JPH0357869A - Pressure vessel and manufacture thereof - Google Patents

Pressure vessel and manufacture thereof

Info

Publication number
JPH0357869A
JPH0357869A JP1193303A JP19330389A JPH0357869A JP H0357869 A JPH0357869 A JP H0357869A JP 1193303 A JP1193303 A JP 1193303A JP 19330389 A JP19330389 A JP 19330389A JP H0357869 A JPH0357869 A JP H0357869A
Authority
JP
Japan
Prior art keywords
reinforcing member
dome
rubber
reinforcing
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1193303A
Other languages
Japanese (ja)
Other versions
JPH076453B2 (en
Inventor
Fumiharu Namiki
並木 文春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1193303A priority Critical patent/JPH076453B2/en
Publication of JPH0357869A publication Critical patent/JPH0357869A/en
Publication of JPH076453B2 publication Critical patent/JPH076453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease stress concentration while improving adhesive force between a pressure vessel and a reinforcing member by forming the reinforcing member, adhesively attached to the periphery of an opening part in a dome part of the pressure vessel, with a plurality of reinforcing members and a rubber member adhesively attached to each other. CONSTITUTION:In a pressure vessel 29, a reinforcing member 25 is adhesively attached to the periphery of an opening part in a dome part 28 formed by hardening a continuous fiber impregnated with matrix resin. Here the reinforcing member 25 is formed mainly of a plurality of reinforcing members 21, 24 and a rubber member 23. That is, the first reinforcing member 21, in which fiber- reinforced plastic is used, is formed in a manner, wherein the more approximate to the peripheral end is positioned a part the less its thickness is gradually decreased, and adhesively attached to the periphery of the above described opening part. While the rubber member 23 is adhesively attached to the first reinforcing member 21. Further the boss member 24 as the second reinforcing member is adhesively attached to the rubber member 23 while formed in size smaller than the first reinforcing member 21.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、マトリックス樹脂を含浸した連続繊維でド
ーム部を形成して圧力容器を製造する圧力容器の製造方
法とその圧力容器に関する.(従来の技術) 一般に、人工衛生の打ち上げ等には多段式ロケットが利
用される.この多段式ロケットの概略構或を第12図に
示す.図において、1は第2段ロケットモータ、2はア
ボジモータである第3段ロケットモー夕、4は人工衛生
である.第2段ロケットモータ1と第3段ロケットモー
タ2はアイソグリッド構造体5によって接続されている
.また、第3段ロケットモータ2と人工術生4とはアイ
ソグリッド構造体と同様な接続体6によって接続されて
いる. このように、ロケットモータ1.2は前段と後段が接続
される構造となっているため、ロケットモータ1,2の
圧力容器IE,2Eには打ち上げ時に加重,軸圧縮,曲
げなどの力が加わり、特にノズル1 a, 2 aが装
着される圧力容器の開口部にそれらの力が集中するので
、圧力容器IE,2Eの開口部を強固にする必要がある
.また、圧力容器1E,2Eは推進薬の燃焼時には耐圧
、耐熱が要求される他軽量化も要求される. これらの要求を満たすために、ロケットモータの圧力容
器は、マトリックス樹脂を含浸した強化繊維を巻回して
製造するフィラメントワインディング法によって製造さ
れる. このフィラメントワインディング法は、第13図に示す
ように、型部7aと軸部7bとからなる分割可能なマン
ドレル7のその型部7aの上からエボキシ樹脂等のマト
リックス樹脂を含浸したカーボンファイバ等の強化繊維
8をインブレン巻やヘリカル巻きにより巻回して、圧力
容器本体となるドーム9を形成する.そして、マトリッ
クス樹脂の硬化後にマンドレル7は分解して取り外せば
、第l4図に示すような圧力容器10となる.しかし、
このフィラメントワインディング法では、連続した強化
繊維を用いることによる強度特性を得ることができるが
、強化繊維を巻回して製造するので、開口部周辺部だけ
の肉厚を厚くしてその部分を補強することが難しく、こ
のため、第13図に示すように、圧力容器10とは別個
なボス部材11を、マンドレル型部7aの側部に接合さ
せてその型部7aおよびボス部材11の上から強化繊維
を巻回している.これにより、ボス部材11を開口部に
接着させて開口部を補強するようにしている. しかしながら、上記の圧力容器にあっては、第15図の
Q部に示すように、ボス部材11の周端部で圧力容器1
0の肉厚が急に厚くなった状態となるので、その部分に
応力集中が起き、亀裂等の発生原因となる虞があった. そこで、圧力容器10とボス部材11との間にゴム部材
を介在させて応力集中の軽減を図ったものが提案されて
いる. これは、第16図に示すように、例えば炭素繊維からな
る織布を積層するとともにマトリックス樹脂として熱硬
化樹脂を含浸させて硬化させた積層部材13を機械加工
して、第17図に示すように、中央部に孔14aを形成
するとともに周端部に接着面14bを形成したボス部材
14を作戒し、第18図に示すようにこのボス部材14
の接着面14bにゴム部材15を加硫接着させて、マン
ドレル7の軸部7bに嵌合させて上述のように圧力容器
を製造するものである. (発明が解決しようとする課題) しかしながら、上記の圧力容器にあっては、圧力容器1
0とボス部材14との間に加硫接着されたゴム部材15
が介在されるため、ボス部材14と圧力容器10との接
着力が弱くボス部材l4が圧力容器10から外れ易くな
るという問題があった.また、そのボス部材l4が圧力
容器から外れないように、ボス部材のP部に溝を設け、
その溝に強化繊維を巻くようにしたものがあるが、その
溝に強化繊維を巻いていくことが難しく、その巻作業が
非常にやっかいであるという問題があった.(目 的) そこで、この発明は、上記問題点に鑑みてなされたもの
で、その目的とするところは、応力集中の軽減を図るこ
とができ、しかも、溝等を設けることなく補強部材と圧
力容器との接着力を高めることのできる圧力容器とこの
圧力容器の製造方法を提供することにある. (N題を解決するための手段) この発明は、上記目的を達戒するため、マトリックス樹
脂を含浸した連続繊維を硬化して形威したドーム部の開
口部の周囲に補強部材を接着させた圧力容器であって、 前記補強部材は、周端にいくほど肉厚が漸減するように
形成されるとともに前記開口部の周りに接着された繊維
強化プラスチックからなる環状の第1補強部材と、 この第1補強部材に接着されたゴム部材と、このゴム部
材に接着され且つ前記第1補強部材より小径に形成され
た環状の第2補強部材とから構威されていることを特徴
とする. また、ドーム形IIL型部の両側に軸部を同軸に設けた
マンドレルと、中央に孔が設けられ且つ中央側から周縁
に向かうに従って次第に肉薄に形威されるとともに強化
繊維プラスチックからなるシート部材と、このシート部
材より小径の外方フランジを宥するボス部材および環状
生ゴムを用意して、前記シート部材と外方フランジとの
間に前記環状ゴムを介装圧着した状態で加硫することに
より、シート部材とゴム部材がゴムの加硫の接着により
一体に結合された補強部材を形成した後、補強部材のボ
ス部材を前記軸部外周に嵌挿するとともに、前記外方フ
ランジを前記ドーム形成型部に当接させ、次に、その型
部および補強部材の上からマトリックス樹脂を含浸した
連続繊維を前記軸部にドーム開口部が形成されるように
巻回し、この巻回した連続繊維を硬化させることにより
ドーム部を形成するとともに、前記ドーム開口部の周囲
に補強部材のシート部材を接着させることを特徴とする
. (作 用) この発明は、第1補強部材が繊維強化プラスチックから
形威されているので、第1補強部材と圧力容器との接着
力が高まる.また、第1補強部材は周端にいくほど肉厚
が漸減するように形成されているので、ドーム部と一体
化した際にその肉厚に生じる段差が極めて小さくなるこ
とから第IM!強部材の周端部に生じる応力集中が軽減
され、さらに、第2補強部材が第l補強部材にゴム部材
を介して接着されているので、その応力集中が吸収され
る. また、この発明は上記構戒であるから、補強部材は、シ
ート部材とゴム部材がゴムの加硫の接着により一体に結
合される.そして、マトリックス樹脂を含浸した連続繊
維の硬化により形成されたドーム部に補強部材のシート
材が接着されるので、その接着力が高まる.また、シー
ト部材は中央側から周縁に向かうに従って次第に肉薄に
形成され、さらに、シート部材とボス部材との間にゴム
部材が介在されているので、高弾性率のゴム部材が応力
を吸収するため、応力集中が大幅に軽減される.(実施
例) 以下、この発明に係わる圧力容器の製造方法の実施例を
図面に基づいて説明する. 第1図ないし第4図は圧力容器の補強部材の製造工程を
示したものである.図において、20はエボキシ樹脂等
のマトリックス樹脂を含浸した例えばカーボンファイバ
、アラミド繊維あるいはガラス繊維等の強化繊維からな
る織布を積層したシ一ト材である.このシート材20を
オートクレープ22の雌金fi22aにセットして、オ
ートクレープ22内に蒸気を吹き込んでシート材20を
加熱加圧する.これにより、マトリックス樹脂を硬化さ
せて所定形状に成形されたシート材20が作或される. そして、このシート材20の中央部に機械加工により孔
21aを第2図に示すように開けるとともに、後述する
ドーム部28と一体化した際に生じる段差が小さくなる
ように、周端にいくほど肉厚が漸減するように加工して
第1補強部材21を作戒する.そして、この第1補強部
材21に、中央部に孔23aが開いたゴム部材23とボ
ス部材(第2補強部材)24を第3図に示すように重ね
て下金型K+にセッ卜する.次いで、上金形K2を押圧
してホットプレスにより第1補強部材21にボス部材2
4を加硫接着させて補強部材25を構或させる(第4図
参照). ボス部材24は、従来と同様に、例えば炭素繊維からな
る織布を積層するとともにマトリックス樹脂として熱硬
化樹脂を含浸させて硬化させた積層部材を機械加工して
、第3図に示すように、中央部に孔24aを形成すると
ともに周端部じ接着面24bを形成したものである. 前記補強部材25を分割可能なマンドレル26の軸部2
8aに第5図に示すように嵌合させるとともに、ボス部
材24が内側となるように型部26bの側部に接合させ
る.そして、第6図に示すように、補強部材25および
型部28bの上からビスフェノールA系エボキシ樹脂等
のプラスチックを含浸したカーボンファイバ等の連続し
た強化繊維をインブレン巻やヘリカル巻きにより巻回し
てドーム部28を形成する. これら強化繊維に含浸されたマトリックス樹脂の硬化後
、マンドレル26を分割して取り外せば第11図に示す
ような圧力容II29(第7図参照)を得る.なお、こ
の場合、圧力容器29をマンドレル26の型部26bか
ら容易に剥離できるように、その型部26bに予めフツ
ソやシリコンからなる離型剤を塗っておく. 前記圧力容器29は、第7図に示すように、ドーム部2
8の内側の開口部23aの周辺部に第1補1強部材21
が接着されるが、第1補強部材21はエボキシ樹脂等の
マトリックス樹脂を含浸した織布層を硬化して構威され
、ドーム部28はビスフェノールA系エボキシ樹脂等の
マトリックス樹脂を含浸した強化繊維からなり、同質の
マトリックス樹脂を用いているので、第l補強部材21
とドーム部28とのなじみ一でよく、第1補強部材21
の接着は強固なものとなり、従来のように補強部材に溝
を設ける必要がない.また、第1補強部材2lは周端に
行くほどその肉厚が漸減するので、ドーム部28と一体
化した際にその肉厚に生じる段差が極めて小さくなるこ
とから、第1補強部材21の周端部に生じる応力集中は
小さなものとなる. また、第1補強部材21とボス24との間にゴム部材2
3が介在されているので、ボス24の周端部に生じる応
力集中はそのゴム部材23により吸収されるので、その
応力集中は小さなものとなニこで、M4l補強部材21
とドーム部28との関係を材質の観点から述べることに
する.jll!1補強部材21とドーム部28に使用さ
れる強化繊維の組み合せとしては、各種のものが考えら
れるが、ここでは、ヤング率の異なる■カーボンファイ
バ(ヤング率E : S760kgf/mm2)、■ア
ラミド繊維(ヤング率E ; 3220kgf/+a+
aり、■ガラス繊維(ヤング率E; 2060kgf/
mm2) (7)これら3種の中から組み合わせた場合
について説明する.先ず、第8図に示すようなドーム部
Aの補強強化に着目した場合について考えると、補強部
材Bを介在させる主目的はドーム極C近傍の矢印Dで示
すような曲げに対する強度の向上にある.換言すれば、
補強部材Bを使用してドーム部Aに発生する応力を如何
に小さくするかにある.この問題を簡略化して言及する
ために、第9図に示すように、ドーム部Aおよび補強部
材Bをモデル化することにした.ここで、ドーム部Aの
厚さt1、補強部材Bの厚さt2、それぞれの幅をbと
する.また、添字「1」はドーム部を示し、添字「2」
は補強部材を示すものとして、 η+ = t+ + t2−η2 Z+=I/ηl,  z2=i/η21σ1 ==M/
Z+,  at=M/Z2  −  ( 1 )と表わ
すことができる.なお、Eはヤング率、ηは図心からの
距離、■は断面二次モーメント、Zは断面係数、σは応
力を示す.そして、b=1(単位幅)、M=1(単位モ
ーメント)の場合について(1)式を解けば、ドーム部
Aに発生するドーム部発生応力を求めることができる.
そして、■カーボンを連続繊維として用いたFRP製ド
ーム部を、カーボン、アラミド、ガラスをそれぞれ連続
繊維として用いたFRPで補強した3通りの場合と、■
アラミドを連続繊維として用いたFRP製ドーム部を、
カーボン、アラミド、ガラスのそれぞれを連続繊維とし
て用いたFRPで補強した3通りの場合と、■ガラスを
連続繊維として用いたFRP製ドーム部を、カーボン、
アラミド、ガラスのそれぞれを連続繊維として用いたF
RPで補強した3通りの場合の計9通りのドーム部Aに
発生するドーム部発生応力を求める.ところで、補強部
材は極力軽い方が望ましいので、簡単に評価すれば、 
(ドーム部発生応力)X(補強部材密度)=Xの値が小
さいほうがよいこととなる. そこで、カーボンを連続繊維として用いたFRPの密度
ρ=L56、アラミドを連続繊維として用いたFRPの
密度ρ=1.35、ガラスを連続繊維として用いたFR
Pの密度ρ=1.68としてXの値を求め、さらに、ド
ーム部Aおよび補強部材Bをカーポンとした場合を1と
して相対評価した値Yを表工に示す.この表■では、ド
ーム部八の厚さt1を5mmとし、補強部材Bの厚さt
2を0. 5mm,  l tm,  2 mm,  
3 mm,4帆、 5mmの場合の値Yをそれぞれ示してある.(以下余白
) 粂l この!l!rに示す値Yが最も小さいのは、ドーム部材
Aがガラス、補強部材Bがカーボンで、補強部材Bの厚
さが3開と4mmの場合である.したがって、曲げに対
する強度が大きくなる材質の組合せは、ドーム部28が
ガラス、第1補強部材21がカーボンの場合である. また、この表工から、値Yが1より小さい値を示すのは
、ドーム部Aがアラミド繊維のとき補強部材Bがカーボ
ンあるいはアラミド繊維の場合であり、また、ドーム部
Aがガラス繊維で補強部材Bがカーボンあるいはアラミ
ド繊維の場合である,これはいずれも、補強部材のヤン
グ率E2がドーム材のヤング率E1以上の場合である.
すなわち、補強材としてはドーム材以上のヤング率E2
をもつ材質の方が補強効果が高いことを示している.と
ころで、ドーム部28および補強層(第1補強部材21
、ボス24)に使用されるマトリックス材の組み合せに
ついては、同一材質の組み合せの場合が最も好ましいが
、異なっていても差し支えない.ただし、補強層は予め
成形して用いるため、ドーム部28の硬化工程中に熱変
形しないように、補強層の熱変形温度(ガラス転移温度
)はドーム部28の硬化温度より高くなければならない
. 次に、第11図には応力集中による圧力容器27の部位
に加わる剪断応力と、その部位との関係を示す.第工1
図の■はボス部材24を従来のように直接ドーム部28
に接着させた場合で、八部位においてドーム部28の肉
厚が急に厚くなる状態となるので、そのA部位に生じる
応力集中が大きく、急激に剪断応力が大きくなる.■は
ドーム部28とボス部材との間にゴム部材23を介在さ
せた場合で、そのゴム部材によって応力集中が吸収され
るので、入部位での急激に大きくなる剪断応力は生じな
いが、まだ大きな剪断応力が生じる.■はこの実施例に
よるもので、B部位付近では第工補強部材の周端部の肉
厚が薄く形成され、また、A部位付近ではゴム部材によ
る応力集中が吸収されるので、剪断応力の山は消えてほ
ぼ平坦となる.すなわち、A部付近の応力集中は大幅に
軽減されることとなる. (効 果) 以上説明したように、この発明によれば、溝を設けるこ
となく補強部材と圧力容器との接着力を高めることがで
き、しかも応力集中を大幅に軽減することができる.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure vessel manufacturing method for manufacturing a pressure vessel by forming a dome portion using continuous fibers impregnated with a matrix resin, and the pressure vessel. (Conventional technology) Multi-stage rockets are generally used for artificial satellite launches. Figure 12 shows the schematic structure of this multi-stage rocket. In the figure, 1 is the second stage rocket motor, 2 is the third stage rocket motor which is an aboji motor, and 4 is the artificial sanitary. The second stage rocket motor 1 and the third stage rocket motor 2 are connected by an isogrid structure 5. Further, the third stage rocket motor 2 and the artificial graft 4 are connected by a connecting body 6 similar to the isogrid structure. In this way, rocket motors 1 and 2 have a structure in which the front and rear stages are connected, so forces such as weight, axial compression, and bending are applied to the pressure vessels IE and 2E of rocket motors 1 and 2 during launch. In particular, since these forces are concentrated at the openings of the pressure vessels to which the nozzles 1a and 2a are attached, it is necessary to make the openings of the pressure vessels IE and 2E strong. In addition, the pressure vessels 1E and 2E are required to be resistant to pressure and heat when the propellant is combusted, and are also required to be lightweight. To meet these requirements, rocket motor pressure vessels are manufactured using the filament winding method, which involves winding reinforcing fibers impregnated with matrix resin. In this filament winding method, as shown in FIG. 13, carbon fiber or the like impregnated with a matrix resin such as epoxy resin is placed over the mold part 7a of a splittable mandrel 7 consisting of a mold part 7a and a shaft part 7b. The reinforcing fiber 8 is wound by in-brane winding or helical winding to form a dome 9 which becomes the main body of the pressure vessel. After the matrix resin has hardened, the mandrel 7 is disassembled and removed to form a pressure vessel 10 as shown in FIG. 14. but,
With this filament winding method, strength characteristics can be obtained by using continuous reinforcing fibers, but since the reinforcing fibers are manufactured by winding them, the wall thickness is increased only around the opening to reinforce that area. For this reason, as shown in FIG. 13, a boss member 11 separate from the pressure vessel 10 is joined to the side of the mandrel mold part 7a, and reinforced from above the mold part 7a and the boss member 11. The fibers are wrapped around each other. Thereby, the boss member 11 is bonded to the opening and the opening is reinforced. However, in the above pressure vessel, as shown in section Q in FIG.
Since the wall thickness of 0 suddenly became thicker, there was a risk that stress concentration would occur in that area, causing cracks, etc. Therefore, it has been proposed that a rubber member is interposed between the pressure vessel 10 and the boss member 11 to reduce stress concentration. As shown in FIG. 16, this is done by laminating a woven fabric made of carbon fibers, for example, and machining a laminated member 13 that is impregnated with a thermosetting resin as a matrix resin and hardened. Then, the boss member 14, which has a hole 14a formed in the center and an adhesive surface 14b formed at the peripheral end, is carefully fixed, and as shown in FIG.
The rubber member 15 is vulcanized and bonded to the adhesive surface 14b of the mandrel 7, and the rubber member 15 is fitted onto the shaft portion 7b of the mandrel 7 to manufacture the pressure vessel as described above. (Problem to be solved by the invention) However, in the above pressure vessel, the pressure vessel 1
Rubber member 15 vulcanized and bonded between 0 and boss member 14
As a result, there was a problem in that the adhesive force between the boss member 14 and the pressure vessel 10 was weak and the boss member l4 was easily detached from the pressure vessel 10. In addition, a groove is provided in the P portion of the boss member so that the boss member l4 does not come off from the pressure vessel.
There are some devices in which reinforcing fibers are wound around the grooves, but the problem is that it is difficult to wind the reinforcing fibers around the grooves, and the winding process is extremely troublesome. (Purpose) Therefore, this invention was made in view of the above-mentioned problems, and its purpose is to reduce stress concentration, and furthermore, it is possible to reduce the stress concentration between the reinforcing member and the pressure without providing grooves. The object of this invention is to provide a pressure vessel that can increase the adhesive strength with the container, and a method for manufacturing this pressure vessel. (Means for Solving Problem N) In order to achieve the above object, this invention adheres a reinforcing member around the opening of a dome portion formed by hardening continuous fibers impregnated with matrix resin. A pressure vessel, wherein the reinforcing member includes a first annular reinforcing member made of fiber-reinforced plastic that is formed so that its thickness gradually decreases toward the peripheral end and is bonded around the opening; It is characterized by comprising a rubber member bonded to the first reinforcing member, and an annular second reinforcing member bonded to the rubber member and formed to have a smaller diameter than the first reinforcing member. In addition, a mandrel with a shaft coaxially provided on both sides of the dome-shaped IIL type part, and a sheet member made of reinforced fiber plastic with a hole in the center and gradually becoming thinner from the center toward the periphery. By preparing a boss member and an annular raw rubber that accommodate an outer flange having a smaller diameter than this sheet member, and vulcanizing the annular rubber with the annular rubber interposed and crimped between the sheet member and the outer flange, After forming a reinforcing member in which the sheet member and the rubber member are integrally bonded by adhesion of rubber vulcanization, the boss member of the reinforcing member is fitted onto the outer periphery of the shaft portion, and the outer flange is inserted into the dome forming mold. Next, a continuous fiber impregnated with matrix resin is wound around the mold part and the reinforcing member so that a dome opening is formed on the shaft part, and the wound continuous fiber is hardened. The present invention is characterized in that a dome portion is formed by this, and a sheet member of a reinforcing member is adhered around the dome opening. (Function) In this invention, since the first reinforcing member is made of fiber-reinforced plastic, the adhesive strength between the first reinforcing member and the pressure vessel is increased. In addition, since the first reinforcing member is formed so that its thickness gradually decreases toward the peripheral end, the difference in thickness that occurs when it is integrated with the dome portion becomes extremely small. Stress concentration occurring at the peripheral end of the strong member is reduced, and since the second reinforcing member is bonded to the first reinforcing member via the rubber member, the stress concentration is absorbed. Further, since the present invention has the above-mentioned structure, the reinforcing member has the sheet member and the rubber member integrally joined by adhesion of rubber vulcanization. Then, since the sheet material of the reinforcing member is adhered to the dome portion formed by curing the continuous fibers impregnated with matrix resin, its adhesive strength increases. In addition, the sheet member is formed to become gradually thinner from the center toward the periphery, and since a rubber member is interposed between the sheet member and the boss member, the rubber member with a high elastic modulus absorbs stress. , stress concentration is significantly reduced. (Example) Hereinafter, an example of the method for manufacturing a pressure vessel according to the present invention will be described based on the drawings. Figures 1 to 4 show the manufacturing process of reinforcing members for pressure vessels. In the figure, 20 is a sheet material laminated with woven fabrics made of reinforcing fibers such as carbon fiber, aramid fiber, or glass fiber impregnated with a matrix resin such as epoxy resin. This sheet material 20 is set in the female metal fi 22a of the autoclave 22, and steam is blown into the autoclave 22 to heat and pressurize the sheet material 20. As a result, the matrix resin is cured and the sheet material 20 is formed into a predetermined shape. Then, a hole 21a is machined in the center of the sheet material 20 as shown in FIG. The first reinforcing member 21 is processed so that its thickness gradually decreases. Then, on this first reinforcing member 21, a rubber member 23 having a hole 23a in the center and a boss member (second reinforcing member) 24 are stacked on top of each other as shown in FIG. 3 and set in the lower mold K+. Next, the upper mold K2 is pressed and the boss member 2 is attached to the first reinforcing member 21 by hot pressing.
4 is vulcanized and bonded to form the reinforcing member 25 (see Fig. 4). As shown in FIG. 3, the boss member 24 is made by machining a laminated member made by laminating woven fabrics made of, for example, carbon fibers and impregnating and hardening a thermosetting resin as a matrix resin. A hole 24a is formed in the center and an adhesive surface 24b is formed at the peripheral end. Shaft portion 2 of mandrel 26 into which the reinforcing member 25 can be divided
8a as shown in FIG. 5, and also joined to the side of the mold part 26b with the boss member 24 on the inside. Then, as shown in FIG. 6, a continuous reinforcing fiber such as carbon fiber impregnated with plastic such as bisphenol A-based epoxy resin is wound onto the reinforcing member 25 and the mold part 28b by in-brane winding or helical winding to form a dome. Form part 28. After the matrix resin impregnated with these reinforcing fibers is cured, the mandrel 26 is divided and removed to obtain a pressure volume II 29 (see FIG. 7) as shown in FIG. 11. In this case, in order to easily separate the pressure vessel 29 from the mold part 26b of the mandrel 26, the mold part 26b is previously coated with a mold release agent made of sulfur or silicone. The pressure vessel 29 has a dome portion 2 as shown in FIG.
The first reinforcing member 21 is attached to the periphery of the opening 23a on the inside of 8.
The first reinforcing member 21 is constructed by curing a woven fabric layer impregnated with a matrix resin such as epoxy resin, and the dome portion 28 is made of reinforcing fibers impregnated with a matrix resin such as bisphenol A-based epoxy resin. Since the same matrix resin is used, the first reinforcing member 21
It is sufficient that the first reinforcing member 21 and the dome portion 28 are compatible with each other.
The adhesion is strong, and there is no need to provide grooves in the reinforcing member as in the past. In addition, since the thickness of the first reinforcing member 2l gradually decreases toward the peripheral end, the difference in thickness that occurs when it is integrated with the dome portion 28 becomes extremely small. The stress concentration that occurs at the ends is small. Furthermore, a rubber member 2 is provided between the first reinforcing member 21 and the boss 24.
3 is interposed, the stress concentration occurring at the peripheral end of the boss 24 is absorbed by the rubber member 23, so the stress concentration is small.
The relationship between the dome portion 28 and the dome portion 28 will be described from the viewpoint of materials. jll! 1 Various combinations of reinforcing fibers can be used for the reinforcing member 21 and the dome portion 28, but here, we will use carbon fibers with different Young's moduli (Young's modulus E: S760 kgf/mm2), and aramid fibers. (Young's modulus E; 3220kgf/+a+
a, ■Glass fiber (Young's modulus E; 2060 kgf/
mm2) (7) A combination of these three types will be explained. First, considering the case where we focus on reinforcing the dome part A as shown in Fig. 8, the main purpose of interposing the reinforcing member B is to improve the strength against bending as shown by the arrow D near the dome pole C. .. In other words,
The problem lies in how to reduce the stress generated in the dome part A by using the reinforcing member B. In order to simplify this problem, we decided to model the dome part A and the reinforcing member B as shown in Fig. 9. Here, the thickness t1 of the dome portion A, the thickness t2 of the reinforcing member B, and the respective widths are assumed to be b. Also, the subscript "1" indicates the dome part, and the subscript "2" indicates the dome part.
indicates a reinforcing member, η+ = t+ + t2-η2 Z+=I/ηl, z2=i/η21σ1 ==M/
It can be expressed as Z+, at=M/Z2 − (1). In addition, E is Young's modulus, η is the distance from the centroid, ■ is the moment of inertia of area, Z is the section modulus, and σ is the stress. Then, by solving equation (1) for the case where b = 1 (unit width) and M = 1 (unit moment), the stress generated in the dome part A can be found.
Then, ■ three cases in which the FRP dome part using carbon as continuous fibers is reinforced with FRP using carbon, aramid, and glass as continuous fibers, and ■
The FRP dome part uses aramid as a continuous fiber,
There are three cases in which carbon, aramid, and glass are each reinforced with FRP as continuous fibers;
F using aramid and glass as continuous fibers
Determine the stress generated in the dome part A in total of 9 ways in the three cases reinforced with RP. By the way, it is desirable for the reinforcing member to be as light as possible, so a simple evaluation will show:
(Stress generated in the dome part) X (reinforcing member density) = The smaller the value of X, the better. Therefore, the density ρ of FRP using carbon as continuous fibers is L56, the density ρ of FRP using aramid as continuous fibers is 1.35, and the density ρ of FRP using carbon as continuous fibers is 1.35.
The value of X is determined by setting the density of P as ρ = 1.68, and the relative evaluation value Y is shown in the front work, assuming that the dome part A and reinforcing member B are made of carpon as 1. In this table (■), the thickness t1 of the dome portion 8 is 5 mm, and the thickness t of the reinforcing member B is
2 to 0. 5mm, ltm, 2mm,
The values Y are shown for 3 mm, 4 sails, and 5 mm, respectively. (Left below) Ume l This! l! The value Y shown in r is the smallest when the dome member A is made of glass, the reinforcing member B is carbon, and the thickness of the reinforcing member B is 3 mm and 4 mm. Therefore, a combination of materials that increases the strength against bending is when the dome portion 28 is made of glass and the first reinforcing member 21 is made of carbon. Also, from this surface work, the value Y is smaller than 1 when the dome part A is made of aramid fiber and the reinforcing member B is carbon or aramid fiber, and also when the dome part A is reinforced with glass fiber. This is the case where the member B is made of carbon or aramid fiber. In either case, the Young's modulus E2 of the reinforcing member is greater than the Young's modulus E1 of the dome material.
In other words, as a reinforcing material, the Young's modulus E2 is higher than that of the dome material.
This shows that the reinforcing effect is higher for materials with . By the way, the dome portion 28 and the reinforcing layer (first reinforcing member 21
, the combination of matrix materials used for the boss 24) is most preferably a combination of the same materials, but they may be different. However, since the reinforcing layer is preformed and used, the thermal deformation temperature (glass transition temperature) of the reinforcing layer must be higher than the curing temperature of the dome part 28 so that the reinforcing layer does not undergo thermal deformation during the curing process of the dome part 28. Next, FIG. 11 shows the relationship between the shear stress applied to a portion of the pressure vessel 27 due to stress concentration and that portion. Part 1
■ In the figure, the boss member 24 is directly attached to the dome part 28 as in the conventional case.
In the case where the dome portion 28 is bonded to the dome portion 28, the thickness of the dome portion 28 suddenly becomes thicker at the eight portions, so that the stress concentration occurring at the portion A is large, and the shear stress suddenly increases. (3) is a case where the rubber member 23 is interposed between the dome part 28 and the boss member, and since the stress concentration is absorbed by the rubber member, no sudden increase in shear stress occurs at the entry point, but still Large shear stress occurs. (3) is based on this example, in which the wall thickness of the peripheral edge of the first reinforcing member is thinner near the B part, and the stress concentration by the rubber member is absorbed near the A part, so the shear stress peaks. disappears and becomes almost flat. In other words, the stress concentration near part A is significantly reduced. (Effects) As explained above, according to the present invention, it is possible to increase the adhesive strength between the reinforcing member and the pressure vessel without providing a groove, and it is also possible to significantly reduce stress concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係わるオートクレープ或形の説明図
、第2図は第l補強部材の説明図、第3図は第1補強部
材とゴム部材とボスとの重ねる状態を示す説明図、第4
図は補強部材の説明図、第5図はマントレルに補強部材
を取り付ける説明図、第6図はドーム部を形成する説明
図、第7図は圧力容器の部分断面拡大図、第8図はドー
ムに発生する曲げ方向を示した説明図、第9図はドーム
をモデル化した説明図、第10図はドーム部および補強
部材の厚さを示した説明図、第11図は剪断応力と圧力
容器の部位との関係を示したグラフ、第12図はロケッ
トの説明図、第13図はフィラメントワインディング法
によって圧力容器を製造する説明図、第14図は従来の
圧力容器の断面を示した断面図、第15図は従来の圧力
容器の部分拡大断面図、第16図は積層部材の説明図、
第17図はボス部材の説明図、第18図はボス部材にゴ
ム部材を加硫接着した説明図である.1・・・第1補強
部材 1a・・・孔 3・・・ゴム部材 4・・・ボス部材(第2補強部材) 5・・・補強部材 6・・・マンドレル2日 6a・・・軸部 6b・・・型部 8・・・ドーム部 9・・・圧力容器 第 1 図 第 2 図 21 第 3 図 \K+ 第 4 図 第 5 図 第 6 図 第 7 図 第 8 図 第 9 図 A 第 10 図 第13 図 第14 図 第 15 図 第16 図 第17 図 第 18 図 1ら
FIG. 1 is an explanatory diagram of a certain shape of an autoclave according to the present invention, FIG. 2 is an explanatory diagram of the first reinforcing member, and FIG. 3 is an explanatory diagram showing the overlapping state of the first reinforcing member, the rubber member, and the boss. Fourth
Figure 5 is an explanatory diagram of the reinforcing member, Figure 5 is an explanatory diagram of attaching the reinforcing member to the mantrell, Figure 6 is an explanatory diagram of forming the dome section, Figure 7 is an enlarged partial cross-sectional view of the pressure vessel, and Figure 8 is the dome. Fig. 9 is an explanatory drawing showing the dome model, Fig. 10 is an explanatory drawing showing the thickness of the dome part and reinforcing member, and Fig. 11 is an illustration of shear stress and pressure vessel. Figure 12 is an explanatory diagram of a rocket, Figure 13 is an explanatory diagram of manufacturing a pressure vessel by the filament winding method, and Figure 14 is a cross-sectional view of a conventional pressure vessel. , FIG. 15 is a partially enlarged sectional view of a conventional pressure vessel, and FIG. 16 is an explanatory diagram of a laminated member.
FIG. 17 is an explanatory diagram of a boss member, and FIG. 18 is an explanatory diagram of a rubber member bonded to the boss member by vulcanization. 1... First reinforcing member 1a... Hole 3... Rubber member 4... Boss member (second reinforcing member) 5... Reinforcing member 6... Mandrel 2nd day 6a... Shaft part 6b...Mold part 8...Dome part 9...Pressure vessel 1 Figure 2 Figure 21 Figure 3\K+ Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure A 10 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 1 et al.

Claims (2)

【特許請求の範囲】[Claims] (1)マトリックス樹脂を含浸した連続繊維を硬化して
形成したドーム部の開口部の周囲に補強部材を接着させ
た圧力容器であつて、 前記補強部材は、周端にいくほど肉厚が漸減するように
形成されるとともに前記開口部の周りに接着された繊維
強化プラスチックからなる環状の第1補強部材と、 この第1補強部材に接着されたゴム部材と、このゴム部
材に接着され且つ前記第1補強部材より小径に形成され
た環状の第2補強部材とから構成されていることを特徴
とする圧力容器。
(1) A pressure vessel in which a reinforcing member is adhered around the opening of a dome portion formed by curing continuous fibers impregnated with a matrix resin, wherein the reinforcing member has a wall thickness that gradually decreases toward the peripheral edge. a first annular reinforcing member made of fiber-reinforced plastic and bonded around the opening; a rubber member bonded to the first reinforcing member; and a rubber member bonded to the rubber member and bonded to the opening. and a second annular reinforcing member having a smaller diameter than the first reinforcing member.
(2)ドーム形成型部の両側に軸部を同軸に設けたマン
ドレルと、中央に孔が設けられ且つ中央側から周縁に向
かうに従って次第に肉薄に形成されるとともに強化繊維
プラスチックからなるシート部材と、このシート部材よ
り小径の外方フランジを有するボス部材および環状生ゴ
ムを用意して、前記シート部材と外方フランジとの間に
前記環状ゴムを介装圧着した状態で加硫することにより
、シート部材とゴム部材がゴムの加硫の接着により一体
に結合された補強部材を形成した後、補強部材のボス部
材を前記軸部外周に嵌挿するとともに、前記外方フラン
ジを前記ドーム形成型部に当接させ、次に、その型部お
よび補強部材の上からマトリックス樹脂を含浸した連続
繊維を前記軸部にドーム開口部が形成されるように巻回
し、この巻回した連続繊維を硬化させることによりドー
ム部を形成するとともに、前記ドーム開口部の周囲に補
強部材のシート部材を接着させることを特徴とする圧力
容器の製造方法。
(2) a mandrel having a shaft coaxially provided on both sides of the dome-forming mold part; a sheet member made of reinforced fiber plastic; having a hole in the center and gradually becoming thinner from the center toward the periphery; By preparing a boss member and an annular raw rubber having an outer flange with a diameter smaller than that of the sheet member, and vulcanizing the annular rubber with the annular rubber interposed between the sheet member and the outer flange, the sheet member is After forming a reinforcing member in which the and rubber members are integrally joined by adhesion of rubber vulcanization, the boss member of the reinforcing member is fitted onto the outer periphery of the shaft portion, and the outer flange is attached to the dome forming mold portion. Then, a continuous fiber impregnated with a matrix resin is wound on the mold part and the reinforcing member so that a dome opening is formed in the shaft part, and the wound continuous fiber is cured. A method of manufacturing a pressure vessel, comprising: forming a dome portion, and adhering a sheet member of a reinforcing member around the dome opening.
JP1193303A 1989-07-26 1989-07-26 Pressure vessel and method for manufacturing the pressure vessel Expired - Fee Related JPH076453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193303A JPH076453B2 (en) 1989-07-26 1989-07-26 Pressure vessel and method for manufacturing the pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193303A JPH076453B2 (en) 1989-07-26 1989-07-26 Pressure vessel and method for manufacturing the pressure vessel

Publications (2)

Publication Number Publication Date
JPH0357869A true JPH0357869A (en) 1991-03-13
JPH076453B2 JPH076453B2 (en) 1995-01-30

Family

ID=16305669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193303A Expired - Fee Related JPH076453B2 (en) 1989-07-26 1989-07-26 Pressure vessel and method for manufacturing the pressure vessel

Country Status (1)

Country Link
JP (1) JPH076453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032033A (en) * 2006-07-26 2008-02-14 Mitsubishi Cable Ind Ltd Sealing structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330662A (en) * 1986-07-14 1988-02-09 エコ−ダイン コ−ポレイシヨン Pressure vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330662A (en) * 1986-07-14 1988-02-09 エコ−ダイン コ−ポレイシヨン Pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032033A (en) * 2006-07-26 2008-02-14 Mitsubishi Cable Ind Ltd Sealing structure

Also Published As

Publication number Publication date
JPH076453B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
EP0805709B1 (en) Method of manufacture of a thermoplastic composite ski
US5392514A (en) Method of manufacturing a composite blade with a reinforced leading edge
RU2438866C2 (en) Method of producing structural component from composite material reinforced by fibres for aerospace engineering, moulding core for production of said component, and component thus produced and/or by means of said core
JP3631493B2 (en) Composite spars for helicopter rotor blades and methods of manufacturing the same
JPH10503441A (en) Method and apparatus for manufacturing wing structure
US20040140049A1 (en) Method of manufacturing a hollow section, grid stiffened panel
JPH0357869A (en) Pressure vessel and manufacture thereof
GB2053696A (en) Carbon fibre laminated sports equipment
US10906267B2 (en) Composite structure
JP2627094B2 (en) Rotor for centrifuge and method for manufacturing the same
JPH11192991A (en) Structure of frp monocock frame for bicycle and its manufacture
JPS59184001A (en) Frp disc wheel
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JP3280754B2 (en) Manufacturing method of fiber reinforced plastic blower blade
JPS63144037A (en) Manufacture of beam made of frp
KR0134257B1 (en) The fuselage skin of model aircraft and the manufacturing method
JPH0669727B2 (en) Pressure vessel manufacturing method
JP3579156B2 (en) Golf club shaft
JPH0624202Y2 (en) Resin composite pipe and resin composite pipe joint
JPH0341735Y2 (en)
JPH0235287A (en) Resin composite pipe and resin composite pipe joint
JPS60179232A (en) Manufacture of frp structure
JPH1136986A (en) Manufacture of pressure vessel and its reinforcement
JPH0966128A (en) Manufacture of hollow shaft
JP2000167087A (en) Racket frame and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees