JPH0356526A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor

Info

Publication number
JPH0356526A
JPH0356526A JP19043389A JP19043389A JPH0356526A JP H0356526 A JPH0356526 A JP H0356526A JP 19043389 A JP19043389 A JP 19043389A JP 19043389 A JP19043389 A JP 19043389A JP H0356526 A JPH0356526 A JP H0356526A
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
composition
resin composition
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19043389A
Other languages
Japanese (ja)
Inventor
Masayuki Kobayashi
正之 小林
Takaki Saruta
猿田 宇樹
Shinichiro Asai
新一郎 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP19043389A priority Critical patent/JPH0356526A/en
Publication of JPH0356526A publication Critical patent/JPH0356526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the subject composition having good moldability, high thermal shock resistance in soldering and high moisture-resistant reliability and suitable for the sealing of semiconductor, IC, LSI, etc., by using a specific epoxy resin, a phenolic curing agent and a large amount of an inorganic filler as main components. CONSTITUTION:The objective composition is composed mainly of (A) an epoxy resin containing (i) a bishydroxybiphenyl-type epoxy resin of formula (R is H or methyl; R<1> to R<8> are H, methyl, ethyl, isopropyl or phenyl; n is 0-5) and (ii) a novolak phenolic resin containing <=5 wt.% of binuclear component at a weight ratio (i/ii) of 30/70 - 95/5 and containing <=0.05 wt.% of hydrolyzable chlorine, (B) a phenolic curing agent (preferably a novolak resin containing <=0.5 wt.% of noncondensed phenolic compound) and (C) 73-90 wt.% (based on the whole composition) of an inorganic filler (preferably fused silica).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子部品等の封止、特に半導体、I C,LS
I等の劃止に好適なエボキシ樹脂組我物に関するもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to the encapsulation of electronic components, especially semiconductors, ICs, LS
This invention relates to an epoxy resin composition suitable for binding materials such as I.

(従来の技術) 近年電子部品、特に半導体、IC,LSI等の剖止には
安価、t産性及び比較的バランスのとれた信頼性金有す
るため、エポキシ樹脂組成物金もちいたトランスファー
成形による成形体が最も広〈用いられている。しかしこ
の成形体な、金属ケースやセラミック等の透水性の無い
材料によるハーメチツク刺正に比べ、特に耐湿信頼性の
劣るのが欠点であった。これは、半導体素子をエボキシ
樹脂組放物で刺止した後、成形体を通常使用とれる環境
または温湿度の加速された環境中におくと次第に吸湿し
て半導体素子等の微細な配線、特にアルミニクム配線が
腐食し、リーク電流が増加、ついには断線してしまうた
めである。
(Prior art) In recent years, transfer molding using epoxy resin compositions has been used to disassemble electronic parts, especially semiconductors, ICs, LSIs, etc., because they are inexpensive, have high productivity, and have relatively well-balanced reliability. The body is the most widely used. However, compared to hermetically stitched molded bodies made of non-water permeable materials such as metal cases and ceramics, the disadvantage is that they are especially inferior in moisture resistance and reliability. This is because after a semiconductor element is pierced with an epoxy resin parabolite, if the molded body is placed in an environment where it is normally used or in an environment with accelerated temperature and humidity, it will gradually absorb moisture, causing fine wiring such as semiconductor elements, especially aluminum. This is because the wiring corrodes, increases leakage current, and eventually breaks.

エポキシ樹脂組成物による封止O上記に述べた欠点は、
(a)樹脂が本質的に透水性を有していること、fb)
リードフレーム、半導体素子等と樹脂との接着性が十分
でないこと、(C)樹脂中にはいろいろな不純物が含ま
れていること、(d)エボキシ樹脂が脆いこと等に由来
している。(a) tlm樹脂の本質的欠点であるため
主にtb+、(C)及び(d)について種々の改良がな
されてきた。+b)についてはカップリング剤,及びI
73部離型剤等、(C)についてはエポキシ樹脂、硬化
剤、充填剤等について、(d)については各種の可とう
性付与剤の添加で改良がなされてきた。
Sealing with epoxy resin composition O The above-mentioned drawbacks are:
(a) the resin is inherently water permeable, fb)
This is due to the fact that the adhesiveness between lead frames, semiconductor elements, etc. and the resin is not sufficient, (C) the resin contains various impurities, and (d) the epoxy resin is brittle. (a) Since this is an essential drawback of the tlm resin, various improvements have been made mainly to tb+, (C) and (d). +b) a coupling agent, and I
Improvements have been made by adding 73 parts mold release agent, etc., (C) by adding epoxy resins, curing agents, fillers, etc., and (d) by adding various flexibility imparting agents.

しかし近年、電子部品の小型、薄型化のため、電子部品
の実装方法が従来のビン挿入方式から表面実装方式へと
移行するに伴い、更に大きな問題が生じてきた。表面実
装方式の場合、成形体の形状にハSOP . QFP 
, PLCC等があク、これらの配線基板への実装(半
田付け)の際には、不活性溶剤蒸気、半田浴浸漬、壕た
は赤外線加熱炉なとで、200〜300℃の高温で処理
とれるが、この際の熱衝撃で耐湿信頼性が著しく低下す
る、もし〈は外部に1で達するクラツクが生ずる事であ
る。
However, in recent years, as electronic components have become smaller and thinner, the mounting method for electronic components has shifted from the conventional bottle insertion method to a surface mount method, and even more serious problems have arisen. In the case of the surface mount method, the shape of the molded body has an SOP. QFP
, PLCC, etc. are damaged. When mounting (soldering) on these wiring boards, process at high temperatures of 200 to 300℃ using inert solvent vapor, solder bath immersion, trench or infrared heating furnace. However, the thermal shock at this time will significantly reduce the moisture resistance reliability, and if it does, a crack will occur that reaches the outside.

これは実装するまで通常の環境に戒形体k放置すると水
分を吸収するが、その水分が実装の際の急激な温度上昇
で爆発的に気化膨張して、樹脂とリードフレーム間、樹
脂と半導体素子間の界面剥離、ひいては樹脂にクラツク
を生じ爆セるからである。
If the molded body is left in a normal environment until it is mounted, it will absorb moisture, but the rapid temperature rise during mounting will cause the moisture to vaporize and expand explosively, causing damage between the resin and the lead frame, and between the resin and the semiconductor element. This is because interfacial peeling between the two layers may cause cracks in the resin, causing it to explode.

このような現象は半田付けの際に生ずるため、半田耐熱
性と言われている。
Since such a phenomenon occurs during soldering, it is called solder heat resistance.

この半田耐熱性改良のため種々試みられてさた。Various attempts have been made to improve this solder heat resistance.

半導体メーカーサイドでは、リードフレームの形状に工
夫を凝らす、成形体t乾燥剤入れて梱包する、半導体の
ユーザーサイドでは、使用直前に乾燥することなどであ
る( NIKKKI MICRODEVICE8198
8年5月号36頁、NIKKEI gLEcTRONI
cs1988年6月号105頁)。しかしこれらはコス
トアップの要因となる等のため、好1しいものではない
。このため成形材料での改良が強く望まれてきた。
On the semiconductor manufacturer side, the shape of the lead frame is devised, the molded body is packaged with a desiccant agent, and on the semiconductor user side, it is dried immediately before use (NIKKKI MICRODEVICE 8198
May 8th issue, page 36, NIKKEI gLEcTRONI
cs June 1988 issue, p. 105). However, these are not preferable because they cause an increase in cost. For this reason, improvements in molding materials have been strongly desired.

成形材料メーカーサイドでは、フイラーを高充填して耐
熱衝撃性を向上賂ゼる(%開昭61−97322号公報
)、熱可塑性樹脂を添加丁る(特開昭62−26081
5号公報)、はつ水性の添加剤やワックスによク吸水性
七低下させ、実装時の水分による応力を下げる(特開昭
60−65023号公報)等の事が試みられているが、
未だ満足するレベルには至ってない。最近では、従来お
もに用いられてきたタレゾールノポラックエボキシ4i
Ij脂のかわクに新規な4,4′−ビス(2.3−エボ
キシブロボキシ) − 3 . 3’ . 5 . 5
’−テトラメチルビ7エニルを用いる(特開昭63−2
51419号公@)方法が注目とれている。
On the molding material manufacturer side, high filler filling is used to improve thermal shock resistance (% patent publication No. 61-97322), and thermoplastic resin is added (Japanese patent publication publication No. 62-26081).
5), water-repellent additives and waxes have been used to reduce water absorption, and the stress caused by moisture during mounting has been reduced (Japanese Patent Application Laid-Open No. 60-65023).
I haven't reached a satisfactory level yet. Recently, Talesol Nopolac Eboxy 4i, which has been mainly used
4,4'-bis(2,3-epoxybroboxy), which is new to Ij fats - 3. 3'. 5. 5
'-tetramethylbi7enyl (JP-A-63-2
51419@) method is attracting attention.

本発明者らもこの新規なエボキシ御脂に着目して種々検
討した。このエボキシ掬脂のみ七用いたエボキシ樹脂組
成物でICi制止すると確かに半田耐熱性は向上したが
、ガラス転移点が低い、パリが多い、熱時硬度が低い等
の致命的欠点乞有丁ることも分かつてさた。
The present inventors also focused on this new epoxy gobun and conducted various studies. When ICi is inhibited with an epoxy resin composition using only this epoxy resin, the soldering heat resistance certainly improves, but it suffers from fatal drawbacks such as a low glass transition point, a lot of flakes, and low hardness when heated. I also understood that.

また半導体素子の大型化、配線の微細化等のため、低応
力化は必須となっているが、そのために添加する可とう
性付与剤によって発生する金型汚れ、成形体外観不良、
捺印性不良等の或形性不良も、更に改良を必要としてい
る。
In addition, as semiconductor devices become larger and wiring becomes finer, it is essential to reduce stress. However, due to the increase in the size of semiconductor devices and the miniaturization of interconnections, it is essential to reduce stress.
Certain formability defects such as poor imprintability also require further improvement.

(発明が解決しようとする課題) 本発明者らはかかる課題全改善するため鋭意努力した結
果、2種類のエボキシ樹脂金併用し、無機質充填剤量t
調節し、また賂らに特定の可とう性付与剤會併用すると
半田耐熱性及び耐湿信頼性が大幅に向上し、成形性等も
良好なことを観察し、本発明全完或した。すなわち本発
明は電子部品、特に半導体、IC,LSI等を樹脂刺止
した場合に、良好な戒形性を保ちクク従来十分とは言え
なかった半田耐熱性、耐湿信頼性、成形性七大幅に向上
させるものである。
(Problems to be Solved by the Invention) As a result of the inventors' earnest efforts to solve all of these problems, the inventors used two types of epoxy resin gold in combination, and the amount of inorganic filler was t.
It was also observed that when a specific flexibility-imparting agent was used in combination with the adhesive, the solder heat resistance and moisture resistance reliability were greatly improved, and the moldability was also good, thereby completing the present invention. In other words, the present invention maintains good formability when electronic parts, especially semiconductors, ICs, LSIs, etc. are embossed with resin, and significantly improves soldering heat resistance, humidity resistance reliability, and moldability, which were previously unsatisfactory. It is something that improves.

(課題t解決するための手段) 本発明はビスヒドロキシビフエニル系エボキシ樹脂と特
に低分子量体の少ないノボラツク型エボキシ樹脂とを併
用し、無機質充填剤乞あるf以上充填し、更に好オしく
は特定の可とう性付与剤乞添加することによク、電子部
品等を封止した際に半田耐熱性、耐湿信頼性を大幅に向
上とゼ、かつ成形性も良好なエボキシ樹脂組成物を提供
するものである。
(Means for solving the problem t) The present invention uses a bishydroxybiphenyl-based epoxy resin and a novolak type epoxy resin with a particularly small amount of low-molecular-weight substances, is filled with an inorganic filler of at least f, and more preferably, By adding a specific flexibility-imparting agent, we provide an epoxy resin composition that significantly improves soldering heat resistance and moisture resistance reliability when encapsulating electronic components, etc., and also has good moldability. It is something to do.

すなわち本発明は、 (11  (,’J  下記式で表されるビスヒドロキ
シピフエニル系エポキシ樹脂 (式中、Rは水素原子オたはメチル基を、Rl〜Ra(
,x水累原子、メチル基、エチル基、イソプロビル基、
フエニル基より選ばれた同一もしくは異なる基七示す。
That is, the present invention provides a bishydroxypiphenyl epoxy resin represented by the following formula (11 (,'J) (wherein R is a hydrogen atom or a methyl group, Rl to Ra (
, x water atom, methyl group, ethyl group, isoprobyl group,
Seven same or different groups selected from phenyl groups are shown.

捷たnは0〜5の整数金示す。)(B)2核体成分が5
重f1以下であるノボラツク型エポキシ樹脂 と金、重量比でA/B=30/70〜95/5の割合で
含み、加水分解性塩素が0.05重t嘔以下であるエボ
キシ樹脂 (2)  フェノール型硬化剤 (3)組成物全体に対して73重in以上含咬れる無機
質充填剤 以上の6成分を主成分とする半導体制止用エボキシ44
脂組成物及び、前記成分と可とう性付与剤とt主成分と
して配合した半導体到止用エボキシ樹脂組或物である。
The cut n is an integer from 0 to 5. ) (B) Binary component is 5
An epoxy resin (2) containing a novolac-type epoxy resin having a weight f1 or less and gold in a weight ratio of A/B = 30/70 to 95/5, and having a hydrolyzable chlorine content of 0.05 weight f1 or less. Phenol type curing agent (3) Eboxy 44 for semiconductor restraint, whose main component is an inorganic filler or more, which is included in the entire composition at a depth of 73 or more times.
The present invention is an epoxy resin composition for semiconductor manufacturing, which contains a fat composition, the above-mentioned components, a flexibility-imparting agent, and a t main component.

次に本発明會詳細に説明する。Next, the present invention will be explained in detail.

本発明に用いられるエボキシ樹II (A) fl下記
に示すビスヒドロキシビ7エニル系エポキシ樹脂である
The epoxy resin II (A) fl used in the present invention is a bishydroxybi7enyl epoxy resin shown below.

さ/ (式中、Rは水素原子またはメチル基t、Rl〜R8は
水素原子、メチル基、エチル基、イングロビル基、フエ
ニル基よク選ばれた同一もしくは異なる基t示す。會た
nはO〜5の整at−示丁。)nli大きくなるとガラ
ス転移点が低下するので、0〜1.0が好ましい。具体
的にはR及びR1〜R8が水素原子であるもの、Rが水
素原子、RI  H3、R’及UR8がメチk基、R2
R4Rs及ヒB7カ水素原子であるものなどである。
(In the formula, R is a hydrogen atom or a methyl group, and R1 to R8 are the same or different groups selected from a hydrogen atom, a methyl group, an ethyl group, an inglovir group, and a phenyl group. n is O 5).) Since the glass transition point decreases as nli increases, it is preferably 0 to 1.0. Specifically, R and R1 to R8 are hydrogen atoms, R is a hydrogen atom, RI H3, R' and UR8 are methic groups, R2
These include those in which R4Rs and B7 are hydrogen atoms.

もう一方のエボキシ樹脂(Bl u、2核体成分が5重
fk4以下であるノポラツク型エボキシ樹脂である。ノ
ポラツク型エボキシ樹脂としてはフエノールノボラック
エボキシ樹脂、クレゾールノポラツクエボキシ樹脂、ビ
スフェノールAノポラックエボキシ樹脂、1たは各種の
一価、多価フェノール、プチルフェノール、フロビルフ
ェノール等のアルキルフェノール、またはエチルベンゼ
ン、プロビルベンゼン等のアルキルベンゼンなどt−任
意に組み合わせて、酸性下ホルムアルデヒドで縮合して
得られるノボラツク類金、グリシジルエーテル化して得
られるエポキシ樹脂も含まれる。これらの中でクレゾー
ルノボラックエポキシ樹脂、フェノールノボラックエボ
キシ樹脂が好ましい。通常のノボラツク型エボキシ樹脂
中の2核体成分は通常約7重t4以上だが、本発明で用
いるノボラック型エボキシ4!!脂中の2核体成分は、
5重:!it%以下である必要がある。5重量幅よう多
いと、成形の際にパリが多く、1た硬化体のガラス転移
点が低い、熱時硬度が低いなどの不都合が生ずる。咬た
エポキシ当量は160から250、特に160から21
0が好1レい。そして樹脂軟化点は、50〜110℃、
特に50〜9口℃が好壕しい。このようなノボラツク型
エボキシ樹脂を併用することκよク、ビスヒドロキシビ
フェニル系エポキシ樹脂の持つ半田耐熱性向上作用會低
下i−vずに、七の欠点である成形性、耐熱性等金改良
しうるものである。
The other epoxy resin (Blu) is a nopolak type epoxy resin in which the dinuclear component is quintuple fk4 or less.Noporak type epoxy resins include phenol novolak epoxy resin, cresol nopolak epoxy resin, and bisphenol A nopolak epoxy resin. , monohydric or polyvalent phenols, alkylphenols such as butylphenol, flobylphenol, or alkylbenzenes such as ethylbenzene, probylbenzene, etc., in any combination, and novolaks obtained by condensation with formaldehyde under acidic conditions. It also includes epoxy resins obtained by glycidyl etherification.Among these, cresol novolak epoxy resins and phenol novolak epoxy resins are preferred.The binuclear component in ordinary novolac type epoxy resins is usually about 7-fold T4 or more. However, the binuclear component in the novolak-type epoxy 4!! fat used in the present invention is
Five layers:! It needs to be less than or equal to it%. If the weight range is too large, there will be a lot of flaking during molding, and disadvantages such as a low glass transition point of the cured product and low hardness when heated will occur. The epoxy equivalent weight is 160 to 250, especially 160 to 21
0 is good and 1 is bad. And the resin softening point is 50~110℃,
A temperature of 50 to 9 degrees Celsius is particularly preferable. By using such a novolak type epoxy resin in combination, it is possible to improve the moldability, heat resistance, etc., which are the seven drawbacks, without deteriorating the soldering heat resistance improvement effect of bishydroxybiphenyl epoxy resin. It is something that can be used.

上記の(4)ビスヒドロキシビフエニル系エボキシ樹脂
と(B)ノボラック型エボキシ樹脂と紫併用丁る割合は
、それらの1【量比A/Bが3 0/7 0〜95/5
である必要がある。(Nのエポキシ樹脂が95重量優よ
ク多い場合、ガラス転移点が低すぎ、低粘度のためぱク
が多くて戒形作業が困難となるなどの欠点があク、また
3口重t係よク少ないと、半田耐熱性向上の効果が少な
くなう、流動性が悪〈なるためである。また両エポキシ
樹脂の加水分解性塩素は少ないほど好ましいが、特に0
.05重量幅以下が好1しい。これよク多いと耐湿信頼
性が劣るためである。またナトリウムイオン、塩素イオ
ンなどの水可溶性イオンも少ない方が好渣しく、特に5
 ppm以下が好ましい。加水分解性塩素の場合と同様
、これより多いと耐湿信頼性が劣って来るためである。
The ratio of (4) bishydroxybiphenyl-based epoxy resin and (B) novolac-type epoxy resin combined with purple is 1 [amount ratio A/B is 3 0/7 0 to 95/5]
It must be. (If the amount of N epoxy resin is more than 95% by weight, the glass transition point will be too low and the viscosity will be too low, resulting in a lot of flaking and making it difficult to form the mold. If the amount of hydrolyzable chlorine is too low, the effect of improving soldering heat resistance will be reduced, and the fluidity will be poor.In addition, the less hydrolyzable chlorine in both epoxy resins, the better, but especially the less
.. 05 weight range or less is preferred. This is because if there is more than this, the moisture resistance reliability will be poor. Also, it is better to have fewer water-soluble ions such as sodium ions and chloride ions, especially 5
It is preferably less than ppm. This is because, as in the case of hydrolyzable chlorine, if the amount is more than this, the moisture resistance reliability will deteriorate.

本発明の組成物は難燃化されていることが好筐しい。そ
の目的のためにハロデン化化合物として、通常は臭素化
ビスフェノールA型エボキシ樹脂、臭素化フェノールノ
ボラツクエボキシ樹脂、上記のビスヒドロキシビフエニ
ル系エボキシ樹脂のハロrン化物等のハロゲン化エボキ
シ樹脂が用いられる。これらはエボキ−/柄脂全体に対
して、25重量多以下である必要がある。これよク多い
ことは難燃性付与に不必要なばかクではなく、半田耐熱
性、耐湿信頼性がかえって低下するためである。
Preferably, the composition of the present invention is flame retardant. For this purpose, halogenated epoxy resins such as brominated bisphenol A-type epoxy resins, brominated phenol novolac epoxy resins, and halogenated products of the above-mentioned bishydroxybiphenyl-based epoxy resins are usually used as halodane compounds. It will be done. These must be 25% or less in weight relative to the entire ebony/pattern fat. The reason why there is more than this is not because it is unnecessary for imparting flame retardancy, but because the soldering heat resistance and moisture resistance reliability are reduced.

本発明に用いられる(2)フェノール型硬化剤としては
、1分子中に少なくとも2個以上の水酸基を有するもの
が用いられる。例えばフェノール、レゾルシノール、ク
レゾール、キシレノール、プロビルフェノール、アミル
フェノール、プチルフェノール、オクチルフェノール、
7エニルフェノール、アリルフェノール、ビスフェノー
ルAなどが単独で、またはそれらを併用して合成される
ノボラツク樹Q旨、またポリイソプロペニルフェノール
、ポリビニルフェノール類、及びこれらにハロゲン基を
導入したフェノール型硬化剤などが挙げられ、これらの
うち1種もしくは2種以上のものが用いられる。これら
のうち未縮合のフェノール性化合物が1重ii悌以下、
好ましくは0.5重量%以下のノボラツク樹脂が好適で
ある。そして軟化点は、50〜110℃、好1レくは6
口〜90°Cのものが用いられる。
As the (2) phenolic curing agent used in the present invention, one having at least two or more hydroxyl groups in one molecule is used. For example, phenol, resorcinol, cresol, xylenol, proylphenol, amylphenol, butylphenol, octylphenol,
Novolac tree Q, which is synthesized from 7-enylphenol, allylphenol, bisphenol A, etc., alone or in combination, as well as polyisopropenylphenol, polyvinylphenols, and phenol-type curing agents in which halogen groups are introduced into these. etc., and one or more types of these may be used. Among these, the uncondensed phenolic compound is less than 1 fold,
Preferably, novolak resin is used in an amount of 0.5% by weight or less. And the softening point is 50-110℃, preferably 6
A temperature of ~90°C is used.

硬化剤の配合量は、硬化剤のフェノール性水酸基とエボ
キシ樹脂のエボキシ基の比が0.3〜1.2の範囲、特
に好ましくは0.4〜1.1の範囲にあるのがよい。上
記範囲以外では耐湿信頼性他t低下させるので好ましく
逢い。
The amount of the curing agent to be blended is such that the ratio of the phenolic hydroxyl group of the curing agent to the epoxy group of the epoxy resin is in the range of 0.3 to 1.2, particularly preferably in the range of 0.4 to 1.1. If it is outside the above range, the moisture resistance reliability and other properties will deteriorate, so it is preferable.

次に本発明のエボキシ樹脂組成物に用いられる(3)無
機質充填剤としては、結晶シリカ、溶融シリカ、タルク
、アルミナ、硫酸カルシウム、炭酸カルシウム、炭酸バ
リウム及び窒化珪素などの粉末あるいはガラス、窒化珪
素及び炭化珪素の繊維やウイスカーなどが挙げられ、こ
れらの1種または2種以上が用いられる。これらのうち
ではシリカ、特に溶融シリカが高純度及び低い熱膨張率
を有することから好ましい。形状としては通常の破砕品
以外に球状のものも好適に用いられる。
Next, the inorganic filler (3) used in the epoxy resin composition of the present invention includes powders such as crystalline silica, fused silica, talc, alumina, calcium sulfate, calcium carbonate, barium carbonate, and silicon nitride, or glass, and silicon nitride. and silicon carbide fibers and whiskers, and one or more of these may be used. Among these, silica, especially fused silica, is preferred because it has high purity and a low coefficient of thermal expansion. As for the shape, in addition to the usual crushed products, spherical ones are also suitably used.

充填剤の配合量は、組成物全体に対して76重t幅以上
は必要で、好ましくは75重量係以上であり、成形性等
t損なわない限ク多いほうが好ましい。特に球状フイラ
ーを充填剤の全量壕たは一部に用いた場合、8口重ik
多以上配合丁ることもできる。73重量係未満では半田
耐熱性が不十分である。
The blending amount of the filler is required to be at least 76% by weight, preferably at least 75% by weight, with respect to the entire composition, and it is preferably as large as possible as long as moldability etc. are not impaired. Especially when spherical filler is used for all or part of the filler, 8 mouth weight ik
It is also possible to mix more than one. If the weight ratio is less than 73, the soldering heat resistance is insufficient.

次に本発明に用いられる可とう性付与剤としては次のよ
うな物が挙げられる。シリコーンゴム、ポリサリファイ
ドゴム、ブタジエン変性ゴム、水添ブタジエンスチレン
ゴム1たはブロックボリマ、熱可塑性エストラマーなと
のゴム状物質、シリコーンオイルなどのオイル状物質、
各種熱可塑性樹脂、シリコーン樹脂などの樹脂状物質、
あるいはエボキシ樹脂、フェノール樹脂の一部壕たは全
部七アミノシリコーン、エポキシシリコーン、アルコキ
シシリコーンなどで変性したもの等が例示される。
Next, examples of the flexibility imparting agent used in the present invention include the following. Rubbery substances such as silicone rubber, polysulfide rubber, butadiene-modified rubber, hydrogenated butadiene styrene rubber 1 or block polymer, thermoplastic elastomer, oily substances such as silicone oil,
Resin-like substances such as various thermoplastic resins and silicone resins,
Alternatively, examples include epoxy resins and phenol resins partially or completely modified with hepta-amino silicone, epoxy silicone, alkoxy silicone, etc.

これらの中で特に好1しいものとして(ω水素添加した
スチレンーブタジエンブロックコボリマー水素添加スチ
レンーイソプレンブロックコボリマ水素添加アクリロニ
トリループタジエンコボリマー及びそれらにカルボキシ
ル基、カルボン酸、酸無水物基、トリアルコキシリル基
、アミノ基などのエポキシ#脂またはフェノール型硬化
剤と反応し得る官能基金持つもの、(b)アミノシリコ
ーンとエボキシシリコーンのように相互に反応し得る官
能基を持つ2種以上の反応性シリコーン金1予めエポキ
シ樹脂またはフェノール型硬化剤で変性したもの、また
はシリコーン樹脂粉末が挙げられる。上記(a) tた
は(b) !用いた場合、耐湿信頼性が良いのみならず
、染みだし等の無い成形性の良好なものとすることがで
きる。また耐熱性の良好な可とう性付与剤々ため、成形
体を高温に長時間放置しても、安定した性能を保持する
ことができる。
Among these, particularly preferred are (ω hydrogenated styrene-butadiene block copolymer, hydrogenated styrene-isoprene block copolymer, hydrogenated acrylonitriloptadiene copolymer, and carboxyl, carboxylic acid, and acid anhydride groups). (b) Those with functional groups that can react with epoxy resins or phenolic curing agents, such as trialkoxylyl groups and amino groups; (b) Two or more types that have functional groups that can react with each other, such as amino silicone and epoxy silicone. Reactive silicone gold 1 modified in advance with an epoxy resin or phenol type curing agent, or silicone resin powder can be used.If the above (a) or (b) is used, it not only has good moisture resistance but also good reliability. The molded product can be molded with good moldability without bleeding etc. Also, since the molded product has flexibility imparting agents with good heat resistance, it maintains stable performance even if the molded product is left at high temperatures for a long time. be able to.

上記可とう性付与剤の添加量は、組成物全体の0.1 
〜1 0 i1i:[%、好tt,<fl0.3〜5f
iil−t’ある。0.1重量悌未満では効果がなく、
10重量係よク多いと流動性の低下、ビンホールの多発
碌どの成形性不良會生ずるためである。
The amount of the flexibility imparting agent added is 0.1 of the total composition.
~1 0 i1i: [%, preferredtt, <fl0.3~5f
There is iii-t'. There is no effect if the weight is less than 0.1 kg.
This is because if the weight exceeds 10%, fluidity will decrease and poor moldability such as a large number of bottle holes will occur.

次に本発明のエボキシ樹脂組成物には、−短時間で成形
が終了するように硬化促進剤を添加する。
Next, a curing accelerator is added to the epoxy resin composition of the present invention so that the molding can be completed in a short time.

好ましい硬化促進剤としては、1,8−ジアずビシクロ
(5.4.0〕−7−ウンデセン(以後DBUという)
、6−ジブチルアミノ−1.8−ジアずビシクロ(5.
4.[))ウンデセン−7、7−メチル−1.5.7−
}リアデビシクロ(4,4.0)デセンー5等やそのカ
ルボン酸塩やフエノールノボラック塩、トリ7エニル7
オスフイン等のアルキルフオスフィン類、トリエチルア
ンモニウムーテトラ7エニルボロン液塩、テトラフエニ
ルホスホニウムーテトラフエニルボロン酸塩等のテトラ
7エニルボロン酸塩類、トリフエニルフオスフイン●ト
リフエニルボロン等のボロン化合物、トリフエニルフオ
スフイン●トリエトキシアルミニウム等の錯化合物、テ
トラブチルホスホニウム・ペンデトリアゾラート等のペ
ンゾトリアゾラート塩、テトラーn−プチルホスホニウ
ム、O,O−ジエテルホスホロジチオエート、イミダr
 一ル類等で、1種又は2種以上が用いられる。これら
の添加量は、通常エボキシ樹脂総量に対して0.1〜5
重量優である。
A preferred curing accelerator is 1,8-diazbicyclo(5.4.0)-7-undecene (hereinafter referred to as DBU).
, 6-dibutylamino-1,8-diazbicyclo (5.
4. [)) Undecene-7,7-methyl-1.5.7-
}Ria debicyclo(4,4.0)decene-5, etc., its carboxylates, phenol novolac salts, tri7enyl7
Alkylphosphine such as ossuphine, triethylammonium-tetra7enylboron liquid salt, tetra7enylboronic acid salts such as tetraphenylphosphonium-tetraphenylboronic acid salt, boron compounds such as triphenylphosphine and triphenylboron, triphenylphosphine, etc. Enylphosphine ● Complex compounds such as triethoxyaluminum, penzotriazolate salts such as tetrabutylphosphonium pendetriazolate, tetra-n-butylphosphonium, O,O-dietherphosphorodithioate, imida r
One type or two or more types can be used in one type. The amount of these added is usually 0.1 to 5% based on the total amount of epoxy resin.
It is excellent in weight.

賂らに本発明のエボキシ樹脂組成物には必要に応じ、カ
ルナパワックス、モンタンワックス、高級脂肪酸及びそ
のカルシウム塩、弗素化合物、ボリエチレンワックス、
固形筐たはオイル状シリコーンなどの離型剤、3酸化ア
ンチモン、5酸化アンチモン等の難燃化助剤、カーポン
ブラックなどの着色剤、r−グリシドオキシプロビル 
トリメトキシシラン、r−アミノプロビル トリエトキ
シシラン、r−メルカプトグロtル トリメトキシシラ
ン、ウレイドグロビル トリエトキシシランなどのカッ
プリング剤全適宜添加配合することができる。
The epoxy resin composition of the present invention may optionally contain carnapa wax, montan wax, higher fatty acids and their calcium salts, fluorine compounds, polyethylene wax,
Mold release agents such as solid casing or oily silicone, flame retardant aids such as antimony trioxide and antimony pentoxide, coloring agents such as carpon black, r-glycidoxyprobil
Coupling agents such as trimethoxysilane, r-aminopropyl triethoxysilane, r-mercaptoglobin triethoxysilane, and ureidoglobil triethoxysilane can all be added and blended as appropriate.

この組成物に付いては耐熱性を向上させるため、ビスマ
レイミド等のイミド化合物他を配合することも好ましい
In order to improve the heat resistance of this composition, it is also preferable to blend an imide compound such as bismaleimide or the like.

本発明の組成物は、上記諸材料tブレンダーまたはミキ
サーで混合後、加熱ロール筐たは二−ダーなどで溶融混
練した後、冷却粉砕して製造できる。
The composition of the present invention can be produced by mixing the above-mentioned materials in a blender or mixer, melt-kneading them in a heated roll case or seconder, and then cooling and pulverizing them.

(実施例) 次に本発明の実施例を示し、以下の部はすべて重量部金
示す。
(Example) Next, Examples of the present invention will be shown, and all parts below indicate parts by weight.

/3 実施例1−JE!.び比較例1〜4 表1に示す各材料t表2及び表3に示す割合に計量し、
ミキサーで混合、更に加熱ロールで混練し、そして冷却
粉砕してエポキシ樹指組成物を得た。
/3 Example 1-JE! .. and Comparative Examples 1 to 4 Each material shown in Table 1 was weighed in the proportions shown in Tables 2 and 3,
The mixture was mixed with a mixer, further kneaded with a heating roll, and then cooled and ground to obtain an epoxy resin composition.

なお実施例で用いたシリコーン変性フェノール樹脂は次
のようにして得た。上記実施例で用いるのと同じフェノ
ールノボラック樹脂200部を140℃に加熱溶融した
のち、エボキシ当量2500、分子量約1万2000の
エボキシ基金側枝に持つジメチルシリコーンオイル31
部と、アミノ基当t(アミノ基1モルを含むダラム数と
定義する)2000、分子量約4000の両末端にアミ
ノ基をもクジメチルシリコーンオイル19部とを添加し
、高速で撹拌して分散させた。更べ6時間反応させた後
取ク出して、冷却、粉砕して用いた。実施例の添加量は
正味のシリコーン量で示した。
The silicone-modified phenol resin used in the examples was obtained as follows. After heating and melting 200 parts of the same phenolic novolac resin used in the above example at 140°C, dimethyl silicone oil 31 having an epoxy base side branch having an epoxy equivalent of 2,500 and a molecular weight of about 12,000 was prepared.
and 19 parts of dimethyl silicone oil containing amino groups at both ends with a molecular weight of about 4,000 and a molecular weight of about 4,000 were added and dispersed by stirring at high speed. I let it happen. After reacting for another 6 hours, the mixture was taken out, cooled, and ground for use. The amount added in Examples is shown as the net amount of silicone.

これらの組成物は次の方法で評価した。結果a表4及び
表5に示した。
These compositions were evaluated by the following method. The results are shown in Tables 4 and 5.

1)成形性 流れ性は170℃でのスパイラルフローで比較した。パ
リ性は2.5,1 0.30μmの間隙を有する金型で
トランスファー成形し、その間隙に出たパリの長さの平
均値で比較した。
1) Moldability Flowability was compared using spiral flow at 170°C. Transfer molding was performed using a mold having a gap of 2.5, 1 and 0.30 μm, and comparison was made based on the average value of the length of the gap appearing in the gap.

2)半田耐熱性 6酩角のシリコンチップをステージに接着したリードフ
レームを各組成物でトランスファー成形し、8口ピンQ
FP成形体金得た。つぎにアフターキュアーレ、85°
C、85%RF{の条件で96、120時間吸湿とゼた
のち、約215℃のフッ素系溶剤蒸気中に60秒間曝し
た。それらのパッケージの外観は顕微鏡で、内部は超音
波映像探査装it(日立建機社製)で観察し、外部・内
部クラツクの有無金調べた。パッケージ数は10個ずつ
とした。
2) A lead frame with solder heat resistant 6-pin silicon chips glued to the stage was transfer molded with each composition, and an 8-pin Q
FP molded gold was obtained. Next, After Cure, 85°
After absorbing moisture for 96 and 120 hours under conditions of C, 85% RF, it was exposed to fluorine solvent vapor at about 215°C for 60 seconds. The exterior of these packages was examined using a microscope, and the interior was observed using an ultrasonic imaging inspection system IT (manufactured by Hitachi Construction Machinery Co., Ltd.) to check for external and internal cracks. The number of packages was 10 each.

3)耐湿信頼性 対向するアルミニウム配線を有する評価用シリコン素子
で16ピンDIPに各組成物でトランスファー成形した
。アフターキュアーののち260°0の半田浴に10秒
間浸漬し、そして加速して耐湿信頼性を見るため成形体
は、20Vのバイアス會かけつつ125°Cの飽和加圧
水蒸気下におくノクイアスプレツシャークツカーテスト
(以後BPCT トいう)にかげた。素子は各々のテス
トに20個ずつ用いて、アルミニウム配線の腐食による
オープン不良と成る素子の数の経時変化を調べた。
3) Moisture resistance reliability Each composition was transfer-molded onto a 16-pin DIP silicon element for evaluation having aluminum wiring facing each other. After the after-cure, the molded body was immersed in a solder bath at 260°0 for 10 seconds, and the molded body was placed under saturated pressurized steam at 125°C with a bias of 20V applied to accelerate the moisture resistance. I took the Schaaktukar Test (hereinafter referred to as BPCT). Twenty devices were used in each test, and changes over time in the number of devices that developed open defects due to corrosion of the aluminum wiring were investigated.

表3. 配合割合(数字は重量部を表す) 全ての組成において、 上記成分に加えて離型 剤3部、 雉燃化助剤1 0部、 カーボンプラック 2都全配合したう 表5. 物 性 注1 数字は内部、外部共にクラツクの無いパッケージ
数を、時間は吸湿時間を示す。
Table 3. Compounding ratio (numbers represent parts by weight) In addition to the above ingredients, all compositions contained 3 parts of mold release agent, 10 parts of pheasant combustion aid, and 2 parts of carbon plaque.Table 5. Physical properties Note 1: The number indicates the number of packages with no cracks inside or outside, and the time indicates the moisture absorption time.

注2 数字はオープン不良となった素子数。Note 2 The number is the number of elements with open defects.

(発明の効果) 上記実施例からも明らかなように、本発明の半導体制止
用として用いるエボキシ樹脂組成物は成形性が良好で、
半田付けの際の熱衝撃に強く、耐湿信頼性が大幅に良好
であるため、電子部品、特に半導体、IC,LSI等に
好適となる特徴がある。
(Effects of the Invention) As is clear from the above examples, the epoxy resin composition used for inhibiting semiconductors of the present invention has good moldability,
Since it is resistant to thermal shock during soldering and has significantly good moisture resistance reliability, it has characteristics that make it suitable for electronic components, particularly semiconductors, ICs, LSIs, etc.

Claims (1)

【特許請求の範囲】 1、(1)(A)下記式で表されるビスヒドロキシビフ
エニル系エポキシ樹脂 ▲数式、化学式、表等があります▼ (式中、Rは水素原子またはメチル基を、 R^1〜R^6は水素原子、メチル基、エチル基、イソ
プロピル基、フェニル基より選ばれた 同一もしくは異なる基を示す。またnは0 〜5の整数を示す。)と、 (B)2核体成分が5重量%以下であるノ ボラック型エポキシ樹脂 とを、重量比でA/B=30/70〜95/5の割合で
含み、加水分解性塩素が0.05重量%以下であるエポ
キシ樹脂 (2)フェノール型硬化剤 (3)組成物全体に対して76重量%以上含まれる無機
質充填剤 以上の3成分を主成分とする半導体封止用エポキシ樹脂
組成物。 2、請求項1記載の組成物と可とう性付与剤とを主成分
とする半導体封止用エポキシ樹脂組成物。 3、可とう性付与剤が、水素添加スチレン−プタジエン
ブロックコポリマー、水素添加スチレン−インプレンブ
ロックコポリマー、水素添加アクリロニトリル−プタジ
エンコポリマー及びシリコーン樹脂粉末から選ばれた少
なくとも1種である請求項2記載の半導体封止用エポキ
シ樹脂組成物。
[Claims] 1. (1) (A) A bishydroxybiphenyl epoxy resin represented by the following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, R is a hydrogen atom or a methyl group, (B) Contains a novolac type epoxy resin in which the binuclear component is 5% by weight or less in a weight ratio of A/B = 30/70 to 95/5, and has hydrolyzable chlorine of 0.05% by weight or less. Epoxy resin (2) Phenol type curing agent (3) An epoxy resin composition for semiconductor encapsulation, the main components of which are an inorganic filler and an inorganic filler contained in an amount of 76% by weight or more based on the entire composition. 2. An epoxy resin composition for semiconductor encapsulation, the main components of which are the composition according to claim 1 and a flexibility imparting agent. 3. Claim 2, wherein the flexibility imparting agent is at least one selected from hydrogenated styrene-butadiene block copolymer, hydrogenated styrene-inprene block copolymer, hydrogenated acrylonitrile-ptadiene copolymer, and silicone resin powder. The epoxy resin composition for semiconductor encapsulation described above.
JP19043389A 1989-07-25 1989-07-25 Epoxy resin composition for sealing semiconductor Pending JPH0356526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19043389A JPH0356526A (en) 1989-07-25 1989-07-25 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19043389A JPH0356526A (en) 1989-07-25 1989-07-25 Epoxy resin composition for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPH0356526A true JPH0356526A (en) 1991-03-12

Family

ID=16258055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19043389A Pending JPH0356526A (en) 1989-07-25 1989-07-25 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPH0356526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125620A1 (en) * 2012-02-23 2013-08-29 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125620A1 (en) * 2012-02-23 2013-08-29 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
JPWO2013125620A1 (en) * 2012-02-23 2015-07-30 新日鉄住金化学株式会社 Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof

Similar Documents

Publication Publication Date Title
KR100536538B1 (en) Epoxy Resin Compositions for Sealing Semiconductor and Semiconductor Devices
JPH0356526A (en) Epoxy resin composition for sealing semiconductor
JPH02133947A (en) Semiconductor device
JP2641277B2 (en) Epoxy resin composition
JP2642966B2 (en) Epoxy resin composition
JP2834460B2 (en) Epoxy resin composition
JP2991849B2 (en) Epoxy resin composition
JP2006249139A (en) Epoxy resin composition for encapsulating semiconductor
JP2665484B2 (en) Epoxy resin composition
JPH05206331A (en) Resin composition for sealing semiconductor
JP2002053732A (en) Epoxy resin composition and semiconductor device
JPH0567704A (en) Semiconductor device
KR100414202B1 (en) Epoxy resin composition for encapsulating semiconductor device
JP2001210759A (en) Epoxy resin composition and electronic component sealed device
JP3255376B2 (en) Epoxy resin composition
JPH0617441B2 (en) Resin composition
JP2983613B2 (en) Epoxy resin composition
JPH05175373A (en) Epoxy resin composition
JP3389681B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH03177416A (en) Epoxy resin composition for semiconductor sealing use
WO2005054331A1 (en) Epoxy resin composition and semiconductor device using the same
JPH02127417A (en) Epoxy resin composition
JPH02240132A (en) Epoxy resin composition for semiconductor sealing
JPH06244318A (en) Epoxy resin material for electronic apparatus
JPH03220226A (en) Epoxy resin composition for semiconductor sealing