JPH0357314A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0357314A
JPH0357314A JP1193263A JP19326389A JPH0357314A JP H0357314 A JPH0357314 A JP H0357314A JP 1193263 A JP1193263 A JP 1193263A JP 19326389 A JP19326389 A JP 19326389A JP H0357314 A JPH0357314 A JP H0357314A
Authority
JP
Japan
Prior art keywords
power device
region
emitter
cell
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1193263A
Other languages
Japanese (ja)
Other versions
JP2503670B2 (en
Inventor
Yasuhiro Otsuka
康宏 大塚
Masanori Fukunaga
福永 匡則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1193263A priority Critical patent/JP2503670B2/en
Publication of JPH0357314A publication Critical patent/JPH0357314A/en
Application granted granted Critical
Publication of JP2503670B2 publication Critical patent/JP2503670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To attain high accuracy by using part of a cell of a voltage driving type power device, forming a bipolar transistor(TR) simultaneously with the same process as the power device and incorporating a temperature and short- circuit protection circuit into a monolithic component. CONSTITUTION:A source cell of a MOSFET is divided into N:1, split terminals are provided as a source terminal S and a current detection terminal Se. A p-region 9 of the cell is used as a base, an n<+> region 8 is used as a collector, an n<+> region 10 as emitter to form a temperature detection bipolar TR Q2. An emitter E of the TR Q2 connects to a source S of the MOSFET and the collector C connects to a gate G to constitute a temperature protection circuit 15. Moreover, a p-region 6 of the cell is used as a base, an n<+> region 5 is used as a collector, an n<+> region 7 as emitter to form a short-circuit protection bipolar TR Q1. Then an emitter of the TR Q1 connects to a source S of the MOSFET, the base connects to a sense terminal Se and the collector C connects to a gate via a resistor R1 to constitute a short-circuit protection circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンハンスメント形電界効果トランジスタ(
MOSFET)等の電圧駆動型パワーデバイスから構成
される半導体装置に関し、特にその電圧駆動型パワーデ
バイスの短絡保護及び温度検出をモノリシツク上に実現
する半導体装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an enhancement type field effect transistor (
The present invention relates to a semiconductor device composed of a voltage-driven power device such as a MOSFET, and particularly to a semiconductor device that monolithically realizes short-circuit protection and temperature detection of the voltage-driven power device.

〔従来の技術〕[Conventional technology]

従来から用いられているパワーデバイスの短絡保護回路
として第4図に示すものが、1たその温度保護回路とし
て第6図に示すものかあシ、これらパワーデバイスの素
子断面構造をそれぞれ第3図,第5図を参照して説明す
る。
The short-circuit protection circuit for conventionally used power devices is shown in Fig. 4, and the temperature protection circuit shown in Fig. 6 is shown in Fig. 3. , will be explained with reference to FIG.

第3図は第4図におけるパクーデバイスの素子断面構造
を示したものである。これは、第3図,第4図に示すよ
うに、電圧駆動型パワーデバイスQ0のソース(エミッ
タともいう)及び電流検出端子S , Seにバイポー
ラトランジスタQ1のエミツタ及びベース端子をそれぞ
れ接続し、このバイポーラトランジスタQl のコレク
タと電圧駆動型パワーデバイスQoのゲートの間に抵抗
R1を接続したものであう、バイポーラトランジスタQ
1を電圧駆動型パワーデバイスQoのセルの一部ヲ用い
、抵抗R1をIGBTのゲートのポリシリコンを用いて
構成したものである。ただし、図中1はn十基板、2は
n一エビタキシャル層、3は電圧駆動型パワーデバイス
Qoの各セルのソースとなるp領域、4はそのソース取
出し用n 領域、5はバイポーラトランジスタQtのコ
レクタとなるn十領域、6はそのトランジスタQlのベ
ースとなるp領域、7は同じくそのトランジスタQlの
エミツタとなるn十領域である。筐た、11はs i 
O1 等からなる絶縁体、12はパワーデバイスQ0の
各ゲートや抵抗R,を形成するポリシリコンからなる導
体、13は各々の電極配線用のアルミ導体であ’)、R
gはゲート抵抗、R8は電流検出抵抗、D,Gはバワー
デバイスQoのドレイン,ゲート端子である。
FIG. 3 shows the element cross-sectional structure of the PAKU device in FIG. 4. As shown in FIGS. 3 and 4, the emitter and base terminals of bipolar transistor Q1 are connected to the source (also called emitter) and current detection terminals S and Se of voltage-driven power device Q0, respectively. A bipolar transistor Q has a resistor R1 connected between the collector of a bipolar transistor Ql and the gate of a voltage-driven power device Qo.
1 is constructed using a part of a cell of a voltage-driven power device Qo, and the resistor R1 is constructed using polysilicon of the gate of an IGBT. However, in the figure, 1 is an n-substrate, 2 is an n-evitaxial layer, 3 is a p-region that becomes the source of each cell of the voltage-driven power device Qo, 4 is an n-region for taking out the source, and 5 is a bipolar transistor Qt. 6 is a p region which becomes the base of the transistor Ql, and 7 is an n0 region which becomes the emitter of the transistor Ql. 11 is s i
12 is a conductor made of polysilicon that forms each gate and resistor R of the power device Q0, 13 is an aluminum conductor for each electrode wiring, and R.
g is a gate resistor, R8 is a current detection resistor, and D and G are the drain and gate terminals of the power device Qo.

また、第5図は第6図にかけるパワーデバイスの素子断
面構造を示したものである。これは、第5図,第6図に
示すように、電圧駆動型パワーデバイスQoのセルの一
部を用いてバイポーラトランジスタQzを構成したもの
で、同一チップ上にある温度検出用バイポーラトランジ
スタQzの温度依存性の有る特性を用いて温度検出を行
えるようにしたものである。なお、第5図及び第6図に
おいて第3図,第4図と同−1たは相当部分は同一符号
を付してあう1 8は温度検出用バイポーラトランジス
タQxのコレクタとなるn+領域、9はそのトランジス
タQzのベースとなるp領域、10は同じくそのトラン
ジスタQ!のエミツタとなるn十領域である。
Moreover, FIG. 5 shows the element cross-sectional structure of the power device shown in FIG. 6. As shown in Figures 5 and 6, this is a bipolar transistor Qz constructed using a part of the cell of a voltage-driven power device Qo, and a bipolar transistor Qz for temperature detection on the same chip. This allows temperature detection to be performed using characteristics that are temperature dependent. In FIGS. 5 and 6, the same or equivalent parts as in FIGS. 3 and 4 are denoted by the same reference numerals. 18 is an n+ region which becomes the collector of the bipolar transistor Qx for temperature detection; 9 is the p-region which is the base of the transistor Qz, and 10 is also the transistor Q! This is the n0 area that becomes the emitter of the area.

ここで、短絡保護回路は、第4図に示すように、電流検
出端子Seとソース端子Sの間に電流検出抵抗Rsを接
続し、電圧駆動型パワーデバイスQ0のドレイン電流の
検出を行い、短絡電流が流れた時ニバイポーラトランジ
スタQlをオン状態にする。そして、ゲート入力電圧V
INをゲート抵抗Rgと電圧駆動型パワーデバイスQo
のゲートとバイポーラトランジスタQ1のコレクタ間の
抵抗R1によう分割し、その電圧駆動型パワーデバイス
Q.のゲートに印加される電圧を下げることによう、該
電圧駆動型パワーデバイスQ(1の飽和電流を下げると
ともに、それに伴い電圧駆動型パワーデバイス内の電流
密度を下げ、ラッチアップによる破壊を防止する。
Here, as shown in FIG. 4, the short circuit protection circuit connects a current detection resistor Rs between the current detection terminal Se and the source terminal S, detects the drain current of the voltage-driven power device Q0, and detects the short circuit. When current flows, the bipolar transistor Ql is turned on. And the gate input voltage V
IN is connected to gate resistance Rg and voltage-driven power device Qo.
The voltage-driven power device Q. By lowering the voltage applied to the gate of the voltage-driven power device Q (1), the saturation current of the voltage-driven power device Q (1) is lowered, and the current density within the voltage-driven power device is accordingly lowered to prevent destruction due to latch-up. .

筐た、温度検出回路は、第6図に示すように、電圧駆動
型パワーデバイスQoのセルの一部を用いてバイポーラ
トランジスタQ雪を同時に形成し、この電圧駆動型パワ
ーデバイスQoの接合温度を温度検出用バイポーラトラ
ンジスタQ!で検出するものである。
As shown in FIG. 6, the temperature detection circuit in the housing simultaneously forms a bipolar transistor Q using a part of the cell of the voltage-driven power device Qo, and measures the junction temperature of the voltage-driven power device Qo. Bipolar transistor Q for temperature detection! It is detected by

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電圧駆動型バクーデバイスの温度保護回路及び短
絡保護回路は以上のように構成されているので、同一チ
ップには構成されておらず、各保護機能を別々のモノリ
シツク上に構成するため部品点数も多くなシ、コストが
増大することになるなどの問題があった。
The temperature protection circuit and short-circuit protection circuit of a conventional voltage-driven Baku device are configured as described above, so they are not configured on the same chip, but each protection function is configured on a separate monolithic device, which reduces the number of components. However, there were problems such as increased costs and increased costs.

本発明は、上記のよう慶問題点を解消するためになされ
たもので、電圧駆動型パワーデバイスのセルの一部を用
いて温度保護及び短絡保護回路をモノリシツク上に内蔵
し、高精度化を図ることを目的とする。
The present invention was made to solve the above-mentioned problems, and uses a part of the cell of a voltage-driven power device to incorporate temperature protection and short-circuit protection circuits on a monolithic device, thereby achieving high precision. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る半導体装置は、電圧駆動型パワーデバイス
のソースセルをN(任意の整数):1に分離するととも
に、その分割した端子を設けてノース端子と電流検出端
子とし、前記パワーデバイスのチップ上のソースセルの
一部を用いてバイポーラトランジスタを複数個構威し、
その一部のバイポーラトランジスタのエミツタとペース
をそれぞれ前記パワーデバイスのソース端子と電流検出
端子に接続し、該バイポーラトランジスタのコレクタと
前記パワーデバイスのゲートの間に抵抗を接続して、こ
れを用い短絡保護を行う回路を構成する。そして他のバ
イポーラトランジスタはそのベース端子を独立端子とし
、各エミツタとコレクタをそれぞれ前記パワーデバイス
のソースとゲー?に接続し、該バイポーラトランジスタ
のベース・エミツタ間電圧V■の温度依存性を用い温度
保護を行う回路を構成したものである。
In the semiconductor device according to the present invention, a source cell of a voltage-driven power device is divided into N (arbitrary integer):1, and the divided terminals are provided as a north terminal and a current detection terminal, and a chip of the power device is provided. A portion of the source cell above is used to construct multiple bipolar transistors,
The emitters and paces of some of the bipolar transistors are connected to the source terminal and current detection terminal of the power device, respectively, and a resistor is connected between the collector of the bipolar transistor and the gate of the power device, and this is used to short-circuit. Configure a circuit that provides protection. The other bipolar transistors have their base terminals as independent terminals, and their emitters and collectors as the source and gate terminals of the power device, respectively. The circuit is connected to the bipolar transistor and provides temperature protection using the temperature dependence of the base-emitter voltage V■ of the bipolar transistor.

〔作 用〕[For production]

本発明に訃いては、温度保護回路及び短絡保護回路は電
圧駆動型パワーデバイスのセルの一部を用いてバイポー
ラトランジスタをパワーデバイスと同一プロセスによシ
同時に形成することによう、モノリシツク上にバクーデ
バイス,温度保護回路及び短絡保護回路が形成され、複
数の保護機能をモノリシツク上に構成することができる
According to the present invention, the temperature protection circuit and the short-circuit protection circuit are fabricated on a monolithic substrate such that a bipolar transistor is simultaneously formed in the same process as the power device using a portion of a cell of a voltage-driven power device. Devices, temperature protection circuits and short circuit protection circuits are formed, allowing multiple protection functions to be implemented monolithically.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体装置の素子断面
構造図であシ、第2図はその等価回路である。この実施
例は、電圧駆動型パワーデバイスとしてnチャネルエン
ハンスメ/ト電界効果トランジスタ(MOSFET) 
を用いる場合を示したもので、この電界効果トランジス
タQoを主トランジスタとし、そのソースセルをN:1
に分離するとともに、その分割した端子を設けてソース
(エミツタともいう)端子Sと電流検出端子(センス端
子ともいう) Se  とする。そして、そのソースの
セルの一部を独立させ、セルのp領域9をべ−ス,n十
領域8をコレクタ,n十領域10をエミツタとして、温
度検出用バイポーラトランジスタQ2を形成し、このバ
イポーラトランジスタQ2のn+領域10のエミツタを
前記電界効果トランジスタつ1シ主トランジスタQoの
ソース端子Sに接続し、かつそのn十領域8のコレクタ
を主トランジスタQ0のゲートに接続して、これによう
温度保護回路15を構成する。1次、上記ソースセルの
p領域6をペース,そのn+領域5をコレクタ,n十領
域γをエミッタとして、短絡保護用バイポーラトランジ
スタQlを形成し、そのトランジスタQ!のn十領域T
のエミツタを主トランジスタQoのソース端子Sに接続
するとともに、p領域6のベースを主トランジスタQo
のセンス端子Ssに接続し、そのn十領域5のコレクタ
を主トランジスタQoのゲートと抵抗R,を通して接続
することによb1短絡保護回路14を構威したものであ
る。なお図中、同一符号は同−1たは相当部分を示し、
C,B及びEぱ各バイポーラトランジスタQl ,Q含
のコレクタ,ベース及びエミツタ端子を示している。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit thereof. This example uses an n-channel enhancement field effect transistor (MOSFET) as a voltage-driven power device.
The field effect transistor Qo is used as the main transistor, and its source cell is N:1.
The divided terminals are provided as a source (also called an emitter) terminal S and a current detection terminal (also called a sense terminal) Se. A part of the source cell is made independent, and a bipolar transistor Q2 for temperature detection is formed using the p region 9 of the cell as a base, the n+ region 8 as a collector, and the n+ region 10 as an emitter. The emitter of the n+ region 10 of the transistor Q2 is connected to the source terminal S of the field effect transistor 1 and the main transistor Qo, and the collector of the n+ region 8 is connected to the gate of the main transistor Q0, so that the temperature is A protection circuit 15 is configured. First, a bipolar transistor Ql for short-circuit protection is formed using the p region 6 of the source cell as the base, the n+ region 5 as the collector, and the n+ region γ as the emitter, and the transistor Q! n ten area T
The emitter of the p-region 6 is connected to the source terminal S of the main transistor Qo, and the base of the p-region 6 is connected to the main transistor Qo.
The b1 short-circuit protection circuit 14 is constructed by connecting the collector of the n+ region 5 to the sense terminal Ss of the main transistor Qo through the resistor R. In the figures, the same reference numerals indicate the same -1 or equivalent parts,
C, B and E indicate the collector, base and emitter terminals of bipolar transistors Ql and Q, respectively.

次に動作について説明する。1ず短絡保護回路14にお
いて、nチャネルエンハンスメント型電界効果トランジ
スタつt!ll主トランジスタQoの電流検出端子Se
には、ドレイン電流の1/Nが流れることによシ、抵抗
Rso値は、短絡時に流れる電流の1/N による電圧
降下がバイポーラトランジスタQ1oVBE  よう大
きく々るように設定することによう、主トランジスタQ
oが負荷短絡を起こし短絡電流が流れると、バイポーラ
トランジスタQ1はオンする。このバイポーラトランジ
スタQsがオンすると、主トランジスタQoのゲートへ
の入力電圧vINはゲート抵抗Rgと抵抗Rlによシ分
割され、主トランジスタQoのゲートへの印加電圧は低
下する。このことよb1主トランジスタQo内の電流密
度が低下し、ラッチ?ップを防止することができる。
Next, the operation will be explained. 1. In the short-circuit protection circuit 14, an n-channel enhancement type field effect transistor t! ll Current detection terminal Se of main transistor Qo
Since 1/N of the drain current flows in the main transistor Q1oVBE, the value of the resistor Rso is set so that the voltage drop due to 1/N of the current flowing in the case of a short circuit increases as much as in the bipolar transistor Q1oVBE. Q
When o causes a load short circuit and a short circuit current flows, bipolar transistor Q1 turns on. When this bipolar transistor Qs is turned on, the input voltage vIN to the gate of the main transistor Qo is divided by the gate resistor Rg and the resistor Rl, and the voltage applied to the gate of the main transistor Qo decreases. This means that the current density in the b1 main transistor Qo decreases and the latch? It is possible to prevent this from happening.

また温度保護回路15の動作は、主トランジスタQoの
温度が上昇すると、同一チップ上に形成されたバイポー
ラトランジスタQ2も同一温度tで上昇する。このバイ
ポーラトランジスタQ2は、その■■の温度依存性等を
利用した温度センサとして用い、ベースBには適当な電
圧をかけてかき、テツブ温度が上昇すると■■が低下し
、バイポーラトランジスタQzがオンして、主トランジ
スタQOのゲートを遮断するものである。
Furthermore, in the operation of the temperature protection circuit 15, when the temperature of the main transistor Qo rises, the bipolar transistor Q2 formed on the same chip also rises at the same temperature t. This bipolar transistor Q2 is used as a temperature sensor that takes advantage of the temperature dependence of its This is to cut off the gate of the main transistor QO.

々お、上記実施例でぱnチャネルエンハンスメント型電
界効果トランジスタにnpnバイポーラトランジスタを
接続したものを示したが、pチャネルエンハンスメント
型電界効果トランジスタにpnpバイポーラトランジス
タを設けてもよく、1た電界効果トランジスタのかわシ
に、IGBTやその他のパワーデバイスを用いても上記
実施例と同様の効果が得られる。
In the above embodiment, an npn bipolar transistor is connected to a pan n-channel enhancement type field effect transistor, but a pnp bipolar transistor may be provided to the p channel enhancement type field effect transistor. Even if an IGBT or other power device is used instead, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、電圧駆動型バフ一デバイ
スのセルの一部を用いて短絡保護回路及び温度保護回路
の複数の保護機能をモノリシック上に構成}−2,たの
で、装置が小型になシ、主チップを保護する上で精度の
高いものが得られる効果がある。
As described above, according to the present invention, a plurality of protection functions such as a short circuit protection circuit and a temperature protection circuit are monolithically configured using a part of the cell of a voltage-driven buff device. It has the effect of being small and highly accurate in protecting the main chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発.明の一実施例による半導体装置を示す主
要断面図、第2図は第1図の等価回路図、第3図は従来
のパワーデバイスの短絡保護を行う構造の主要断面図、
第4図は第3図の等価回路図、第5図は従来のパワーデ
バイスの温度検出●保護を行う!R造の主要断面図、第
6図は第5図の等価回路図である。 14・・・・・短絡保護回路、15・・・・温度保護回
路、Q6  ・・・・電界効果トランジスタ(主トラン
ジスタ)、Q!  ・・・・・短絡保護用バイポーラト
ランジスタ、Qz  ・・・・温度検出用バイポーラト
ランジスタ、Rg●●●●ゲート抵抗、R8・・・・電
流検出抵抗%Rl  ・・●・抵抗。
Figure 1 is the original. 2 is an equivalent circuit diagram of FIG. 1, and FIG. 3 is a main sectional view of a structure for short-circuit protection of a conventional power device.
Figure 4 is an equivalent circuit diagram of Figure 3, and Figure 5 is a conventional power device temperature detection protection! The main sectional view of the R construction, FIG. 6, is an equivalent circuit diagram of FIG. 5. 14...Short circuit protection circuit, 15...Temperature protection circuit, Q6...Field effect transistor (main transistor), Q! ... Bipolar transistor for short circuit protection, Qz ... Bipolar transistor for temperature detection, Rg ●●●● Gate resistance, R8 ... Current detection resistance %Rl ...●. Resistance.

Claims (1)

【特許請求の範囲】[Claims] MOSFET等の電圧駆動型パワーデバイスから構成さ
れる半導体装置において、前記パワーデバイスのセルの
内一部を分離してそのソース端子と分離独立した電流検
出端子を設け、前記パワーデバイスのセルの一部を用い
て少くとも2個のバイポーラトランジスタを形成し、こ
の1つのバイポーラトランジスタのベース、エミッタを
前記パワーデバイスの電流検出端子、ソース端子にそれ
ぞれ接続するとともに、該バイポーラトランジスタのコ
レクタと前記パワーデバイスのゲート端子との間に抵抗
を接続して短絡保護回路を構成し、かつ前記もう1つの
バイポーラトランジスタのベース端子を独立端子とし、
それらコレクタ、エミッタを前記パワーデバイスのゲー
ト、ソースとそれぞれ接続して温度保護回路を構成した
ことを特徴とする半導体装置。
In a semiconductor device composed of a voltage-driven power device such as a MOSFET, a part of the cell of the power device is separated and a current detection terminal is provided separate and independent from the source terminal thereof, and a part of the cell of the power device is provided. The base and emitter of this one bipolar transistor are connected to the current detection terminal and the source terminal of the power device, respectively, and the collector of the bipolar transistor and the power device are connected to each other. A resistor is connected between the gate terminal and the short circuit protection circuit, and the base terminal of the other bipolar transistor is an independent terminal;
A semiconductor device characterized in that a temperature protection circuit is constructed by connecting the collector and emitter to the gate and source of the power device, respectively.
JP1193263A 1989-07-26 1989-07-26 Semiconductor device Expired - Lifetime JP2503670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1193263A JP2503670B2 (en) 1989-07-26 1989-07-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1193263A JP2503670B2 (en) 1989-07-26 1989-07-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0357314A true JPH0357314A (en) 1991-03-12
JP2503670B2 JP2503670B2 (en) 1996-06-05

Family

ID=16305036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1193263A Expired - Lifetime JP2503670B2 (en) 1989-07-26 1989-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2503670B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515422U (en) * 1991-08-07 1993-02-26 株式会社東海理化電機製作所 Bipolar transistor with temperature detection terminal
EP0561461A2 (en) * 1992-03-20 1993-09-22 Philips Electronics Uk Limited A semiconductor switch and a temperature sensing circuit for such a switch
US5461252A (en) * 1992-10-06 1995-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device comprising an over-temperature detection element for detecting excessive temperature of amplifiers
US5568347A (en) * 1993-09-16 1996-10-22 Nippondenso Co., Ltd. Load driving circuit with protective circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515422U (en) * 1991-08-07 1993-02-26 株式会社東海理化電機製作所 Bipolar transistor with temperature detection terminal
EP0561461A2 (en) * 1992-03-20 1993-09-22 Philips Electronics Uk Limited A semiconductor switch and a temperature sensing circuit for such a switch
US5461252A (en) * 1992-10-06 1995-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor device comprising an over-temperature detection element for detecting excessive temperature of amplifiers
US5568347A (en) * 1993-09-16 1996-10-22 Nippondenso Co., Ltd. Load driving circuit with protective circuit

Also Published As

Publication number Publication date
JP2503670B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JP3353388B2 (en) Power semiconductor device
JPH0369141A (en) Semicustom semiconductor integrated circuit
KR860007750A (en) Semiconductor devices
JPH0526368B2 (en)
JPH02275674A (en) Integratable active diode
JP2722453B2 (en) Semiconductor device
JPH0357314A (en) Semiconductor device
JP3064457B2 (en) Switch circuit and gate voltage clamp type semiconductor device
US4945396A (en) Semiconductor device having Darlington transistors
JP2661318B2 (en) Semiconductor device
JPH08264755A (en) Semiconductor element, lateral triac and lateral phototriac
JPS61158175A (en) Planar-type transistor device
JPH0787240B2 (en) Semiconductor integrated circuit
JPH0532908B2 (en)
JPH03148866A (en) Semiconductor device
JP3094564B2 (en) Semiconductor device
JPS61208864A (en) C-mos integrated circuit device
US20010048337A1 (en) Diode element circuit and switch circuit using the same
JPS632150B2 (en)
KR890005033Y1 (en) Cmos accumulation of opposite electric current output circuit
JPS61144846A (en) Large scale integrated circuit device
JPS61150229A (en) Integrated circuit
JPS6366971A (en) Semiconductor device
JPS61204969A (en) Semiconductor device
JPS6173363A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14