JPH0357925A - Photo detecting element - Google Patents

Photo detecting element

Info

Publication number
JPH0357925A
JPH0357925A JP1192528A JP19252889A JPH0357925A JP H0357925 A JPH0357925 A JP H0357925A JP 1192528 A JP1192528 A JP 1192528A JP 19252889 A JP19252889 A JP 19252889A JP H0357925 A JPH0357925 A JP H0357925A
Authority
JP
Japan
Prior art keywords
light receiving
squid
magnetic field
light
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1192528A
Other languages
Japanese (ja)
Other versions
JP2715320B2 (en
Inventor
Toru Den
透 田
Katsuhiko Shinjo
克彦 新庄
Yasuko Motoi
泰子 元井
Takehiko Kawasaki
岳彦 川崎
Norio Kaneko
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1192528A priority Critical patent/JP2715320B2/en
Priority to EP93203066A priority patent/EP0590738B1/en
Priority to DE69009109T priority patent/DE69009109T2/en
Priority to DE69031501T priority patent/DE69031501T2/en
Priority to EP90307302A priority patent/EP0407166B1/en
Priority to US07/548,212 priority patent/US5155093A/en
Publication of JPH0357925A publication Critical patent/JPH0357925A/en
Application granted granted Critical
Publication of JP2715320B2 publication Critical patent/JP2715320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable detection of a magnetic field generated at a light receiving part with a superconductor at a high sensitivity by arranging a light receiving part and a detecting part separately to use a superconducting quantum interference device (SQUID) utilizing a quantum interference effect of a superconductive substance. CONSTITUTION:A photo detector is made up of a light receiving part 1, a current driving power source 2, a wiring 3 for generating a magnetic field, a superconductive ring 4, a weak coupled part 5 and a detection circuit part 6 for SQUID. Superconductive material of the ring 4 is preferably those having a critical temperature higher than the boiling point of liquid nitrogen, such as Y-Ba-Cu-O system ceramic material. Material herein used for the photo detector 1 is preferably InSb, Si or the like as photoconductive material which generates a large photocurrent. The detecting part herein used is a SQUID utilizing a phenomenon that a magnetic flux within a ring 1 is quantized. When the light receiving part 1 is irradiated with light, valence band is shifted in transit to a conductive zone excited. As the electron excited within the conductive zone is moved by an electric field applied, a photocurrent is generated and a magnetic field generated by the current is detected with the ring 4 (SQUID).

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、超伝導体の量子干渉効果を利用して、入力光
を電流に変換したのち、磁気信号に変換して、信号を検
出する光検出素子に関する。 [従米の技術] 従来の超伝導体を用いた信号検出素子、特に光信号を検
出する素子としては、ジョセフソン接合を利用したもの
が知られている[JapaneseJournal o
f Applied Physics vol. 23
 L333(1984)]。この光信号検出素子は、第
4図に示すように、酸化物超伝導体BaPbO yBi
o.aosrBpno)薄膜でマイクロブリッジ型ジョ
セフソン接合を形成し、この接合部に光を照射し、ジョ
セフソン接合の臨界電流値の変化を利用するものである
。かかる検出素子においては、受光部の材料としてBP
BOを用いており、これは臨界温度が約13Kと低い。 すなわち、検出素子を動作させるには、液体ヘリウム等
を使用しなければならない。また、かかる検出素子の特
性は、ジョセフソン接合の特性によって決定される。 [発明が解決しようとする課題] 上゛記従来例においては、ジョセフソン接合部の臨界電
流が十分に変化する程度の光量が必要となるが、それが
難しく素子の感度は悪くなっていた。 また、受光部と検出部が同一のジョセフソン接合である
ため、特性のバラツキが出る問題があった。 さらに、超伝導体の分光特性により、検出する光の波長
域も限定されるため、広範囲の波゛長帯域の信号検出に
適していないという問題もあった。 すなわち、本発明の目的とするところは、受光部と検出
部を別個のものとし、さらに超伝導物質の量子干δ効果
を利用することにより、上述のような問題点を解決する
ことにある。 〔課題を解決するための手段] 本発明の特徴とするところは、光入射により電流を生じ
る受光部と、該電流に相当する磁場を発生させる配線と
、かかる配線部に生じた磁場を検出する超伝導量子干渉
計を有する検出部とを少なくとも有する光検出素子にあ
る。 また、前記磁場発生用配線として光導電材料を用いた光
検出素子にある。 すなわち、単結晶又は多結晶超伝導材料等を用いた超伝
導量子干渉素子に、受光部で発生した電流によって生じ
る磁気を導入することにより達成される。 ここで、本発明を達、成するために用いられる超伝導材
料としては、超伝導特性を有する材料であれば何でもよ
いが、検出素子をより高い温度で動作させるために、臨
界温度の高い材料が好ましい。この点でY−Ba−Cu
−0系、Bi−Sr−Ca−Cu−0系、Tj)−Ba
−Ca−Cu−’0系セラミックス材料のような戚体窒
素の沸点である77Kより高い臨界温度を持つ物質が適
している。 また、受光部に用いる材料は、光入射により電流が生じ
るものであれば何でち良いが、赤外.可視.紫外光のよ
うな光信号に対しては、光導電性材料を用いることが望
ましい。 特に、大きな光電流を生じる光導電性材料としては、I
nSb, SL, GaAs, a−Si, CdS,
 CdSe等が好ましい。 この他、光電流を発生させるのに光電子倍増管,光起電
力効果,デンバー効果等を用いたものが考えられる。 一方、前記検出部としては、超伝導リング内の磁束が量
子化される現象を用いた超伝導量子干渉素子(SQUI
D)を用いる。かかるSQUIDのタイプとしては、D
C SQLIID又はRF SQLIIDのどちらを用
いてもかまわない。 また、受光部をかかるSQUIDから離して設計しても
、SQUID上部又は隣に設計してもかまわない。さら
には、配線自身を受光部にすることも可能である。例え
ば、光導電材料を用いSQUID上に磁場をつくる様配
線することが可能である。また、この配線を超伝導体に
して磁場発生効率を上げることも可能である。また、受
光部の感度を上げるために、受光部のみを加熱する小型
ヒーターを取り付けることも考えられる。さらに、本発
明の素子なl次元的に、もしくは2次元的に並べ、集積
化することも可能である。この場合、各々が光に対する
ラインセンサー,平面型センサーとなる。本発明に係る
素子では、検出部にSQUIDを用いているため、超高
感度の光センサーが得られ、この素子を用いた分光器等
のシステムも可能である。
[Industrial Application Field] The present invention relates to a photodetection element that utilizes the quantum interference effect of a superconductor to convert input light into an electric current and then into a magnetic signal to detect the signal. [Journal of Technology] Conventional signal detection elements using superconductors, especially elements that detect optical signals, are known to utilize Josephson junctions [Japanese Journal o
f Applied Physics vol. 23
L333 (1984)]. As shown in FIG. 4, this optical signal detection element is made of oxide superconductor BaPbO yBi
o. A microbridge type Josephson junction is formed using a thin film (aosrBpno), this junction is irradiated with light, and changes in the critical current value of the Josephson junction are utilized. In such a detection element, BP is used as the material of the light receiving part.
BO is used, which has a low critical temperature of about 13K. That is, liquid helium or the like must be used to operate the detection element. Furthermore, the characteristics of such a detection element are determined by the characteristics of the Josephson junction. [Problems to be Solved by the Invention] In the conventional example described above, a sufficient amount of light is required to sufficiently change the critical current of the Josephson junction, but this is difficult and the sensitivity of the device deteriorates. Furthermore, since the light receiving section and the detecting section are the same Josephson junction, there is a problem in that characteristics vary. Furthermore, the wavelength range of light to be detected is limited due to the spectral characteristics of superconductors, so there is also the problem that they are not suitable for signal detection over a wide wavelength range. That is, an object of the present invention is to solve the above-mentioned problems by providing a separate light-receiving section and a detecting section, and by utilizing the quantum δ effect of a superconducting material. [Means for Solving the Problems] The present invention is characterized by a light-receiving section that generates a current when light is incident, a wiring that generates a magnetic field corresponding to the current, and a method that detects the magnetic field generated in the wiring section. A photodetecting element includes at least a detection section having a superconducting quantum interferometer. The present invention also provides a photodetecting element using a photoconductive material as the magnetic field generation wiring. That is, this is achieved by introducing magnetism generated by a current generated in a light receiving section into a superconducting quantum interference device using a single crystal or polycrystalline superconducting material. Here, the superconducting material used to achieve the present invention may be any material as long as it has superconducting properties, but in order to operate the detection element at a higher temperature, it is necessary to use a material with a high critical temperature. is preferred. At this point, Y-Ba-Cu
-0 series, Bi-Sr-Ca-Cu-0 series, Tj)-Ba
A material having a critical temperature higher than 77 K, which is the boiling point of relative nitrogen, such as -Ca-Cu-'0 ceramic material, is suitable. The material used for the light receiving part may be any material as long as it generates a current when light is incident, but infrared. Visible. For optical signals such as ultraviolet light, it is desirable to use photoconductive materials. In particular, as a photoconductive material that produces a large photocurrent, I
nSb, SL, GaAs, a-Si, CdS,
CdSe and the like are preferred. In addition, it is possible to use a photomultiplier tube, photovoltaic effect, Denver effect, etc. to generate photocurrent. On the other hand, as the detection section, a superconducting quantum interference device (SQUI) using a phenomenon in which magnetic flux in a superconducting ring is quantized is used.
D) is used. The type of such SQUID is D.
Either C SQLIID or RF SQLIID may be used. Further, the light receiving section may be designed to be separated from the SQUID, or may be designed above or next to the SQUID. Furthermore, it is also possible to use the wiring itself as a light receiving section. For example, it is possible to wire a SQUID using a photoconductive material to create a magnetic field. It is also possible to make this wiring a superconductor to increase the efficiency of magnetic field generation. Furthermore, in order to increase the sensitivity of the light receiving section, it is also possible to attach a small heater that heats only the light receiving section. Furthermore, it is also possible to arrange and integrate the elements of the present invention one-dimensionally or two-dimensionally. In this case, each becomes a line sensor and a flat sensor for light. In the element according to the present invention, since a SQUID is used in the detection section, an ultra-high sensitivity optical sensor can be obtained, and a system such as a spectrometer using this element is also possible.

【作 用】[For use]

例えば、光導電性材料より成る受光部に光を照射すると
、価電子帯の電子は励起され伝導帯に遷移する。この伝
導帯中で励起された電子が印加された電場により移動す
ることで光電流が生ずる。 かかる電流が、超伝導量子干渉素子(SQUID)のリ
ング近傍に設けた配線を流れることによって磁場が発生
し、この磁場をSQUIDで検出するものである。 すなわち、入射光をSQUIDで検出できることになる
。 [実施例】 以下、実施例により本発明を詳述する。 及血盟ユ 第1図に本発明に基づく一実施例の概念図を示す。図中
1は受光部、2は電流駆動用電源、3は磁場発生用配線
、4は超伝導リング、5は弱結合部、6はDC SQU
ID用検出及びフィードバック回路部である。 先ず、酸化物超伝導体ysazcu3ot− 6 ( 
o≦δ≦0.5)をマグネトロンスバッタ法等によりM
gO基板上に形成し、フォトリソグラフィー技術等によ
り得られた薄膜を加工する。本実施例では、酸化物超伝
導体を厚さ5000人、リング部の線幅50pm、弱結
合部の線幅4μmとし、図の様な弱結合部52ケ所を有
する超伝導リング4を形成した。さらに、検出回路6に
信号を送る為の電極7をCr, Auで形成し、リング
の上部にはMgOを3000人成膜し、さらにその上に
磁場発生用配線3をAi)で図のように形成した。また
、受光部lとしてフォトダイオードを用い、この部分は
ヒーターにより250Kにした。 かかる構成からなる素子を15Kの温度中に置き、雑音
を少なくした環境で測定を行った。先ず、電源2にIO
Vを印加した状態で、受光部に光を入射しない場合には
, SQUIDの検出部の電圧は、一定のままだった。 次に受光部に1mルクスの光を照射したところ、検出部
に電圧の変化が起った。このことは、SQUID内に磁
場が発生したことを意味している。 失11糺l 第2図に、磁場発生用コイル自身を受光部分にした第2
の実施例を示す。図中8は光導電体であり、4の超伝導
体とはMgO薄膜で絶縁してある。 この素子を20Kの温度にし、先ず、光照射しない暗状
態で電#+2に40Vかけたところ、暗電流が流れSQ
UIDに検出されたが一定値におちついた。次に、光導
電体8にlOmルクスの光を照射したところ、光に応答
してSQUIDにシグナルが検出された。これは光照射
時に暗電流より大きい明電流が流れ、それが磁場に変換
されたことを意味する。 及鑑豊ユ 第3図に本発明の光検出素子を用いた分光器の実施例を
示す。図中9.14はスリット、lOは入射光、11は
フィルター、l2は回折格子、13は光検出素子である
。 上記分光器において、入射光IOはスリット9によって
絞られ、さらにフィルター11を通過することによって
特定の波長域の光になる。そして、回折格子12に入射
した光は、波長ごとに異なる角度に回折される。よって
、回折格子表面と光軸のなす角度θを変えることにより
、スリット14を通過する光の波長が変えられる.この
ように分光された光は、本発明の光検出素子l3に入射
され検出される。特に微弱な光の検出が必要となる分光
器の場合では、特に本発明の光検出素子が有効である。 [発明の効果] 以上述べたように、本発明の光検出素子によれば、受光
部で発生した電流で生ずる磁場を超伝導体により検出す
ることができる. すなわち、本発明の光検出素子によれば、(1).従来
(例えばジョセフソン接合の接合部に光を照射するとい
った場合)に比べ、光侶号と検出部の位置合せが容易、
すなわち、必要とする任意の大きさの受光部(受信部)
に光信号を入力することが可能となる。 (2).光信号入力部(受光部)の材料を適宜選択する
ことにより、従来に比べ幅広い波長の信号検出が可能と
なる。 (3).SQUIDを検出部に用いている為、従来の方
式に比べ高感度になる. (4).超伝導リング内に出入りする磁場を対象にして
いるので、光強度も分かり易くなる。 といったような効果がある。
For example, when a light receiving section made of a photoconductive material is irradiated with light, electrons in the valence band are excited and transition to the conduction band. A photocurrent is generated when electrons excited in this conduction band move due to an applied electric field. When this current flows through wiring provided near the ring of a superconducting quantum interference device (SQUID), a magnetic field is generated, and this magnetic field is detected by the SQUID. In other words, the incident light can be detected by the SQUID. [Examples] Hereinafter, the present invention will be explained in detail with reference to Examples. FIG. 1 shows a conceptual diagram of an embodiment based on the present invention. In the figure, 1 is the light receiving part, 2 is the current drive power supply, 3 is the magnetic field generation wiring, 4 is the superconducting ring, 5 is the weak coupling part, and 6 is the DC SQU.
This is a detection and feedback circuit section for ID. First, the oxide superconductor ysazcu3ot-6 (
o≦δ≦0.5) by the magnetron grasshopper method etc.
The thin film is formed on a gO substrate and processed by photolithography or the like. In this example, the thickness of the oxide superconductor was 5000 mm, the line width of the ring portion was 50 pm, and the line width of the weak bond portion was 4 μm, and a superconducting ring 4 having 52 weak bond portions as shown in the figure was formed. . Furthermore, the electrode 7 for sending signals to the detection circuit 6 is formed of Cr and Au, a 3000 MgO film is formed on the top of the ring, and on top of that, the magnetic field generation wiring 3 is made of Ai) as shown in the figure. was formed. Further, a photodiode was used as the light receiving part l, and this part was heated to 250K using a heater. The device having such a configuration was placed at a temperature of 15 K, and measurements were performed in an environment with reduced noise. First, connect IO to power supply 2
When V was applied and no light was incident on the light receiving section, the voltage at the SQUID detection section remained constant. Next, when the light receiving section was irradiated with 1 mlux light, a voltage change occurred in the detecting section. This means that a magnetic field is generated within the SQUID. Figure 2 shows a second device in which the magnetic field generating coil itself is the light receiving part.
An example is shown below. In the figure, 8 is a photoconductor, which is insulated from the superconductor 4 with an MgO thin film. When this element was heated to a temperature of 20K and 40V was applied to voltage #+2 in a dark state without irradiation with light, a dark current flowed to the SQ
It was detected by UID, but it has settled down to a certain value. Next, when the photoconductor 8 was irradiated with light of 10m lux, a signal was detected on the SQUID in response to the light. This means that a bright current, which is larger than the dark current, flows during light irradiation and is converted into a magnetic field. FIG. 3 shows an embodiment of a spectrometer using the photodetecting element of the present invention. In the figure, 9.14 is a slit, 10 is an incident light, 11 is a filter, 12 is a diffraction grating, and 13 is a photodetecting element. In the above spectrometer, the incident light IO is narrowed down by the slit 9 and further passes through the filter 11 to become light in a specific wavelength range. The light incident on the diffraction grating 12 is diffracted at different angles for each wavelength. Therefore, by changing the angle θ between the diffraction grating surface and the optical axis, the wavelength of light passing through the slit 14 can be changed. The light thus separated is incident on the photodetecting element l3 of the present invention and detected. The photodetection element of the present invention is particularly effective in the case of a spectrometer that requires detection of weak light. [Effects of the Invention] As described above, according to the photodetecting element of the present invention, the magnetic field generated by the current generated in the light receiving part can be detected by the superconductor. That is, according to the photodetecting element of the present invention, (1). Compared to the conventional method (for example, when irradiating light to the joint of a Josephson junction), alignment of the optical sensor and the detection part is easier.
In other words, a light receiving section (receiving section) of any size required
It becomes possible to input optical signals into the (2). By appropriately selecting the material of the optical signal input section (light receiving section), it becomes possible to detect signals of a wider range of wavelengths than in the past. (3). Since SQUID is used in the detection section, it has higher sensitivity than conventional methods. (4). Since the target is the magnetic field going in and out of the superconducting ring, the light intensity is also easy to understand. There are effects like this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、受光部にフォトダイオード、検出部にDC 
SQUIDを用いた本発明に係る光検出素子の概略図で
ある。第2図は、受光部に光導電性材料を用い、検出部
にDC SQυIDを用いた光検出素子の概略図である
。第3図は、本発明に係る光検出素子を用いた分光器を
示す概略図である。第4図は、従来の光信号検出素子の
概略構或斜視図である。 l・・・受光部     2・・・電流駆動用電源3・
・・磁場発生用配線 4・・・超伝導リング5・・・弱
結合部 6・・・DC SQUID用検出回路部7・・・電極 
     8・・・光導電体9,l4・・・スリット 
 lO・・・入射光11・・・フィルター l2・・・回折格子 l3・・・光検出素子
Figure 1 shows a photodiode in the light receiving part and a DC in the detection part.
1 is a schematic diagram of a photodetection element according to the present invention using a SQUID. FIG. 2 is a schematic diagram of a photodetecting element using a photoconductive material in the light receiving part and a DC SQυID in the detecting part. FIG. 3 is a schematic diagram showing a spectrometer using a photodetecting element according to the present invention. FIG. 4 is a schematic perspective view of a conventional optical signal detection element. l... Light receiving section 2... Current drive power supply 3.
... Wiring for magnetic field generation 4 ... Superconducting ring 5 ... Weak coupling part 6 ... DC SQUID detection circuit part 7 ... Electrode
8... Photoconductor 9, l4... Slit
lO...Incoming light 11...Filter l2...Diffraction grating l3...Photodetection element

Claims (2)

【特許請求の範囲】[Claims] (1)光入射により電流を生じる受光部と、該電流によ
り磁場を発生させる配線と、かかる配線から生じた磁場
を検出する超伝導量子干渉計を有する検出部とを少なく
とも有することを特徴とする光検出素子。
(1) It is characterized by having at least a light receiving section that generates a current when light is incident, a wiring that generates a magnetic field by the current, and a detection section that has a superconducting quantum interferometer that detects the magnetic field generated from the wiring. Photodetection element.
(2)前記磁場発生用配線として、光導電材料を用いた
ことを特徴とする請求項1記載の光検出素子。
(2) The photodetecting element according to claim 1, wherein a photoconductive material is used as the magnetic field generation wiring.
JP1192528A 1989-07-05 1989-07-27 Photodetector Expired - Fee Related JP2715320B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1192528A JP2715320B2 (en) 1989-07-27 1989-07-27 Photodetector
EP93203066A EP0590738B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detecting method using a superconductor
DE69009109T DE69009109T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light.
DE69031501T DE69031501T2 (en) 1989-07-05 1990-07-04 Device and method for measuring light using a superconductor
EP90307302A EP0407166B1 (en) 1989-07-05 1990-07-04 Light detecting device and light detection method
US07/548,212 US5155093A (en) 1989-07-05 1990-07-05 Light detecting device and light detecting method using a superconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192528A JP2715320B2 (en) 1989-07-27 1989-07-27 Photodetector

Publications (2)

Publication Number Publication Date
JPH0357925A true JPH0357925A (en) 1991-03-13
JP2715320B2 JP2715320B2 (en) 1998-02-18

Family

ID=16292782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192528A Expired - Fee Related JP2715320B2 (en) 1989-07-05 1989-07-27 Photodetector

Country Status (1)

Country Link
JP (1) JP2715320B2 (en)

Also Published As

Publication number Publication date
JP2715320B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
EP0590738B1 (en) Light detecting device and light detecting method using a superconductor
Richards Bolometers for infrared and millimeter waves
Gol'Tsman et al. Fabrication and properties of an ultrafast NbN hot-electron single-photon detector
Sekimoto et al. Continuous 30 μW terahertz source by a high-Tc superconductor mesa structure
WO2023239294A1 (en) Photodetector pixel, photodetector and methods of forming the same
He et al. Highly efficient UV detection in a metal–semiconductor–metal detector with epigraphene
Minami et al. Terahertz Radiation Emitted from Intrinsic Josephson Junctions in High-T c Superconductor Bi 2 Sr 2 CaCu 2 O 8+ δ
Wu et al. Hot-carrier infrared detection in PbS with ultrafast and highly sensitive responses
EP1203413A1 (en) Three color quantum well infrared photodetector focal plane array
US5331162A (en) Sensitive, low-noise superconducting infrared photodetector
JPH0357925A (en) Photo detecting element
US6316771B1 (en) Superlattice tunable detector system
US6787757B2 (en) Apparatus and methods for generating an electronic signal responsive to selected light
JPH06196745A (en) Infrared detector
Khrebtov Noise properties of high temperature superconducting bolometers
Vieira et al. Resonantly enhanced photon-assisted tunneling in a multiple-quantum-well superlattice
US6561693B1 (en) Remote temperature sensing long wave length modulated focal plane array
Rinaldi et al. Epitaxial Fe/MgO/Ge spin-photodiodes for integrated detection of light helicity at room temperature
US5965900A (en) Tunnel-effect superconductive detector cell
JP2737007B2 (en) Signal detector
JP2737003B2 (en) Signal detection method
CN114414214B (en) Optical detector for directly detecting optical orbital angular momentum and detection method thereof
Semkin et al. Polarization-resolving graphene-based mid-infrared detector
JP2715321B2 (en) Photo detector
JP2737004B2 (en) Signal detection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees