JPH0235287A - Resin composite pipe and resin composite pipe joint - Google Patents

Resin composite pipe and resin composite pipe joint

Info

Publication number
JPH0235287A
JPH0235287A JP18404388A JP18404388A JPH0235287A JP H0235287 A JPH0235287 A JP H0235287A JP 18404388 A JP18404388 A JP 18404388A JP 18404388 A JP18404388 A JP 18404388A JP H0235287 A JPH0235287 A JP H0235287A
Authority
JP
Japan
Prior art keywords
resin
pipe
composite pipe
layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18404388A
Other languages
Japanese (ja)
Inventor
Tsutomu Hashimoto
勉 橋本
Yuichi Shiohama
塩浜 裕一
Shoichi Kawanami
川波 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP18404388A priority Critical patent/JPH0235287A/en
Publication of JPH0235287A publication Critical patent/JPH0235287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To improve the pressureproofness, heat resistance, and shock resistance by forming a fiber-reinforced thermosetting resin layer through an adhesive layer containing the unsaturated polyester resin and the isocyanate compounds onto the outer periphery of a core member consisting of a thermoplastic resin pipe. CONSTITUTION:The title composite pipe and composite pipe joint are formed by forming a core member from a thermoplastic resin pipe 1 and forming a fiber-reinforced thermosetting resin layer 3 onto the outer peripheral surface of the core member through an adhesive layer 2. The thermoplastic resin 1 is made of the vinyl chloride resin, polyamide resin, acrylic resin, polycarbonate resin, etc. The adhesive layer 2 is made of the compounds containing the isocyanate group which is obtained by reacting the unsaturated polyester with the isocyanate compounds. The fiber-reinforced thermosetting resin layer 3 is formed by impregnating the unsaturated polyester resin, etc., onto glass fibers. Therefore, the superior heat resistance, pressureproofness, and shock resistance can be secured, and the generation of between-layer exfoliation can be suppressed, and the trouble of buckling, etc., is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度、剛性、耐蝕性、耐熱性、耐圧性および
耐衝撃性等に優れ、例えば高温の各種薬液の輸送が行わ
れる化学プラントの配管等の配管に好適に用いられる樹
脂複合管および樹脂複合管継手に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention has excellent strength, rigidity, corrosion resistance, heat resistance, pressure resistance, impact resistance, etc., and is applicable to chemical plants where various high-temperature chemical solutions are transported. The present invention relates to a resin composite pipe and a resin composite pipe joint that are suitably used for piping such as piping.

(従来の技術) 従来、この種の樹脂複合管としては、例えば実公昭30
−6159号公報や実開昭、l 9−77245号公報
に開示されたものが知られている。
(Prior art) Conventionally, this type of resin composite pipe has been manufactured using, for example,
Those disclosed in Japanese Patent No.-6159 and Japanese Unexamined Utility Model No. 19-77245 are known.

前者は、硬質塩化ビニル管の外周面にガラス繊維を巻着
し、これにポリエステル樹脂を含浸硬化させて一体とな
したものである。そして、このようになる樹脂複合管は
、硬質塩化ビニル管により耐酸、耐アルカリ性に優れ、
また外層のガラス繊維強化ポリエステル樹脂層、いわゆ
るFRP層により機械的強度および耐熱性にも優れてい
るといった利点を有している。
The former is made by wrapping glass fiber around the outer circumferential surface of a hard vinyl chloride pipe, and impregnating it with polyester resin and hardening it. The resulting resin composite pipe has excellent acid and alkali resistance due to the hard vinyl chloride pipe.
It also has the advantage of being excellent in mechanical strength and heat resistance due to the outer glass fiber reinforced polyester resin layer, so-called FRP layer.

一方、後者は、耐熱塩化ビニル管、耐衝撃性塩化ビニル
管を含む硬質塩化ビニル管の外周面に、ポリエステル樹
脂またはエポキシ樹脂等の熱硬化性樹脂を含浸したガラ
ス繊維を巻き付けて繊維強化熱硬化樹脂(FRP)層を
形成し、さらにその−ににポリ塩化ビニル管接続用接着
剤等のような一液性接着剤により接着可能な樹脂層を設
けてなるものである。そして、このようになる樹脂複合
管は、内部の硬質塩化ビニル管により耐酸、酎−ノ′ル
カリ性に優れ、またFRP層により機械的強度および耐
熱性に優れ、さらに最外層に設りられだ接着可能な樹脂
層により、配管接続11.+1に不ノ切やテパリングあ
るいはオーバーラツプ等の面倒な接続付帯作業を行うこ
となく、通常の塩化ビニル管接続用の速乾性−液接着剤
を用い゛ζ接続作業を行うことができるなど配管作業性
にも優れているといった利点を有している。
On the other hand, the latter is made by wrapping glass fibers impregnated with a thermosetting resin such as polyester resin or epoxy resin around the outer circumferential surface of a hard vinyl chloride pipe, including heat-resistant vinyl chloride pipes and impact-resistant vinyl chloride pipes. A resin (FRP) layer is formed, and a resin layer that can be bonded with a one-component adhesive such as a polyvinyl chloride pipe connection adhesive is provided below the resin (FRP) layer. The resulting resin composite pipe has excellent acid resistance and alkali resistance due to the hard PVC pipe inside, and excellent mechanical strength and heat resistance due to the FRP layer. Pipe connections 11. due to adhesive resin layer. +1: Easy piping work, such as being able to perform ζ connection work using a quick-drying liquid adhesive for ordinary PVC pipe connections, without having to perform troublesome connection work such as uncutting, tapering, or overlapping. It also has the advantage of being excellent.

(発明力14″決しようとする課題) しかしながら、上記従来の樹脂複合管にあっては、いず
れも芯材である硬質塩化ヒニルセの外周面にFRI)層
が直接形成され、両者はl” RI)層におりる熱硬化
性樹脂の接着力によって一体化されているものであるか
、その接着力にし」限度があり両者の密着性が低いため
、次のような問題があった。
(Inventiveness 14" Problems to be Solved) However, in all of the conventional resin composite pipes mentioned above, the FRI) layer is directly formed on the outer circumferential surface of the hard chlorinated chloride which is the core material, and both of them have l"RI. ) layer is integrated by the adhesive force of the thermosetting resin, but there is a limit to that adhesive force, and the adhesion between the two is low, resulting in the following problems.

すなわち、芯十Aの硬質塩化ビニル管と、外層のFRP
とでは線膨張係数か大きく異なる(硬質塩化ビニル管は
約7 x 10−5/’cであるのに対し、FRPは約
2〜3 X 10−’/’C)ことから、硬質塩化ビニ
ル管の伸縮力によって容易に両者間に層間剥離が生し、
このためF RP層の補強効果が失われることとなり、
硬質塩化ビニル管が管内圧力および温度の」二昇により
割れてしまったり、あるいは管内温度の」―昇に伴って
負圧が犬になると硬質塩化ビニル管が座屈してしまうと
いった問題があった。そしてこのような硬質塩化ビニル
管の割れや座屈の発生によって、外荷重に対する強度の
低士を招くといった問題かあった。
In other words, a hard PVC pipe with a core of 1A and an FRP outer layer.
Since the coefficient of linear expansion differs greatly between the Delamination easily occurs between the two due to the expansion and contraction force of the
As a result, the reinforcing effect of the FRP layer is lost,
There have been problems such as hard vinyl chloride pipes cracking due to an increase in the pressure and temperature inside the pipe, or buckling when the negative pressure increases as the temperature inside the pipe increases. The occurrence of cracks and buckling in such hard vinyl chloride pipes leads to a problem in that the strength against external loads is reduced.

また、このような問題を解消すべく、上記従来の樹脂複
合管では、硬質塩化ビニル管の表面にザンティング処理
等を施して該表面を粗面にすることにより硬質塩化ビニ
ル管とFRP層との間の接着力の向上を図っているが、
ザンディング処理は作業工程が多くて面倒であり、しか
も硬質塩化ビニル管の粉末が大量に発生ずるため、作業
環境が非常に悪くなるといった問題があった。
In addition, in order to solve this problem, in the above-mentioned conventional resin composite pipe, the surface of the hard PVC pipe is roughened by applying a Zanting treatment or the like to make the surface rough, so that the hard PVC pipe and the FRP layer can be bonded. Although we are trying to improve the adhesive strength between
The sanding process involves many work steps and is troublesome, and also generates a large amount of powder from hard vinyl chloride pipes, creating a very poor working environment.

本発明は、」二記従来の問題点に鑑みなされたものであ
って、ザンディング処理を不要とし、しかも芯材である
熱可塑性樹脂管と外層の繊維強化熱硬化性樹脂との接着
力が大きく、特に、面]圧性、耐熱性、而」衝撃性等に
優れた樹脂複合管および4ル1脂複合管継手を捉供する
ことを目的とするもの′である。
The present invention has been developed in view of the conventional problems mentioned in Section 2, which eliminates the need for sanding treatment and improves the adhesive strength between the thermoplastic resin pipe as the core material and the fiber-reinforced thermosetting resin as the outer layer. The purpose of this invention is to provide large resin composite pipes and 4-ruin-1 resin composite pipe joints that are particularly excellent in surface pressure resistance, heat resistance, and impact resistance.

(課題を解決するだめの手段) 上記目的を達成するため、本発明に係る樹脂複合管は、
熱可塑1ソ1樹脂管を芯材とし、この芯4号の外周面に
、不飽和ポリエステル樹脂とイソシア不−1・化合物と
を含む化合物からなる接着層を介して繊維強化熱硬化性
樹脂層が形成されたものである。
(Means for solving the problem) In order to achieve the above object, the resin composite pipe according to the present invention has the following features:
A thermoplastic 1-1 resin tube is used as the core material, and a fiber-reinforced thermosetting resin layer is attached to the outer peripheral surface of this core No. 4 via an adhesive layer made of a compound containing an unsaturated polyester resin and an isocyanate compound. was formed.

また、本発明に係る樹脂複合管継手は、熱可塑性樹脂管
を芯材とし、この8利の外周面に、不飽和ポリエステル
樹脂とイソシア2.−1・化合物とを含む化合物からな
る接着層を介して繊維強化熱硬化性樹脂層が形成された
ものである。
Further, the resin composite pipe joint according to the present invention has a thermoplastic resin pipe as a core material, and an unsaturated polyester resin and isocyanate 2. -1. A fiber-reinforced thermosetting resin layer is formed via an adhesive layer made of a compound containing the compound.

(作用) 不飽和ポリエステル+M’l脂とイソノア不−1・化合
物とを含む化合物は、熱可塑性樹脂に対する接着性が高
いとともに繊維強化熱硬化性樹脂との親和性に冨むもの
であるため、この化合物からなる接着層により〃−可塑
性樹脂管と繊維強化熱硬化11樹脂層との密着性が非常
に高いものとなる。このため、両者の間に層間剥離か生
しにくくなり、熱可塑性樹脂管に対する繊維強化熱硬化
性樹脂の補強効果が充分に得られ、耐熱性、耐圧性が高
められる。また、接着層内のインシアネ−1・化合物が
不飽和ポリエステル樹脂の硬化時における収縮を抑える
ので、熱可塑性樹脂管に対する締め付り力が弱まり応力
の発生が小さくなって耐衝撃性が高くなる。
(Function) A compound containing unsaturated polyester + M'l fat and an isonoa-1 compound has high adhesion to thermoplastic resins and is highly compatible with fiber-reinforced thermosetting resins. Due to the adhesive layer, the adhesion between the plastic resin pipe and the fiber reinforced thermosetting 11 resin layer is extremely high. Therefore, delamination is less likely to occur between the two, and the reinforcing effect of the fiber-reinforced thermosetting resin on the thermoplastic resin pipe is sufficiently obtained, and heat resistance and pressure resistance are improved. Furthermore, since the incyane-1 compound in the adhesive layer suppresses the shrinkage of the unsaturated polyester resin during curing, the tightening force against the thermoplastic resin pipe is weakened, stress generation is reduced, and impact resistance is increased.

(実施例) 以丁、本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will now be described with reference to the drawings.

第1図は本発明に係る樹脂複合管の層構成を示す斜視口
である。
FIG. 1 is a perspective view showing the layer structure of a resin composite pipe according to the present invention.

この樹脂複合管は、熱可塑性樹脂管1を芯材とし、この
8利の外周面に、不飽和ポリエステル樹脂とイソシア不
−1・化合物とを含む化合物からなる接着層2を介して
繊維強化熱硬化性樹脂層3か形成されたものである。
This resin composite pipe has a thermoplastic resin pipe 1 as a core material, and fiber-reinforced heat is applied to the outer peripheral surface of the thermoplastic resin pipe 1 via an adhesive layer 2 made of a compound containing an unsaturated polyester resin and an isocyanin-1 compound. A curable resin layer 3 is formed thereon.

上記熱可塑性樹脂管1としてε;1、極11の大きな樹
脂、例えば塩化ビニル樹脂、ポリアミ[樹脂、アクリル
樹脂、ポリカーボネ−1・樹脂等から成形されたものが
好ましい。なお、ごの熱可塑性樹脂管1に予め熱処理等
を施して残留応力を除太しでおいてもよく、そうすれば
熱可塑性樹脂管1を外部応力のめ吸収できる状態とする
ことかでき、+Mi脂複合管としての強度を高めること
ができる。
The thermoplastic resin tube 1 is preferably molded from a resin having a large diameter of ε; 1 and a pole of 11, such as vinyl chloride resin, polyamide resin, acrylic resin, polycarbonate resin, etc. Note that the thermoplastic resin pipe 1 may be subjected to heat treatment or the like in advance to reduce the thickness of the residual stress, so that the thermoplastic resin pipe 1 can be in a state where it can absorb external stress. +It is possible to increase the strength of the Mi fat composite pipe.

前記接着層2は、不飽和ポリエステルにイソシアネート
化合物を反応させるごとにより、イソシアネート基を含
む接着性に冨んだ化合物からなるものである。次式は、
不飽和ポリエステルに、イソシアh、 −+・化合物と
してヘー)−ザメチレンシイソシア不−1・を反応さ−
Uだ場合の反応式である。
The adhesive layer 2 is made of a compound containing an isocyanate group and having high adhesive properties by reacting an isocyanate compound with an unsaturated polyester. The following formula is
The unsaturated polyester is reacted with isocyanyl, -+, as a compound H)-zamethylenecyisocyanun-1.
This is the reaction formula for U.

(以下余白) 以上のようになる接着層2は上記化合物の混合液を熱可
塑性樹脂管1の外周面に均一に刷毛やローラ等で塗布す
ることにより形成される。
(Hereinafter, blank space) The adhesive layer 2 as described above is formed by uniformly applying a liquid mixture of the above-mentioned compounds to the outer circumferential surface of the thermoplastic resin tube 1 using a brush, a roller, or the like.

また、不飽和ポリエステルとイソシアネ−1・化合物と
の配合割合は次に示すような割合が好適であるが、これ
に限定されるものではない。
Moreover, the blending ratio of the unsaturated polyester and the isocyanate-1 compound is preferably as shown below, but is not limited thereto.

不飽和ポリエステル樹脂   100重量部イソシアネ
ート化合物 10〜100重量部メチルエチルケトンパ
ーオギサイ1−′1〜2重量部 ナフテン酸コバルト       2重量部なお、−に
記配合例において、メチルエチルケトンバーオキザイド
は硬化剤として、またナフテン酸コバルトは促進剤とし
てそれぞれ作用するものである。
Unsaturated polyester resin 100 parts by weight Isocyanate compound 10 to 100 parts by weight Methyl ethyl ketone peroxide 1-' 1 to 2 parts by weight Cobalt naphthenate 2 parts by weight In the formulation example shown in -, methyl ethyl ketone peroxide is used as a curing agent. Cobalt naphthenate also acts as an accelerator.

前記繊維強化熱硬化性樹脂層3は、ガラス繊維に熱硬化
性樹脂を含浸させてなるものであり、本発明において用
いられるガラス繊維としては、例エハローヒングクロス
、ガラスクロス、チョップトスI・ランドマット 木発明において用いられるイソシアネート化合物は、上
記へキザメチレンシイソシアネートに限るものではなく
、その他に例えばポリイソシアネト、あるいは次の構造
式で示されるトリレンジイソシアーr−i・、ジフェニ
ルメタン−4 4′ジイソシアネーI・等が挙げられる
The fiber-reinforced thermosetting resin layer 3 is made by impregnating glass fibers with a thermosetting resin, and examples of the glass fibers used in the present invention include Ehalohing cloth, glass cloth, and Choptos I-Rand. The isocyanate compound used in the matte tree invention is not limited to the above-mentioned hexamethylenecyisocyanate, but may also include, for example, polyisocyanate, or tolylene diisocyanate represented by the following structural formula, diphenylmethane-44 'Diisocyanate I.' etc.

げられる。また、熱硬化性樹脂としては、例えば不飽和
ポリエステル樹脂、アクリル樹脂、エポキシ樹脂等が好
適に用いられるが、そのなかでも前記接着層2に含まれ
る樹脂と同一の樹脂、ずなわら不飽和ポリエステル樹脂
が最も好ましい。
can be lost. In addition, as the thermosetting resin, for example, unsaturated polyester resin, acrylic resin, epoxy resin, etc. are suitably used, but among them, the same resin as the resin contained in the adhesive layer 2, unsaturated polyester Resins are most preferred.

次に、上記のようになる樹脂複合管の製造方法について
第2図を参照して説明する。
Next, a method for manufacturing the resin composite pipe as described above will be explained with reference to FIG. 2.

まず、熱可塑性樹脂管1の外周面に何着している汚れ等
を、例えばアセトン等の溶剤を用いて払拭する。
First, any dirt or the like on the outer peripheral surface of the thermoplastic resin pipe 1 is wiped off using a solvent such as acetone.

次に、不飽和ポリエステルとイソシアネート化合物とを
、例えば前記配合例で示す割合で混合し、この混合液を
上記熱可塑性樹脂管1の外周面に均一に塗布して接着層
2を形成する。
Next, the unsaturated polyester and the isocyanate compound are mixed, for example, in the ratio shown in the above blending example, and this mixed solution is uniformly applied to the outer peripheral surface of the thermoplastic resin pipe 1 to form the adhesive layer 2.

続いて、上記接着層2の上から繊維強化熱硬化性樹脂3
を積層する。ここで、上記接着層2の混合液は時間が経
過すると硬化し、接着力が低下するので、熱硬化性樹脂
層3はその硬化が始まるまで(およそ3時間以内)に積
層する必要がある。
Next, a fiber-reinforced thermosetting resin 3 is applied from above the adhesive layer 2.
Laminate. Here, since the liquid mixture of the adhesive layer 2 hardens over time and its adhesive strength decreases, the thermosetting resin layer 3 needs to be laminated before it begins to harden (within approximately 3 hours).

なお、この繊維強化熱硬化性樹脂層3を積層するにあた
っては、接着層2が形成された熱可塑性樹脂管1にガラ
ス繊維を巻回してからこのガラス繊維に熱硬化性樹脂を
含浸させても、あるいはカラス繊維に予め熱硬化性樹脂
を含浸させておきごれを接着層2が形成された熱可塑性
樹脂管1に巻回してもよい。
In addition, when laminating this fiber-reinforced thermosetting resin layer 3, it is also possible to wind glass fiber around the thermoplastic resin tube 1 on which the adhesive layer 2 is formed and then impregnate the glass fiber with the thermosetting resin. Alternatively, the glass fiber may be impregnated with a thermosetting resin in advance and the dirt may be wound around the thermoplastic resin tube 1 on which the adhesive layer 2 is formed.

そして最後に加熱処理を行って繊維強化熱硬化性樹脂層
3の熱硬化性樹脂を硬化させ、全]]程を終了する。
Finally, heat treatment is performed to harden the thermosetting resin of the fiber-reinforced thermosetting resin layer 3, thereby completing the entire process.

なお、第2図中、符号4・・・は管を回転自在に支持す
る支持ローうである。
In FIG. 2, reference numerals 4, . . . indicate support rows that rotatably support the tube.

次に、本発明に係る樹脂複合管継手について説明する。Next, the resin composite pipe joint according to the present invention will be explained.

第3図乃至第5図は本発明の樹脂複合管継手の各実施例
を示し、第3Mはチース相手を、第4図はエルボ組手を
、第5図はソケノI−紺手をそれぞれ示している。なお
、ごれらの図において、上述した樹脂複合管と同一構成
要素には同一符号をイ・1している。
Figures 3 to 5 show each embodiment of the resin composite pipe joint of the present invention, where 3M shows the cheese mating part, Fig. 4 shows the elbow kumite, and Fig. 5 shows the sokeno I-konte. ing. In addition, in these figures, the same components as those of the above-mentioned resin composite pipe are designated by the same reference numerals.

これら各管継手は、芯材である熱可塑性樹脂ヤ)1が各
種管継手の形状に成形されている点を除き、その他の構
成および製造方法は前記樹脂複合管の場合と同じである
。なお、継手の形状は」−記図示例に限るものではなく
、例えばソケット継手等種々の形状とされる。
Each of these pipe joints has the same structure and manufacturing method as the resin composite pipe described above, except that the thermoplastic resin core 1 is molded into the shape of various pipe joints. It should be noted that the shape of the joint is not limited to the example shown in the figure, and may be of various shapes, such as a socket joint.

次に、本発明に係る樹脂複合管と、芯材の外周面にザン
ディング処理を施して芯材と繊維強化熱硬化性樹脂層と
の接着力強化を図った従来の樹脂複合管とについて、芯
材と繊維強化熱硬化性樹脂等との接着強度を測定し、比
較した。その結果を下表に示す。なお、ここでは芯材の
熱可塑性樹脂管として硬質塩化ヒニル管を、またイソシ
アネーI・化合物としてポリイソシアネートを用い、室
温で4日間放置した後の接着強度を測定した。
Next, regarding the resin composite pipe according to the present invention and the conventional resin composite pipe in which the outer peripheral surface of the core material is subjected to sanding treatment to strengthen the adhesive force between the core material and the fiber-reinforced thermosetting resin layer, The adhesive strength between the core material and fiber-reinforced thermosetting resin was measured and compared. The results are shown in the table below. Here, a hard hinyl chloride tube was used as the core thermoplastic resin tube, and polyisocyanate was used as the isocyanate I compound, and the adhesive strength was measured after being left at room temperature for 4 days.

(以下余白) この結果からも、本発明に係る樹脂複合管および樹脂複
合管継手は、芯材の熱可塑性樹脂管と、外層の繊維強化
熱硬化性樹脂層との接着強度が従来の樹脂複合管に比べ
て大きいことがわかる。
(Left below) From these results, it can be seen that the resin composite pipe and resin composite pipe joint according to the present invention have a bond strength between the core thermoplastic resin pipe and the outer fiber reinforced thermosetting resin layer that is higher than that of the conventional resin composite pipe. It can be seen that it is larger than the tube.

(発明の効果) 以」−説明したように、本発明の樹脂複合管および樹脂
複合管継手は、繊維強化熱硬化性樹脂層か不飽和ポリエ
ステル樹脂とイソソアネ=1・化合物からなる接着層を
介して形成されたものであるから、熱可塑性樹脂管と繊
維強化熱硬化性樹層との密着性が非常に高く、熱によっ
て熱可塑性樹脂管のみが伸縮するといったことがなくな
り、繊維強化熱硬化性樹脂層も共に伸縮する。したがっ
て、両者の間に層間剥離が生しに<<、熱可塑性樹脂管
に対する繊維強化熱硬化性樹脂の補強効果が充分に発揮
されることとなり、耐熱性、耐圧性に優れ、管内圧力お
よび温度の上昇によって熱可塑性樹脂管が割れたり、あ
るいは管内温度の」1昇に伴う負圧の増大によって熱可
塑性樹脂管が座屈するおそれがないものである。しかも
、接着層内のイソシアネート化合物が不飽和ポリエステ
ル樹脂の硬化時におし」る収縮を抑えるので、熱可塑性
樹脂管に対する締め付り力が弱まり応力の発生が小さく
なって耐衝撃性が高くなり、落錘衝撃による割れが発生
しにくいものである。
(Effects of the Invention) As explained above, the resin composite pipe and the resin composite pipe joint of the present invention are made of a fiber-reinforced thermosetting resin layer or an adhesive layer made of an unsaturated polyester resin and an iso-soane compound. Because the thermoplastic resin pipe and the fiber-reinforced thermosetting resin layer are formed by The resin layer also expands and contracts. Therefore, the reinforcing effect of the fiber-reinforced thermosetting resin on the thermoplastic resin pipe is fully demonstrated, and the reinforcing effect of the fiber-reinforced thermosetting resin on the thermoplastic resin pipe is fully demonstrated, with excellent heat resistance and pressure resistance, and the inner pressure and temperature There is no risk that the thermoplastic resin tube will crack due to an increase in temperature, or that the thermoplastic resin tube will buckle due to an increase in negative pressure as the temperature inside the tube increases. Moreover, since the isocyanate compound in the adhesive layer suppresses the shrinkage that occurs when the unsaturated polyester resin hardens, the clamping force against the thermoplastic resin pipe is weakened, stress generation is reduced, and impact resistance is increased. It is less likely to crack due to impact from falling weights.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る樹脂複合管および樹脂複合管継手の実
施例を示し、第1図は樹脂複合管の層構成を示す斜視図
、第2図は樹脂複合管の製造方法の一例を示す概略斜視
図、第3図乃至第5図は樹脂複合管継手の各実施例を示
す一部切欠斜視図である。 1・・・熱可塑性樹脂管  2・・・接着層3・・・繊
維強化熱硬化性樹脂層
The figures show examples of the resin composite pipe and resin composite pipe joint according to the present invention, FIG. 1 is a perspective view showing the layer structure of the resin composite pipe, and FIG. 2 is a schematic diagram showing an example of the method for manufacturing the resin composite pipe. The perspective views and FIGS. 3 to 5 are partially cutaway perspective views showing each embodiment of the resin composite pipe joint. 1... Thermoplastic resin pipe 2... Adhesive layer 3... Fiber reinforced thermosetting resin layer

Claims (1)

【特許請求の範囲】 1)熱可塑性樹脂管を芯材とし、この芯材の外周面に、
不飽和ポリエステル樹脂とイソシアネート化合物とを含
む化合物からなる接着層を介して繊維強化熱硬化性樹脂
層が形成されたことを特徴とする樹脂複合管。 2)熱可塑性樹脂管を芯材とし、この芯材の外周面に、
不飽和ポリエステル樹脂とイソシアネート化合物とを含
む化合物からなる接着層を介して繊維強化熱硬化性樹脂
層が形成されたことを特徴とする樹脂複合管継手。
[Claims] 1) A thermoplastic resin pipe is used as a core material, and on the outer peripheral surface of this core material,
A resin composite pipe characterized in that a fiber-reinforced thermosetting resin layer is formed via an adhesive layer made of a compound containing an unsaturated polyester resin and an isocyanate compound. 2) A thermoplastic resin pipe is used as a core material, and on the outer peripheral surface of this core material,
A resin composite pipe joint characterized in that a fiber-reinforced thermosetting resin layer is formed via an adhesive layer made of a compound containing an unsaturated polyester resin and an isocyanate compound.
JP18404388A 1988-07-22 1988-07-22 Resin composite pipe and resin composite pipe joint Pending JPH0235287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18404388A JPH0235287A (en) 1988-07-22 1988-07-22 Resin composite pipe and resin composite pipe joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18404388A JPH0235287A (en) 1988-07-22 1988-07-22 Resin composite pipe and resin composite pipe joint

Publications (1)

Publication Number Publication Date
JPH0235287A true JPH0235287A (en) 1990-02-05

Family

ID=16146363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18404388A Pending JPH0235287A (en) 1988-07-22 1988-07-22 Resin composite pipe and resin composite pipe joint

Country Status (1)

Country Link
JP (1) JPH0235287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560277A (en) * 1991-08-29 1993-03-09 Sekisui Chem Co Ltd Fiber reinforced resin pipe
DE10203123C1 (en) * 2002-01-25 2003-02-06 Sgl Acotec Gmbh Compound pipe, to carry liquids and gases in chemical and other industries. has an outer layer of fiber reinforced plastics and an inner PTFE pipe layer, bonded together by an intermediate layer with a PFA surface
CN103644388A (en) * 2013-11-28 2014-03-19 无锡合众信息科技有限公司 Salt-tolerant composite multilayer pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271629A (en) * 1985-09-26 1987-04-02 Asahi Organic Chem Ind Co Ltd Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271629A (en) * 1985-09-26 1987-04-02 Asahi Organic Chem Ind Co Ltd Vinyl chloride resin pipe reinforced with fiber-reinforced thermosetting resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560277A (en) * 1991-08-29 1993-03-09 Sekisui Chem Co Ltd Fiber reinforced resin pipe
DE10203123C1 (en) * 2002-01-25 2003-02-06 Sgl Acotec Gmbh Compound pipe, to carry liquids and gases in chemical and other industries. has an outer layer of fiber reinforced plastics and an inner PTFE pipe layer, bonded together by an intermediate layer with a PFA surface
US6758245B2 (en) 2002-01-25 2004-07-06 Sgl Carbon Ag Composite pipe having a PTFE inner layer and a covering layer of a fiber-reinforced plastics material
CN103644388A (en) * 2013-11-28 2014-03-19 无锡合众信息科技有限公司 Salt-tolerant composite multilayer pipe

Similar Documents

Publication Publication Date Title
US3002534A (en) Reinforced thermoplastics
KR960000728B1 (en) Reinforcing sheet for the reinforcement of panel and the method
JP5004940B2 (en) Composite member and manufacturing method thereof
EP0587927A1 (en) Composite material bicycle frame and method for making same
JPH0235287A (en) Resin composite pipe and resin composite pipe joint
JPH0624202Y2 (en) Resin composite pipe and resin composite pipe joint
TW201943561A (en) Reinforcing laminate material for structure, reinforcing method, and reinforcing structure
CA2865110C (en) Composite structures using interpenetrating polymer network adhesives
GB2053696A (en) Carbon fibre laminated sports equipment
JPH03236946A (en) Manufacturer of fiber reinforced cylinder tube
US9464217B2 (en) Composite structures using interpenetrating polymer network adhesives
JPH0558395A (en) Thrust tube
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JP3228366B2 (en) Manufacturing method of fluid transport pipe
Hancox Developing a materials system for use in making orthopaedic calipers
JPH0645757Y2 (en) Resin composite pipe fitting
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft
JPH0742719Y2 (en) Synthetic resin composite pipe
JP3268584B2 (en) Pipe fitting and method of manufacturing the same
JP3147931B2 (en) Resin composite pipe and resin composite pipe joint
JP2023084738A (en) Composite material and production method of composite material
JPH0447927A (en) Hollow frame and production thereof
JP3053567B2 (en) Golf club shaft manufacturing method
JP2023081456A (en) Golf club shaft, golf club, and production method of golf club shaft
JPH0310470Y2 (en)