using a manufacturing method that includes a step of forming one layer and a step of forming a conductive layer on the insulating layer, it is possible to create a printed wiring board with a stacked multilayer structure and increase the packaging density. It becomes possible.
特許請求の範囲第3項記載のように金+!!t基材がア
ルミであり、前記金!!!基材の少なくとも片面にアル
マイト処理をするのでアルミを基材とし、無機絶縁層と
して厚みのコントロールが簡単正確で、絶縁性の高い酸
化膜を容易に形成することができ、更に放熱性に優れた
プリント配線板を低コストで製造することができる。As stated in claim 3, gold+! ! The base material is aluminum, and the gold! ! ! Since at least one side of the base material is anodized, aluminum is used as the base material, and the thickness can be easily and accurately controlled as an inorganic insulating layer.An oxide film with high insulation properties can be easily formed, and it also has excellent heat dissipation. Printed wiring boards can be manufactured at low cost.
第1図(a)、(b)、(c)、(d)、(e)、(f
)は本発明のプリント配線板の製法の工程を示す断面図
、第2図、第3図は本発明の導電板のプレス成形後の異
なった実施例を示す断面図、第4図(a)、(b)は本
発明の異なる製法の工程を示す断面図、第5図(a)、
(b)、(C)、(d)は従来例のプリント配線板の製
法の工程を示す断面図、第6図は別の従来例のプリント
配線板断面図である。
11,21・・・金属基材 工2・・・絶縁材13・
・・M 15・=−ヒートシンク絶縁層 31・
・・無機絶縁層
33・・・導電板 83・・・導電層22・・・有機
32・・・絶縁層Figure 1 (a), (b), (c), (d), (e), (f
) is a cross-sectional view showing the process of manufacturing a printed wiring board of the present invention, FIGS. 2 and 3 are cross-sectional views showing different embodiments of the conductive plate of the present invention after press molding, and FIG. 4(a) , (b) is a sectional view showing different manufacturing method steps of the present invention, FIG. 5(a),
(b), (C), and (d) are cross-sectional views showing steps of a conventional printed wiring board manufacturing method, and FIG. 6 is a cross-sectional view of another conventional printed wiring board. 11, 21...Metal base material Work 2...Insulating material 13.
・・M 15・=−Heat sink insulating layer 31・
...Inorganic insulating layer 33...Conductive plate 83...Conductive layer 22...Organic 32...Insulating layer
Claims (3)
除した部分の少なくともどちらか一方を機械的に形成す
る工程と、金属基材の表面に無機絶縁化処理をする工程
と、前記導電板を前記金属基材に有機接着剤により接着
する工程と、前記導電板の不要部分を取り除いて回路パ
ターンを形成する工程とを含むことを特徴とするプリン
ト配線板の製法。(1) A step of mechanically forming at least one of a partially thinned portion and a missing portion on the conductive plate, a step of inorganic insulation treatment on the surface of the metal base material, and a step of forming the conductive plate on the conductive plate. A method for manufacturing a printed wiring board, comprising the steps of: bonding a plate to the metal base material with an organic adhesive; and removing unnecessary portions of the conductive plate to form a circuit pattern.
絶縁層の上に導電層を形成する工程とを含むことを特徴
とする特許請求の範囲第1項記載のプリント配線板の製
法。(2) The printed wiring board according to claim 1, which includes the steps of forming an insulating layer on a part of the conductive plate and forming a conductive layer on the insulating layer. Manufacturing method.
くとも片面にアルマイト処理をする工程を含むことを特
徴とする特許請求の範囲第1項および特許請求の範囲第
2項記載のプリント配線板の製法。(3) The printed wiring according to claim 1 and claim 2, wherein the metal base material is aluminum, and includes a step of alumite treatment on at least one side of the metal base material. The manufacturing method of the board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1195052A JP2715576B2 (en) | 1989-07-26 | 1989-07-26 | Manufacturing method of printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1195052A JP2715576B2 (en) | 1989-07-26 | 1989-07-26 | Manufacturing method of printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0358492A true JPH0358492A (en) | 1991-03-13 |
JP2715576B2 JP2715576B2 (en) | 1998-02-18 |
Family
ID=16334752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1195052A Expired - Fee Related JP2715576B2 (en) | 1989-07-26 | 1989-07-26 | Manufacturing method of printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2715576B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444573A (en) * | 1992-12-10 | 1995-08-22 | Olympus Optical Co., Ltd. | Microscope objective |
US5530590A (en) * | 1993-03-29 | 1996-06-25 | Olympus Optical Co., Ltd. | Liquid-immersion type objective lens system for microscopes |
US5739958A (en) * | 1994-10-17 | 1998-04-14 | Olympus Optical Co., Ltd. | Microscope objective lens system with correction ring |
DE10205592A1 (en) * | 2002-02-11 | 2003-08-28 | Ksg Leiterplatten Gmbh | Process for the production of a semi-finished product for printed circuit boards |
US7646542B2 (en) | 2007-01-31 | 2010-01-12 | Olympus Corporation | Microscope objective lens |
US7714232B2 (en) | 2004-02-24 | 2010-05-11 | Sanyo Electric Co., Ltd. | Circuit device and method of manufacturing the same |
JP2011049520A (en) * | 2009-07-27 | 2011-03-10 | Tibc:Kk | Printed wiring board |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110489A (en) * | 1984-11-02 | 1986-05-28 | 株式会社日立製作所 | Manufacture of conductor punched wiring board |
JPS62282489A (en) * | 1986-05-31 | 1987-12-08 | 株式会社住友金属セラミックス | Circuit pattern and manufacture of circuit board employing the circuit pattern |
JPS6395252A (en) * | 1986-10-13 | 1988-04-26 | Mitsui Toatsu Chem Inc | Polypropylene resin composition |
-
1989
- 1989-07-26 JP JP1195052A patent/JP2715576B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110489A (en) * | 1984-11-02 | 1986-05-28 | 株式会社日立製作所 | Manufacture of conductor punched wiring board |
JPS62282489A (en) * | 1986-05-31 | 1987-12-08 | 株式会社住友金属セラミックス | Circuit pattern and manufacture of circuit board employing the circuit pattern |
JPS6395252A (en) * | 1986-10-13 | 1988-04-26 | Mitsui Toatsu Chem Inc | Polypropylene resin composition |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444573A (en) * | 1992-12-10 | 1995-08-22 | Olympus Optical Co., Ltd. | Microscope objective |
US5530590A (en) * | 1993-03-29 | 1996-06-25 | Olympus Optical Co., Ltd. | Liquid-immersion type objective lens system for microscopes |
US5739958A (en) * | 1994-10-17 | 1998-04-14 | Olympus Optical Co., Ltd. | Microscope objective lens system with correction ring |
DE10205592A1 (en) * | 2002-02-11 | 2003-08-28 | Ksg Leiterplatten Gmbh | Process for the production of a semi-finished product for printed circuit boards |
DE10205592B4 (en) * | 2002-02-11 | 2008-01-03 | Ksg Leiterplatten Gmbh | Method for producing a semifinished product for printed circuit boards |
US7714232B2 (en) | 2004-02-24 | 2010-05-11 | Sanyo Electric Co., Ltd. | Circuit device and method of manufacturing the same |
US7646542B2 (en) | 2007-01-31 | 2010-01-12 | Olympus Corporation | Microscope objective lens |
US7663807B2 (en) | 2007-01-31 | 2010-02-16 | Olympus Corporation | Microscope objective |
JP2011049520A (en) * | 2009-07-27 | 2011-03-10 | Tibc:Kk | Printed wiring board |
Also Published As
Publication number | Publication date |
---|---|
JP2715576B2 (en) | 1998-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4334996B2 (en) | SUBSTRATE FOR MULTILAYER WIRING BOARD, DOUBLE WIRE WIRING BOARD AND METHOD FOR PRODUCING THEM | |
JPH0378795B2 (en) | ||
JP2006210524A (en) | Multilayered circuit board and its manufacturing method | |
TW201911984A (en) | Circuit board and manufacturing method thereof | |
JPH0358492A (en) | Manufacture of printed wiring board | |
TWI656819B (en) | Flexible circuit board manufacturing method | |
US8828247B2 (en) | Method of manufacturing printed circuit board having vias and fine circuit and printed circuit board manufactured using the same | |
JP2004119730A (en) | Method of manufacturing circuit device | |
JP2002353597A (en) | Metal transfer sheet, producing method and wiring circuit board thereof | |
JP4449228B2 (en) | Manufacturing method of inspection jig | |
JP2784569B2 (en) | Plating circuit body, plating circuit laminate, printed circuit body, and methods of manufacturing the same | |
JP2002217248A (en) | Transfer plate for pattern formation and method of manufacturing substrate for semiconductor device using it | |
JPS6345888A (en) | Manufacture of wiring board with bumps | |
TWI407874B (en) | Muti-layer printed circuit board and method for manufacturing the same | |
JPH1070365A (en) | Method for manufacturing multilayer circuit board | |
JPS6372193A (en) | Circuit board | |
JP4080357B2 (en) | Manufacturing method of high heat dissipation plastic package | |
JPH10335798A (en) | Manufacture of flexible printed wiring board for hdd with solder bump | |
JPH08186384A (en) | Method for manufacturing printed circuit board | |
JP2001094018A (en) | Semiconductor package and production method thereof | |
JP2001085567A (en) | Electronic member and production thereof | |
JPH08255870A (en) | Electronic device mounting board and manufacture thereof | |
JP3665036B2 (en) | Printed wiring board manufacturing method and printed wiring board | |
JP2615017B2 (en) | Manufacturing method of film carrier with bump | |
JP2000216183A (en) | Manufacture of wiring material with bump electrode provided with adhesive layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |