JPH0358412A - Low pressure cvd method - Google Patents

Low pressure cvd method

Info

Publication number
JPH0358412A
JPH0358412A JP19495189A JP19495189A JPH0358412A JP H0358412 A JPH0358412 A JP H0358412A JP 19495189 A JP19495189 A JP 19495189A JP 19495189 A JP19495189 A JP 19495189A JP H0358412 A JPH0358412 A JP H0358412A
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
gas
tube
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19495189A
Other languages
Japanese (ja)
Inventor
Yasuhide Den
田 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19495189A priority Critical patent/JPH0358412A/en
Publication of JPH0358412A publication Critical patent/JPH0358412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to maintain the uniformity of film thickness between the wafer surfaces and on the wafer surface by a method wherein a plurality of gas feeding holes are provided in one side-wall section of a reaction tube, and a plurality of gas discharge holes are provided in the other side-wall section of the reaction tube respectively in the axial direction of the reaction tube. CONSTITUTION:The title CVD device is equipped with a reaction gas feeding tube 2, having a plurality of gas feeding holes 15, provided in the inner wall section of a reaction tube 1, a discharge tube 3 having many discharge holes 14 in the axial direction of the reaction tube in the state wherein the discharge tube 3 is closely fixed to the reaction tube 1, a heat source with which the reaction tube 1 is heated up, a rotary pump 5 with which evacuation and pressure regulation are conducted, a mechanical booster pump 6 and a pressure regulator 7. To be more precise, reaction gas is fed by providing a plurality of reaction gas feeding holes 15 in one side wall section in the reaction tube 1, and besides, the reaction gas is discharged from the discharge holes 14 provided in the other side wall section of the reaction tube. Since the difference in concentration of gas between the front part and the rear part of the reaction tube 1 can be eliminated, uniformity of film thickness can be maintained over the surface of wafer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造工程において用いられる減圧
CVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low pressure CVD apparatus used in the manufacturing process of semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、減圧CVD装置は半導体基板(以下ウェハという
)表面に多結晶シリコン膜あるいは二酸化シリコン( 
Si02)膜、窒化シリコン( SiJ4)などの絶縁
膜、またステップ力バレッジの良いHTO ( Hig
h Temperature Oxide) I15!
等の形戒工程に用いられている.以下第5図を用いて更
に説明する. まずウェハ9をボート8上に搭載して反応管1の中に、
一定の間隔と一定の角度を保つように配置し、加熱源4
により加熱する.そして加熱されたウエハ表面へ反応ガ
ス供給管2から反応ガスを供給することで、反応ガスの
熱分解反応により前述の薄膜を生威し、真空排気系11
よりガスを排気する。
Conventionally, low pressure CVD equipment deposits a polycrystalline silicon film or silicon dioxide (
Insulating films such as Si02) film, silicon nitride (SiJ4), and HTO (High
h Temperature Oxide) I15!
It is used in the katakai process such as. This will be further explained using Figure 5 below. First, the wafer 9 is loaded onto the boat 8 and placed in the reaction tube 1.
The heating source 4 is arranged so as to maintain a certain interval and a certain angle.
Heat it by Then, by supplying a reactive gas to the heated wafer surface from the reactive gas supply pipe 2, the above-mentioned thin film is formed by the thermal decomposition reaction of the reactive gas, and the vacuum exhaust system 11
Exhaust more gas.

また量産化処理の場合には、ボート8の代りに第6図(
a),(b)に示したウエハ治具(以下これをカゴボー
トという)を用いる.これは、ウェ八面間及び面内の膜
厚を均一にすることを目的としたもので、石英で作られ
た二つ割りの円筒型ボート12に長手方向に多数の穴1
3を設けたものである。
In addition, in the case of mass production processing, the boat 8 shown in Fig. 6 (
The wafer jig shown in a) and (b) (hereinafter referred to as a basket boat) is used. The purpose of this is to make the film thickness uniform between the eight surfaces of the wafer and within the surface of the wafer.
3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の減圧CVD装置での反応
ガス供給及び排気方法では、量産処理する場合において
、フロント部とリア部とのウエハでは反応ガスの濃度が
異なるため、ウエハ間の膜厚均一性が失われる.またそ
れを補うために第6図に示したカゴボートを用いると、
ウエハ間の膜厚均一性は向上するものの、カゴボートの
穴を通してガスを供給するため、膜或長速度が低減し、
処理能力が低下するという欠点を有している。
However, with the above-mentioned method of supplying and exhausting reactive gases in the conventional low-pressure CVD equipment, when mass-producing wafers, the concentration of the reactive gas is different between the front and rear wafers, resulting in poor film thickness uniformity between wafers. Lost. In addition, if you use the cage boat shown in Figure 6 to compensate for this,
Although the film thickness uniformity between wafers is improved, the film growth rate is reduced because the gas is supplied through the holes in the cage boat.
It has the disadvantage of reduced processing capacity.

本発明の目的は、前記問題点を解消した減圧CVD装置
を提供することにある。
An object of the present invention is to provide a reduced pressure CVD apparatus that eliminates the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の減圧CVD装置は、半導体基板を配置して処理
する反応管と、この反応管に反応ガスを供給する反応ガ
ス供給系と前記反応管内を排気する真空排気系と、前記
反応管を加熱する加熱源と、前記半導体基板を移送する
移送治具とを有する減圧CVD装置において、反応ガス
供給口を前記反応管の一方の側壁部に、ガス排気口を反
応管の他方の側壁部にそれぞれ反応管の軸方向に複数個
設けたものである。
The low pressure CVD apparatus of the present invention includes a reaction tube in which a semiconductor substrate is placed and processed, a reaction gas supply system that supplies a reaction gas to the reaction tube, a vacuum exhaust system that evacuates the inside of the reaction tube, and a heating system for heating the reaction tube. In a low pressure CVD apparatus having a heating source for transferring the semiconductor substrate and a transfer jig for transferring the semiconductor substrate, a reaction gas supply port is provided on one side wall of the reaction tube, and a gas exhaust port is provided on the other side wall of the reaction tube. A plurality of them are provided in the axial direction of the reaction tube.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例の模式断面図、第2図及
び第3図は第1図の反応管の拡大正面図及び反応ガス供
給管の拡大上面図である。
FIG. 1 is a schematic sectional view of a first embodiment of the present invention, and FIGS. 2 and 3 are an enlarged front view of the reaction tube and an enlarged top view of the reaction gas supply pipe in FIG. 1.

第1図において減圧CVD装置は、反応管1内側壁部に
反応管軸方向に多数のガス供給口15を持つ反応ガス供
給管2と、もう一方の反応管側壁部に反応管1と密着し
た状態で反応管軸方向に多数の排気口14をもつ排気管
3〈ここで反応管1にも排気管3と同様に設けられた排
気口により排気管と反応管は通じている〉と、反応管1
を加熱する加熱源4と、排気及び圧力調整を行うロータ
リーボンブ5、メカニカルブースターポンブ6及び圧力
調整器7を備えた真空排気系により構成されている。以
下第1図〜第3図を用い本第1の実施例の操作方法につ
いて説明する。
In FIG. 1, the reduced pressure CVD apparatus has a reaction gas supply tube 2 having a large number of gas supply ports 15 in the axial direction of the reaction tube on the inner wall of the reaction tube 1, and a reaction tube 1 that is in close contact with the reaction tube 1 on the other side wall of the reaction tube. In this state, an exhaust pipe 3 having a large number of exhaust ports 14 in the axial direction of the reaction tube (here, the exhaust pipe and the reaction tube communicate with each other through an exhaust port provided in the reaction tube 1 in the same way as the exhaust pipe 3), tube 1
The vacuum exhaust system includes a heat source 4 that heats the air, a rotary bomb 5 that performs exhaust and pressure adjustment, a mechanical booster pump 6, and a pressure regulator 7. The operating method of the first embodiment will be explained below with reference to FIGS. 1 to 3.

まず第1図に示すボート8及びウエハ移送治具10によ
り、ウェハ9を反応管1内に挿入する.ここで反応管1
はフロント側のみ開口されており、従来の反応管のよう
にリア側は開口されていない.ウェハ挿入後はフロント
開口部はハッチにより閉じられる.次に反応管l内をロ
ータリーボンプ5、メカニカルブースターボンプ6及び
圧力調整器7で楕戒された真空排気系により所定の圧力
まで減圧しつつ、反応管1の内側壁部に設けた反応ガス
供給管2によって反応ガスを反応管l内に導入し、ウェ
ハ9表面に成膜を行う。供給されたガスはウエハ9の表
面を流れ、今度はもう一方の反応管1の側壁部に設けた
排気管3により排気される.従って反応ガスは反応管1
の軸方向とは垂直な方向に流れることになる。
First, the wafer 9 is inserted into the reaction tube 1 using the boat 8 and wafer transfer jig 10 shown in FIG. Here reaction tube 1
The tube is open only on the front side, not the rear side like conventional reaction tubes. After inserting the wafer, the front opening is closed with a hatch. Next, the inside of the reaction tube 1 is reduced to a predetermined pressure by a vacuum evacuation system controlled by a rotary pump 5, a mechanical booster pump 6, and a pressure regulator 7, while a reaction gas is supplied to the inner wall of the reaction tube 1. A reaction gas is introduced into the reaction tube 1 through the tube 2, and a film is formed on the surface of the wafer 9. The supplied gas flows over the surface of the wafer 9 and is then exhausted through the exhaust pipe 3 provided on the side wall of the other reaction tube 1. Therefore, the reaction gas is in reaction tube 1
The flow will be perpendicular to the axial direction.

従来の減圧CVD装置ではガスの流れが反応管の軸方向
であったため、反応管1内のガスの流れも複雑となり、
またフロント部とリア部とではガス濃度が異なるため、
ウエハ間及びウエハ面内の膜厚の不均一は避けられない
。例えば従来の減圧CVD装置ではカゴボートを使用し
ない場合、ウエハ面間の膜厚均一性が低下するため、1
回の薄膜或長にウエハ50枚が限界であるが、本第1の
実施例によれば、1度に100枚以上のウエハを処理す
ることが可能となる。また膜厚均一性を保つため力ゴボ
ートを使用した場合の戒長速度が約20人/+++in
であるのに対し、本第1の実施例によれば40人/wi
n以上(2倍)の或長速度で処理することが可能となり
、量産処理に非常に潰れていることがわかる。
In conventional low-pressure CVD equipment, the gas flow was in the axial direction of the reaction tube, so the gas flow inside the reaction tube 1 became complicated.
Also, since the gas concentration differs between the front and rear parts,
Non-uniformity in film thickness between wafers and within the wafer surface is unavoidable. For example, in conventional low-pressure CVD equipment, if a cage boat is not used, the film thickness uniformity between the wafer surfaces deteriorates.
Although there is a limit of 50 wafers per process, according to the first embodiment, it is possible to process more than 100 wafers at a time. In addition, in order to maintain uniformity of film thickness, the cutting speed when using a force go boat is approximately 20 people/+++in.
In contrast, according to the first embodiment, 40 people/wi
It can be seen that it is possible to process at a certain length speed of n or more (twice), making it extremely difficult for mass production processing.

第4図は本発明の第2の実施例の模式断面図であり、本
発明を縦型の減圧CVD装置に応用した場合である。
FIG. 4 is a schematic sectional view of a second embodiment of the present invention, in which the present invention is applied to a vertical reduced pressure CVD apparatus.

この第2の実施例においても反応管1の側壁部にガス供
給口15及び排気口14を設けることにより、反応ガス
の流れは反応管の軸に対して垂直な方向となる。従って
第1の実施例と同様にウエハ面間及び面内の膜厚均一性
が保たれる利点が鳥る。
In this second embodiment as well, by providing the gas supply port 15 and the exhaust port 14 on the side wall of the reaction tube 1, the flow of the reaction gas is perpendicular to the axis of the reaction tube. Therefore, as in the first embodiment, there is an advantage that the film thickness uniformity between and within the wafer surfaces is maintained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、反応管内の一方の側壁部
に複数の反応ガス供給口を設けて反応ガスを供給し、更
に他方の反応管側壁部に設けた排気口より反応ガスの排
気を行うように構成することにより、反応管のフロント
部とリア部とでのガス濃度の相違を解消できるため、ウ
ェハ位置による膜厚の均一性が保たれる。これにより一
度に多数のウェハを処理することができ、しかもガスの
流れる経路が短いため、ガスの乱れも少なく或膜処理の
再現性があり、量産処理に非常に適するという効果を有
ずる。
As explained above, the present invention provides a plurality of reaction gas supply ports on one side wall of a reaction tube to supply the reaction gas, and further exhausts the reaction gas through an exhaust port provided on the other reaction tube side wall. By configuring to do this, it is possible to eliminate the difference in gas concentration between the front and rear portions of the reaction tube, thereby maintaining the uniformity of the film thickness depending on the wafer position. This makes it possible to process a large number of wafers at once, and since the gas flow path is short, there is little gas turbulence and the reproducibility of certain film processes is excellent, making it very suitable for mass production processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の模式断面図、第2図及
び第3図は第1図の反応管の拡大正面図及び反応ガス供
給管の拡大上面図、第4図は第2の実施例の模式断面図
、第5図は従来の減圧CVD装置の模式断面図、第6図
は従来の減圧CVD装置において膜厚均一性を向上させ
るために用いられるウェハ治具の正面図及び側面図であ
る。 1・・・反応管、2・・・反応ガス供給管、3・・・ガ
ス排気管、4・・・加熱源、5・・・ロータリーボンブ
、6・・・メカニカルブースターポンプ、7・・・圧力
調整器、8・・・ボート、9・・・ウエハ、10・・・
ウェハ移送治具、11・・・真空排気系、12・・・円
筒型ボート、13・・・穴、14・・・排気口、15・
・・ガス供給口。
1 is a schematic sectional view of the first embodiment of the present invention, FIGS. 2 and 3 are an enlarged front view of the reaction tube and an enlarged top view of the reaction gas supply pipe in FIG. 1, and FIG. 4 is an enlarged top view of the reaction tube shown in FIG. FIG. 5 is a schematic cross-sectional view of a conventional low-pressure CVD apparatus, and FIG. 6 is a front view of a wafer jig used to improve film thickness uniformity in a conventional low-pressure CVD apparatus. and a side view. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Reaction gas supply pipe, 3... Gas exhaust pipe, 4... Heat source, 5... Rotary bomb, 6... Mechanical booster pump, 7... Pressure regulator, 8...Boat, 9...Wafer, 10...
Wafer transfer jig, 11... Vacuum exhaust system, 12... Cylindrical boat, 13... Hole, 14... Exhaust port, 15.
...Gas supply port.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を配置して処理する反応管と、この反応管に
反応ガスを供給する反応ガス供給系と前記反応管内を排
気する真空排気系と、前記反応管を加熱する加熱源と、
前記半導体基板を移送する移送治具とを有する減圧CV
D装置において、反応ガス供給口を前記反応管の一方の
側壁部に、ガス排気口を反応管の他方の側壁部にそれぞ
れ反応管の軸方向に複数個設けたことを特徴とする減圧
CVD装置。
a reaction tube in which a semiconductor substrate is placed and processed; a reaction gas supply system that supplies a reaction gas to the reaction tube; a vacuum exhaust system that evacuates the inside of the reaction tube; and a heat source that heats the reaction tube;
and a transfer jig for transferring the semiconductor substrate.
A reduced pressure CVD apparatus in apparatus D, characterized in that a plurality of reaction gas supply ports are provided in one side wall of the reaction tube, and a plurality of gas exhaust ports are provided in the other side wall of the reaction tube in the axial direction of the reaction tube. .
JP19495189A 1989-07-26 1989-07-26 Low pressure cvd method Pending JPH0358412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19495189A JPH0358412A (en) 1989-07-26 1989-07-26 Low pressure cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19495189A JPH0358412A (en) 1989-07-26 1989-07-26 Low pressure cvd method

Publications (1)

Publication Number Publication Date
JPH0358412A true JPH0358412A (en) 1991-03-13

Family

ID=16333040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19495189A Pending JPH0358412A (en) 1989-07-26 1989-07-26 Low pressure cvd method

Country Status (1)

Country Link
JP (1) JPH0358412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (en) * 1993-05-25 1994-12-02 Nec Corp Thin film forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333856A (en) * 1993-05-25 1994-12-02 Nec Corp Thin film forming device

Similar Documents

Publication Publication Date Title
JP3819660B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP4838868B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP3118737B2 (en) Processing method of the object
JPH09148259A (en) Lateral reactor
JPH0358412A (en) Low pressure cvd method
EP1357582B1 (en) Heat-treating device
JP3098093B2 (en) Chemical vapor deposition equipment
JPH01189114A (en) Vapor growth apparatus
JP2597245B2 (en) Exhaust system for CVD system
JPH04139820A (en) Vertical low pressure cvd apparatus
JP3093716B2 (en) Vertical vacuum deposition equipment
JP2005072377A (en) Method for manufacturing semiconductor device and substrate processor
JP3047344B2 (en) Atmospheric pressure CVD equipment
JPS62193129A (en) Treatment apparatus
JP2007081147A (en) Manufacturing method of semiconductor device
KR0117107Y1 (en) Device for chemical vapor deposition under low pressure
JPH0426763A (en) Thin film forming device
JP2766280B2 (en) Processing equipment
JPH03184327A (en) Vapor growth device
JPH0322522A (en) Vapor growth device
JPH03184326A (en) Vapor growth device
JPH1050620A (en) Method and device for manufacturing semiconductor
JPH04305920A (en) Vertical low pressure cvd device
JPS60200531A (en) Processor
JPH08330237A (en) Manufacturing equipment of semiconductor