JPH0356616A - Production of structural steel stock excellent in cold workability - Google Patents

Production of structural steel stock excellent in cold workability

Info

Publication number
JPH0356616A
JPH0356616A JP18956889A JP18956889A JPH0356616A JP H0356616 A JPH0356616 A JP H0356616A JP 18956889 A JP18956889 A JP 18956889A JP 18956889 A JP18956889 A JP 18956889A JP H0356616 A JPH0356616 A JP H0356616A
Authority
JP
Japan
Prior art keywords
steel
iron powder
molten steel
cold workability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18956889A
Other languages
Japanese (ja)
Inventor
Yoshi Tomoya
遠茂谷 好
Yasuo Koga
古賀 靖雄
Satoru Ura
浦 知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18956889A priority Critical patent/JPH0356616A/en
Publication of JPH0356616A publication Critical patent/JPH0356616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the desired cold workability under stable conditions by adding specific amounts of Mn-containing iron powder to a molten steel in a tundish at the time when the temp. of the molten steel is at a specific degree of superheat, casting the above molten steel, and then subjecting the resulting cast billet to hot working at a specific forging ratio. CONSTITUTION:Iron powder is added to a steel having a composition consisting of, by weight, 0.40-0.60% C, 0.15-0.35% Si, 0.60-0.90% Mn, <=0.030% P, <=0.025% S, 0.010-0.100% solAl, <=0.0100% N, and the balance Fe with inevitable impuri ties at the time when the degree DELTAT of super heat of the steel in a tundish is 0-40 deg.C. At this time, an iron powder having a composition consisting of 0.10-0.90% C, 0.05-0.85% Si, 0.40-1.10% Mn, and the balance Fe with inevitable impurities and also having 0.8-1.5mm grain size is used as the above iron powder and is added by 2.0-6.0kg per ton of the molte steel. This molten steel is cast, and the resulting cast billet is heated to undergo hot working at >=3S forging ratio and cooled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工性の優れた構造用鋼材の製造法に関
する. (従来の技術) 熱間圧延、熱間鍛造等の熱間加工により製造される鋼材
であって、多くの場合、その後に鍛造、切削等の加工と
熱処理とを施して使用される機械構造用炭素鋼鋼材とし
ては、例えばJfS G 4051に規定されているS
43C, S45C, S48C, S60C, S5
3C、S55C又はS58C等が知られでいる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing structural steel materials with excellent cold workability. (Conventional technology) Steel materials manufactured by hot processing such as hot rolling and hot forging, and in many cases are used for mechanical structures after being subjected to processing such as forging and cutting, and heat treatment. Examples of carbon steel include S specified in JfS G 4051.
43C, S45C, S48C, S60C, S5
3C, S55C, S58C, etc. are known.

これらの鋼材は、多くの場合、連続鋳造鋳片に鍛錬成形
比が4S以上に相当する圧延又は鍛造等を行って得られ
る。
These steel materials are often obtained by subjecting continuously cast slabs to rolling or forging at a forging ratio of 4S or higher.

しかし、連続鋳造鋳片は、周知のように、鋳造温度の高
低により、現われる等軸品領域の大きさが異なり、その
後の連続鋳造鋳片の冷間加工性に大きな影響を及ぼして
しまう。
However, as is well known, in continuously cast slabs, the size of the equiaxed region that appears varies depending on the casting temperature, which has a large effect on the subsequent cold workability of the continuously cast slab.

そこで、連続鋳造鋳片の凝固&l1織中の等軸品域を拡
大させること、すなわち連続鋳造鋳片のマクロ評点を改
善するために、従来から、 ■鋳造速度を低下してタンデイシュ内の過熱度ΔT(溶
鋼温度一戒相&lil1度差〉を低下させる手段、 ■連続鋳造中、溶鋼の未凝固部に電磁撹拌を行って、鋳
片中心部に濃厚偏析や各種欠陥の発生を防止しているが
、この攪拌強度を増加させることによって、初晶デンド
ライトをより微細化する手段 等が用いられてきた. (発明が解決しようとする課題) しかし、これらの手段では、前述したJIS G 40
51に規定される343C等のような、炭素含有量がお
よそ0.45%超の機械構造用炭素鋼鋼材の素材である
連続鋳造鋳片の凝固&Il織中の等軸品域を拡大させる
ことは極めて困難であり、製造時の最適条件(ΔT等)
の範囲が極めて狭く、安定した操業条件下で所望の冷間
加工性を有する構造用鋼材を得ることはできなかったの
である。
Therefore, in order to expand the equiaxed product area in the solidification and weave of continuously cast slabs, that is, to improve the macroscopic score of continuously cast slabs, the following methods have been used: Means to reduce ΔT (1 degree difference in molten steel temperature) ■During continuous casting, electromagnetic stirring is applied to the unsolidified part of molten steel to prevent dense segregation and various defects in the center of the slab. However, methods have been used to make the primary dendrites finer by increasing the stirring intensity.
To expand the equiaxed quality range in the solidification and weave of continuous cast slabs, which are materials for machine structural carbon steel materials with a carbon content of more than approximately 0.45%, such as 343C specified in 51. is extremely difficult, and the optimum conditions during manufacturing (ΔT, etc.)
This range was extremely narrow, making it impossible to obtain structural steel materials with the desired cold workability under stable operating conditions.

ここに、本允明の11的は、安定した操業条件下で所期
の4間加工性の優れた構造用鋼材の製造法を提供するこ
とにある。
Here, Masaaki Moto's eleventh objective is to provide a method for manufacturing structural steel materials with excellent four-way workability under stable operating conditions.

(課題を解決するための手段) 本発明者らは、上,泥の課題を解決するために、タンデ
ィシュ内の溶鋼に鉄粉を添加することによりIa制的に
タンディシュ内の溶洞の過熱度ΔTを低下すると、どの
ような現象が生ずるのかを試験により碓jffl Lた
。その結果を第1図に示す。第1図は、ΔTと等軸品率
との関係をC含有量が0.4重盪%、0.5重量%の}
容鋼について一般的に示すグラフであるが、第1図に示
すようにΔTの低下とともに連続鋳遣鋳片の等軸品率が
増加することを知見した.また、本発明者らは、ΔTと
鉄粉の添加量との関係を調べた。その結果を第2I2I
に示す。第2図は、結晶粒の微細化を図ることができる
屓適な範囲を、ΔTおよび鉄粉添加量について示したグ
ラフであるが、第2図に示すように、鉄粉の添加量をあ
る特定の範囲に制限することにより、結晶粒の微細化が
期待できることを知見した。
(Means for Solving the Problems) In order to solve the above problem of mud, the present inventors added iron powder to the molten steel in the tundish to control the superheating degree ΔT of the melt tunnel in the tundish. We carried out tests to find out what kind of phenomena occur when the amount of water is lowered. The results are shown in FIG. Figure 1 shows the relationship between ΔT and equiaxed product rate when the C content is 0.4% by weight and 0.5% by weight.
As shown in Fig. 1, which is a graph generally shown for bulk steel, it was found that as ΔT decreased, the equiaxed fraction of continuously cast slabs increased. The present inventors also investigated the relationship between ΔT and the amount of iron powder added. The result is 2nd I2I
Shown below. Figure 2 is a graph showing the optimal range in terms of ΔT and the amount of iron powder that can be used to refine the crystal grains. It has been found that by restricting it to a specific range, it is possible to expect finer grains.

そこで、本発明者らは、さらに検討を続けた結果、タン
ディシュ内の溶鋼中に鉄粉を添加した場合に連続鋳造鋳
片に生ずる組成の変動も、鉄粉の組成を適当な範囲に制
限することにより実用上全く問題のないレヘルであるこ
とを知見して、本発明を完成した。
Therefore, as a result of further investigation, the inventors of the present invention found that the composition fluctuations that occur in continuously cast slabs when iron powder is added to the molten steel in the tundish can also be suppressed by limiting the composition of the iron powder to an appropriate range. As a result, the present invention was completed based on the knowledge that there was no practical problem at all.

ここに、本発明の要旨とするところは、重量%で、 C : 0.40−0.60%、  Si: 0.15
〜0.35%、Mn: 0.60〜0.90%、  P
 : 0.030%以下、S : 0.025%以下、
sol.八Q: 0.010 〜0.100%、N :
 0.0100%以下、 残部Feおよび不可避的不純物 からなる鋼組成を有する溶鋼の、クンディシュ内におけ
る過熱度ΔTがO℃&jl40゜C以下のときに、前記
溶鋼中に、重量%で、 C : 0.10〜0.90%、  Si: 0.05
〜0.85%、Mn: 0.40−1.10%、 残部Feおよび不可避的不純物 からなる組成を有し、粒径が0.8〜1.5師である鉄
わ)をi I I Ton当り2.0 〜6.0kg添
加した後、vt造を行って鋼片とし、この後に前記期片
を加熱し、さらに鍛綽成形比が3S以上である熱間加工
を行った後で冷却することを特徴とする、冷間加エ性の
優れた構造用鋼材の製造法である。
Here, the gist of the present invention is, in weight %, C: 0.40-0.60%, Si: 0.15
~0.35%, Mn: 0.60~0.90%, P
: 0.030% or less, S: 0.025% or less,
sol. Eight Q: 0.010 ~ 0.100%, N:
When the degree of superheating ΔT in the kundish of a molten steel having a steel composition consisting of 0.0100% or less, the balance consisting of Fe and unavoidable impurities is 0°C & l40°C or less, in the molten steel, C: 0 in weight%. .10-0.90%, Si: 0.05
~0.85%, Mn: 0.40-1.10%, balance Fe and unavoidable impurities, and the particle size is 0.8-1.5%. After adding 2.0 to 6.0 kg per ton, VT forming is performed to obtain a steel billet, after which the above-mentioned billet is heated, further hot worked with a forging ratio of 3S or more, and then cooled. This is a method for producing structural steel materials with excellent cold workability.

本発明において、熱間加工とは、圧延、鍛造、圧造、’
ILL、またはこれらの組み合わせをいい、また具体的
には、JIS G 0701に規定される実体鍛錬、す
え込鍛錬、展伸鍛錬、中空鍛錬、穴ひろげ鍛錬等をいう
In the present invention, hot working refers to rolling, forging, forging,
It refers to ILL or a combination of these, and specifically refers to physical training, embedding training, expansion training, hollow training, hole expansion training, etc. specified in JIS G 0701.

(作用) 以下、本発明を作用効果とともに詳述する。なお、本明
細書において、「%」は特にことわりがない限り「重量
%」を意味するものとする。
(Function) Hereinafter, the present invention will be explained in detail along with the function and effect. In this specification, "%" means "% by weight" unless otherwise specified.

まず、本発明において、タンディシュ内の溶鋼の組成を
限定する理由を説明する。
First, in the present invention, the reason why the composition of the molten steel in the tundish is limited will be explained.

C:Cは、鋼材の強度確保のために不可欠な元素であり
、特にJIS G 4051に規定されるS43C等の
ような、引張り強度が58kgf/m一以上であって、
降伏点が35kgf/mm”以上の強度を具備するため
には、0.40%以上含有することが必要である.一方
、0.60%超含有すると、得られる鋼材の強度が増加
し過ぎて冷間加工性が悪化する.したがって、C含有量
を0.40%以上0.60%以下と制限する。
C: C is an essential element for ensuring the strength of steel materials, and in particular, steels with a tensile strength of 58 kgf/m or more, such as S43C specified in JIS G 4051,
In order to have a strength with a yield point of 35 kgf/mm" or more, it is necessary to contain 0.40% or more. On the other hand, if the content exceeds 0.60%, the strength of the resulting steel increases too much. Cold workability deteriorates.Therefore, the C content is limited to 0.40% or more and 0.60% or less.

Si: Stは鋼の脱酸のために有効に作用する元素で
あり、かかる効果を奏するためには0.15%以上含有
することが有効である.しかし、0.35%超含有する
と、酸化物系介在物が生成し、鋼材の延性、靭性等が劣
化してしまう.そこで、Si含右量を0.15%以上0
.35%以下と制限する。
Si: St is an element that effectively deoxidizes steel, and in order to achieve this effect, it is effective to contain it in an amount of 0.15% or more. However, if the content exceeds 0.35%, oxide-based inclusions will be generated and the ductility, toughness, etc. of the steel material will deteriorate. Therefore, we decided to increase the Si content to 0.15% or more.
.. Limited to 35% or less.

Mn: Mnは、鋼の脱酸を行い、w4Iltの強度を
確保するために極めて重要な元素であり、鋼材の引張り
強度:58kgf/mm”以上、降伏点:35 kgf
/一一以上を確保するためには、0.60%以上添加す
ることが必要である。しかし、0.90%超含有すると
、強度が増加し過ぎて、冷間加工性が悪化する.したが
って、Mn含有量を0.60%以上0.90%以下と制
限する。
Mn: Mn is an extremely important element for deoxidizing steel and ensuring the strength of w4Ilt, tensile strength of steel material: 58 kgf/mm” or more, yield point: 35 kgf
/11 or more, it is necessary to add 0.60% or more. However, if the content exceeds 0.90%, the strength increases too much and cold workability deteriorates. Therefore, the Mn content is limited to 0.60% or more and 0.90% or less.

P,S:  P,Sは鋼材中にあっては、鋼材の諸性能
を劣化させる不純物であり、特にSは、Mn含有量との
関係で赤熱脆性を生しるものであるため、その含有量は
極力少ないことが望ましい。
P, S: In steel materials, P and S are impurities that deteriorate various properties of the steel material.In particular, S causes red heat brittleness in relation to the Mn content, so its content is It is desirable that the amount be as small as possible.

しかし、極端な低減にはコストを要することとなること
から、それぞれの含有量を、P≦0.030%、S≦0
.025%と制限する。
However, since extreme reduction would require costs, the respective contents should be reduced to P≦0.030% and S≦0.
.. It is limited to 0.025%.

sol.八Q: 八Qは、鯛の脱酸のために、例えば取
鍋において?8鋼中に添加される元素であり、脱酸効果
を確保するという観点からは0.010%以−ヒ含有す
ることが有効である。しかし、過剰な添加はコスト高を
もたらすため、上限をo.too%とする。したがって
、AQ含有量は、0.010%以上0. 100%以下
と制限する. N:Nは、一般的に鋼の桔錬が大気中で行なわれるため
に、溶鋼中に溶解しているガス成分であり、溶接性の劣
化を引き起こすこととなるから、極力低減することが望
ましい.しかし結晶粒の粗大化防止のため、o.oto
o%以下、望ましくは0.0030〜0.0100%程
度の添加は必要であるため、N含有量は、0.0100
%以下と制限する。
sol. 8Q: Is 8Q for deoxidizing sea bream, for example in a ladle? It is an element added to No. 8 steel, and from the viewpoint of ensuring a deoxidizing effect, it is effective to contain it in an amount of 0.010% or more. However, since excessive addition results in high costs, the upper limit is set to o. Let it be too%. Therefore, the AQ content is 0.010% or more. Limit it to 100% or less. N: N is a gas component dissolved in molten steel because steel is generally hammered in the atmosphere, and it causes deterioration in weldability, so it is desirable to reduce it as much as possible. .. However, in order to prevent coarsening of crystal grains, o. oto
Since it is necessary to add 0.0% or less, preferably about 0.0030 to 0.0100%, the N content is 0.0100% or less.
% or less.

次に、上記組或を有する溶鋼の、タンディソユ内におけ
る過熱度ΔTを0゜C超40″C以下と制限する理由を
説明する。過熱度が0゜C以下では、鉄粉添加前に凝固
が開始してしまい、鉄粉をi8鋼中に均一に添加するこ
とが困難となり結晶粒微細化を充分に図ることができな
くなるため、得られる鋼材に所望の冷間加工性を付与す
ることが難しくなるからであり、また過熱度が40″C
超では、添加する鉄粉消費量が増加してしまい、コスト
増となるからである。したがって、通熱度をO′C超4
0゜C以下と制限する。なお、実操業の安定等の観点か
ら、さらに望ましい過熱度の範囲は、10゜C以上40
゜C以下の範囲である。実際の製造工程において過熱度
をこの範囲に制限するには、■出鋼温度の管理、■取鍋
内での温度コントロール等の技術を駆使すればよい. 本発明は、このように制限された組成および過熱度を有
する、タンデイシュ内の溶鋼中に、ある特定した組或お
よび粒径を有する鉄粉をある量だけ添加する。鉄粉の組
成、粒径および添加量の限定範囲およびその理由を説明
する. 胤一戒 本発明により冷間加工性の優れた鋼材が得られるのは、
鉄粉添加により凝固時の核生成に影響を及ぼすために結
晶粒を微細化するからと考えられる。しかし、鉄粉添加
により、溶鋼の組成が変動して、溶鋼の性能を変えてし
まうのでは問題であるが、本発明者らの知見によれば、
C :0. 10〜090%、Sl:0.05 〜0.
85%、Mn:0.40−1.10%、残部Feおよび
不可避的不純物からなる組成を有する鉄粉を用いると、
前記の1J1戊を有する溶鋼に対して、C:±0.01
%、Si:−0.01%〜+0.02%、Mn±0.0
2%の範囲の変動しか生ぜず、実用上何ら差しつかえな
い.したがって、用いる鉄わ)の組成を、C:0.10
 〜0.90%、Si:0.05 〜0.85%、Mn
:0.40〜1.10%、残部Feおよび不可避的不純
物と制限する。
Next, we will explain the reason why the degree of superheating ΔT of molten steel having the above structure in the tandy soybean is limited to more than 0°C and less than 40"C. If the degree of superheating is less than 0°C, solidification will occur before the addition of iron powder. This makes it difficult to uniformly add iron powder to i8 steel, making it impossible to achieve sufficient grain refinement, making it difficult to impart the desired cold workability to the resulting steel. This is because the degree of superheat is 40″C.
This is because if the amount is too high, the amount of iron powder to be added will increase, resulting in an increase in cost. Therefore, the degree of heat conductivity is
Limit to below 0°C. In addition, from the viewpoint of stability of actual operation, the more desirable range of superheating degree is 10°C or more and 40°C.
The range is below °C. In order to limit the degree of superheating within this range in the actual manufacturing process, techniques such as ■controlling the tapping temperature and ■controlling the temperature in the ladle can be used. The present invention adds a certain amount of iron powder having a certain composition and particle size to the molten steel in the tundish having such a limited composition and degree of superheating. This section explains the limited ranges of iron powder composition, particle size, and amount added, and the reasons for these limits. Ikki Tanane The steel material with excellent cold workability can be obtained by the present invention because:
This is thought to be because the addition of iron powder makes the crystal grains finer because it affects nucleation during solidification. However, it is a problem if the addition of iron powder changes the composition of the molten steel and changes the performance of the molten steel, but according to the findings of the present inventors,
C: 0. 10-090%, Sl: 0.05-0.
When using iron powder having a composition of 85%, Mn: 0.40-1.10%, and the balance consisting of Fe and inevitable impurities,
C: ±0.01 for the molten steel having the above 1J1
%, Si: -0.01% to +0.02%, Mn±0.0
The fluctuation only occurs within a range of 2%, which poses no practical problem. Therefore, the composition of the iron used) is C: 0.10
~0.90%, Si:0.05 ~0.85%, Mn
: 0.40 to 1.10%, the balance being limited to Fe and unavoidable impurities.

柱一掻; 鉄粉の平均粒径が0.81未〆蕩であると、タンディシ
ュ内の溶鋼に鉄粉を添加したときに、装置の詰まりゃ添
加後に溶鋼からの飛散が発生する.また、1.5mm超
では、未溶解の鉄粉が顕著に発生し、鋼中に不均一に分
散してしまう。そこで、鉄粉の平均粒径を0.8 mm
以上1.5−一以下と制限する.添見1: 鉄粉の添加量W(kg)の最適範囲は、タンデイシュ内
溶鋼の過熱度ΔT(℃)の値により変動するものである
.すなわち、ΔTが大きい場合には凝固までの時間が増
大し、鉄粉の溶融量が増加するため、Wを増やすべきで
ある.ところで、前述した理由により、本発明において
は、ΔTはO′C超40゜C以下と制限している。つま
り、ΔTが40℃の場合には溶鋼I Ton当り6 k
g,ΔTが略0゜Cの場合には溶鋼I Ton当り2k
g添加することによって、目的とする結晶粒の微細化を
図ることができるのである。したがって、鉄粉の添加f
fiW(kg)を溶鋼I Ton当り2.0kg以上6
.0kg以下と制限する。なお、前述のように、実操業
時の安定性の確保等の観点から、10≦ΔT≦40とし
た場合には10             15   
    3範囲の鉄粉の添加を行うことがさらに望まし
い。
One pillar: If the average particle size of the iron powder is less than 0.81, when the iron powder is added to the molten steel in the tundish, if the equipment becomes clogged, scattering from the molten steel will occur after the addition. Moreover, if it exceeds 1.5 mm, unmelted iron powder will be significantly generated and will be unevenly dispersed in the steel. Therefore, the average particle size of iron powder was set to 0.8 mm.
Limit it to 1.5-1 or less. Attachment 1: The optimal range of the amount W (kg) of iron powder added varies depending on the value of the degree of superheating ΔT (°C) of the molten steel in the tundish. That is, when ΔT is large, the time until solidification increases and the amount of melted iron powder increases, so W should be increased. By the way, for the reasons mentioned above, in the present invention, ΔT is limited to more than O'C and less than 40°C. In other words, when ΔT is 40°C, 6 k per ton of molten steel
When g and ΔT are approximately 0°C, 2k per ton of molten steel
By adding g, it is possible to achieve the desired refinement of crystal grains. Therefore, the addition of iron powder f
fiW (kg) 2.0 kg or more per ton of molten steel6
.. Limit it to 0 kg or less. As mentioned above, from the viewpoint of ensuring stability during actual operation, when 10≦ΔT≦40, 10 15
It is further desirable to carry out the addition of iron powder in three ranges.

このような鉄粉を添加することにより発生する溶鋼の組
成の変動は、第3図に示すように、C:±0.Ol%、
Si:  0.01〜+0.02%、Mn= ±0.0
2%の範囲であり、鉄粉の添加量が2.0〜6.0 k
gの範囲で変動しても、溶鋼の組成の変動は、JIS 
G 0321に規定される範囲を充分に満足するもので
あり、実用上何ら差しつかえない。
As shown in FIG. 3, the fluctuation in the composition of molten steel caused by the addition of iron powder is C: ±0. Ol%,
Si: 0.01~+0.02%, Mn=±0.0
2% range, and the amount of iron powder added is 2.0 to 6.0 k
Even if the composition of molten steel varies within the range of
It fully satisfies the range specified in G0321, and there is no problem in practical use.

なお、このような鉄籾は、ガスや水を用いてアトマイズ
することにより製造することが例示される.また、鉄わ
)の添加手段は特に制限を要するものでないことはいう
までもなく、Arガス、またはN2ガスをキャリアーガ
スとして鉄粉を添加するという手段を用いればよい。
An example of such ferrous rice is that it is produced by atomizing using gas or water. Further, it goes without saying that there are no particular restrictions on the means for adding iron powder, and it is sufficient to use a method of adding iron powder using Ar gas or N2 gas as a carrier gas.

また、鋼片の径方向についてのf@ #t<分のばらつ
きを調査した結果を第4図にグラフで示すが、これも実
用上全く問題ないことがわかる。
Further, the results of investigating the variation of f@#t< in the radial direction of the steel slab are shown in a graph in FIG. 4, which shows that there is no practical problem at all.

このようにして、鉄粉を添加した溶鋼を鋳型に連続鋳造
して、連続鋳造鋳片である鋼片とする.かかる鋼片の寸
法についても特に制限を要するものではなく、(200
〜600) X (400〜1600) x(2000
〜9000) 問程度の鋼片(ビレット、スラブ等〉と
すればよい。
In this way, molten steel to which iron powder has been added is continuously cast into a mold to produce a continuously cast slab. There are no particular restrictions on the dimensions of such steel pieces, and (200
~600) X (400~1600) x(2000
~9000) A steel piece (billet, slab, etc.) may be used.

このようにして得た鋼片を加熱し、さらに8i1!戒形
比が3S以上の熱間加工を行って、鋼材とする。
The thus obtained steel billet was heated and further heated to 8i1! It is made into steel by hot working with a shape ratio of 3S or higher.

この加熱は、次の工程で行う圧延のために行うものであ
り、かかる観点から1160゜C以上1360゜C以下
の温度に加熱することが望ましい. さらに、鍛錬成形比を3S以上と制限するのは、結晶粒
を微細化し、再結晶を促進することにより、結晶粒を整
粒化し、得られる鋼材の冷間加工性を高めるためであっ
て、aha形比が3S未満であるとかかる目的を達戒で
きないからである.そして、この熱間加工を終えた鋼材
を冷却して、冷間加工性の優れた構造用鋼材を得るので
ある。
This heating is carried out for rolling in the next step, and from this point of view it is desirable to heat to a temperature of 1160°C or more and 1360°C or less. Furthermore, the reason why the forging forming ratio is limited to 3S or more is to refine the crystal grains and promote recrystallization, thereby regularizing the crystal grains and improving the cold workability of the obtained steel material. This is because if the aha form ratio is less than 3S, this goal cannot be achieved. After this hot working, the steel material is cooled to obtain a structural steel material with excellent cold workability.

冷却手段としては、徐冷または放冷を行うことが望まし
い.徐冷または放冷以外の冷却、例えば急冷を行うと再
結晶が不充分となり、所望の冷間加工性を得ることがで
きなくなることがあるからである。
As a cooling method, it is preferable to perform gradual cooling or cooling. This is because if cooling other than slow cooling or standing cooling is performed, for example, rapid cooling, recrystallization may become insufficient and desired cold workability may not be obtained.

このようにして得られたプルーム又はビレットの結晶粒
径を、第5図に金属組織写真を用いて示す.鉄粉を添加
した溶烟から得られたブルーム又はビレットの結晶粒径
は小さくなり、結晶粒が微細化されていることが明らか
である。
The crystal grain size of the plume or billet thus obtained is shown in Fig. 5 using a metallographic photograph. It is clear that the crystal grain size of the bloom or billet obtained from the molten iron powder added is smaller, and the crystal grains are refined.

さらに、本発明の実施例を用いて詳述するが、これは本
発明の例示であって、これにより本発明が限定されるも
のではない。
Further, the present invention will be explained in detail using examples, but these are illustrative of the present invention and are not intended to limit the present invention.

実施例 第1表に示す組成および過熱度を有する、タンディノユ
内の溶鋼に、同じく第1表に示す組成、粒度および添加
量の鉄粉を添加した後に連続鋳造を行って連続鋳造鋳片
とし、この後に前記連続鋳造鋳片を1260℃に加熱し
て、さらに第1表に示す鍛1m成形比の圧延を行い、そ
の後放冷ずることにより、構造用鋼材である試料Nll
lないし試料Nα7を得た。
Example After adding iron powder having the composition, particle size and addition amount also shown in Table 1 to the molten steel in Tandynoyu having the composition and degree of superheat shown in Table 1, continuous casting is performed to obtain a continuously cast slab, After that, the continuously cast slab was heated to 1260°C, further rolled at a forging ratio of 1m shown in Table 1, and then allowed to cool, thereby forming a structural steel sample Nll.
Sample Nα7 was obtained.

これらの試料について、その機械的性質(伸び、絞りお
よび曲げ)を調査した。結果を併せて第1表に示す。な
お、曲げ試験は、試料を1511で180′″曲げて、
割れが発生しなかったものを○、割れが発生したものを
×、微少な割れが発生したものをΔとして評価した。
These samples were investigated for their mechanical properties (elongation, reduction and bending). The results are also shown in Table 1. In addition, in the bending test, the sample was bent 180'' at 1511,
Those with no cracks were evaluated as ○, those with cracks were evaluated as ×, and those with slight cracks were evaluated as Δ.

(以下余白) 第1表から明らかなように、本発明にかかる試料は、冷
間加工性に優れていることがわかる。
(The following is a blank space) As is clear from Table 1, the samples according to the present invention are found to have excellent cold workability.

(発明の効果) 以上、詳述したように、本発明により、冷間加工性の優
れた構造用鋼材を安定して製造できることとなった。
(Effects of the Invention) As detailed above, according to the present invention, structural steel materials with excellent cold workability can be stably manufactured.

かかる効果を有する本発明の意義は極めて著しい.The significance of the present invention having such effects is extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、過熱度と等軸晶率との関係を示すグラフ; 第2図は、過熱度と鉄粉添加量との関係を示すグラフ: 第3図は、溶鋼成分とチェック分析値との関係を示すグ
ラフ: 第4図は、ビレノトの径方向についてのチェックCのバ
ラツキを示すグラフ;および 第5図は、結晶粒の金属&llIIiを示す写真である
.第1 図 IO 20 30 40 AT(0こノ 第2図 O /0 20 30 40 A丁(゜C) 第3図 ?14@■1;5ε′づテ(/.冫 第4図
Figure 1 is a graph showing the relationship between the degree of superheating and equiaxed crystallinity; Figure 2 is a graph showing the relationship between the degree of superheating and the amount of iron powder added; Figure 3 is a graph showing the relationship between the molten steel composition and the check analysis value. Graph showing the relationship between: FIG. 4 is a graph showing the variation of check C in the radial direction of the particle; and FIG. 5 is a photograph showing the metal &llllii of crystal grains. Fig. 1 IO 20 30 40 AT (0 this Fig. 2 O /0 20 30 40 A (゜C) Fig. 3?

Claims (1)

【特許請求の範囲】 重量%で、 C:0.40〜0.60%、Si:0.15〜0.35
%、Mn:0.60〜0.90%、P:0.030%以
下、S:0.025%以下、sol.Al:0.010
〜0.100%、N:0.0100%以下、 残部Feおよび不可避的不純物 からなる鋼組成を有する溶鋼の、タンディシュ内におけ
る過熱度ΔTが0℃超40℃以下のときに、前記溶鋼中
に、重量%で、 C:0.10〜0.90%、Si:0.05〜0.85
%、Mn:0.40〜1.10%、 残部Feおよび不可避的不純物 からなる組成を有し、粒径が0.8〜1.5mmである
鉄粉を溶鋼1Ton当り2.0〜6.0kg添加した後
、鋳造を行って鋼片とし、この後に前記鋼片を加熱し、
さらに鍛錬成形比が3S以上である熱間加工を行った後
で冷却することを特徴とする、冷間加工性の優れた構造
用鋼材の製造法。
[Claims] In weight%, C: 0.40 to 0.60%, Si: 0.15 to 0.35
%, Mn: 0.60 to 0.90%, P: 0.030% or less, S: 0.025% or less, sol. Al: 0.010
~0.100%, N: 0.0100% or less, the balance is Fe and unavoidable impurities. , in weight%, C: 0.10-0.90%, Si: 0.05-0.85
%, Mn: 0.40 to 1.10%, balance Fe and unavoidable impurities, and iron powder having a particle size of 0.8 to 1.5 mm at a rate of 2.0 to 6.0 mm per ton of molten steel. After adding 0 kg, casting is performed to obtain a steel billet, and then the steel billet is heated,
A method for producing a structural steel material with excellent cold workability, further comprising performing hot working at a forging forming ratio of 3S or more and then cooling.
JP18956889A 1989-07-21 1989-07-21 Production of structural steel stock excellent in cold workability Pending JPH0356616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18956889A JPH0356616A (en) 1989-07-21 1989-07-21 Production of structural steel stock excellent in cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18956889A JPH0356616A (en) 1989-07-21 1989-07-21 Production of structural steel stock excellent in cold workability

Publications (1)

Publication Number Publication Date
JPH0356616A true JPH0356616A (en) 1991-03-12

Family

ID=16243513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18956889A Pending JPH0356616A (en) 1989-07-21 1989-07-21 Production of structural steel stock excellent in cold workability

Country Status (1)

Country Link
JP (1) JPH0356616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878599B2 (en) * 2005-08-30 2012-02-15 東芝キヤリア株式会社 Air conditioner indoor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878599B2 (en) * 2005-08-30 2012-02-15 東芝キヤリア株式会社 Air conditioner indoor unit

Similar Documents

Publication Publication Date Title
US5972129A (en) Process for smelting a titanium steel and steel obtained
CN104250703B (en) A kind of 340MPa grades of cold rolling low-alloy high-strength steel and its manufacture method
CN112981261B (en) Non-quenched and tempered steel and application, product and manufacturing method thereof
CN106609335A (en) Tensile strength 700 MPa-grade high broaching hot-rolled steel plate and manufacturing method thereof
CN106756511A (en) A kind of bimetal saw blade backing D6A broad hot strips and its production method
US5762725A (en) Steel for the manufacture of forging having a bainitic structure and process for manufacturing a forging
CN107385319A (en) Yield strength 400MPa level Precision Welded Pipe steel plates and its manufacture method
CN109161806A (en) A kind of 700MPa grades of automotive frame steel band and preparation method thereof
WO1994025635A1 (en) Sheet steel excellent in flanging capability and process for producing the same
JPH09279233A (en) Production of high tension steel excellent in toughness
CN114032454B (en) Steel for PC prestressed steel wire and production process thereof
CN110951953B (en) HRB500E steel bar and vanadium-nitrogen microalloying process thereof
JPH0356616A (en) Production of structural steel stock excellent in cold workability
Chinese Society for Metals (CSM) et al. Metallurgical mechanism and niobium effects on improved mechanical properties in high carbon steels
JPS6056056A (en) Process-hardenable austenite manganese steel and manufacture
JPS6337166B2 (en)
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
CN107881424A (en) A kind of light-weight design covers aluminium base and its production method
RU2238333C1 (en) Method for producing of rolled bars from boron steel for cold bulk pressing of high-strength fastening parts
CN107881425A (en) A kind of high intensity covers aluminium base steel and its production method
KR970007203B1 (en) Method for making hot rolled steel sheet having excellent treatment
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
JPH0366383B2 (en)
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH05171267A (en) Production of high toughness pearlite steel