JPH0356419B2 - - Google Patents

Info

Publication number
JPH0356419B2
JPH0356419B2 JP59032946A JP3294684A JPH0356419B2 JP H0356419 B2 JPH0356419 B2 JP H0356419B2 JP 59032946 A JP59032946 A JP 59032946A JP 3294684 A JP3294684 A JP 3294684A JP H0356419 B2 JPH0356419 B2 JP H0356419B2
Authority
JP
Japan
Prior art keywords
lens
reflected
light
wavefront aberration
transmitted wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59032946A
Other languages
Japanese (ja)
Other versions
JPS60177240A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3294684A priority Critical patent/JPS60177240A/en
Publication of JPS60177240A publication Critical patent/JPS60177240A/en
Publication of JPH0356419B2 publication Critical patent/JPH0356419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、トーリツクレンズの透過波面収差測
定法に関するものであり、特に、シリンドリカル
レンズ、トロイダルレンズ等の回転曲面を有する
レンズの透過波面収差測定法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the transmitted wavefront aberration of a Toric lens, and particularly to a method for measuring the transmitted wavefront aberration of a lens having a rotationally curved surface such as a cylindrical lens or a toroidal lens.

従来から、レンズの透過波面収差を測定するに
は、フイゾー干渉計やトワイマン干渉計など各種
の干渉計が用いられている。
Conventionally, various interferometers such as a Fizeau interferometer and a Twyman interferometer have been used to measure the transmitted wavefront aberration of a lens.

一般に干渉計は、光軸に対して対称な平面や球
面からなるレンズの透過波面収差の測定を対象と
しており、被検物が回転曲面のように母線と子線
が異なる曲率を持つ面を有するシリンドリカルレ
ンズやトロイダルレンズの測定に対しては著しい
制約を受けることになる。例えば、第1図にフイ
ゾー干渉計を用いてシリンドリカルレンズの透過
波面収差を測定する従来の方法を示す。
Interferometers are generally used to measure the transmitted wavefront aberration of a lens made of a plane or spherical surface that is symmetrical about the optical axis, and the object to be measured has a surface whose generating line and sagittal line have different curvatures, such as a rotating curved surface. There are significant restrictions on measurements of cylindrical lenses and toroidal lenses. For example, FIG. 1 shows a conventional method of measuring transmitted wavefront aberration of a cylindrical lens using a Fizeau interferometer.

光源であるレーザ1を出射したレーザビーム
は、ビームエキスパンダ2により発散光となり、
ハーフミラー3を介しコリメータレンズ4に入射
し、コリメータレンズ4を射出後は平行光となり
高精度の参照平面5−aを有する参照原器5に入
射する。参照原器5に入射した光は、その一部は
参照平面5−aで反射し元来た経路をもどりハー
フミラー3を透過し観測部11に至り、残りの大
部分の光は参照平面5−aを透過しシリンドリカ
ルレンズ6に入射する。その入射した光は、シリ
ンドリカルレンズ6の子線を含む断面6−1で
は、レンズ作用により収束光8となり、母線を含
む断面6−2では、レンズ作用がないゆえ平行光
9となり焦線7を形成する。該焦線7とコリメー
タ光軸との交点を曲率中心とする高精度の凹面形
状を有する凹面鏡10を配すると、焦線7を形成
した光の一部は、凹面鏡10で反射され元来た光
路を戻りハーフミラー3を経て観測部11に至
り、前記参照面5−aから反射光と干渉し、干渉
縞を形成する。この時、得られた干渉縞は、シリ
ンドリカルレンズ6の子線方向一断面の透過波面
収差を示すもので、全断面での透過波面収差を測
定するためには、シリンドリカルレンズ6又は凹
面鏡10をシリンドリカルレンズ6の母線方向に
沿つて動かしながら順次測定する必要がある。と
ころが、動かすと、前記参照平面5−aと被検物
との間の光路長が、前回の測定箇所とは無関係に
なり、仮に子線方向断面の透過波面収差を写真等
により順次記録し継ぎ合わせたとしても、第2図
に示すように位相が不連続な干渉縞しか得られ
ず、シリンドリカルレンズの透過波面収差を測定
する事は困難であり、測定できるにしても写真等
で順次記録する事は煩雑で手間がかかる。
The laser beam emitted from the laser 1, which is a light source, becomes diverging light by the beam expander 2,
The light enters the collimator lens 4 via the half mirror 3, and after exiting the collimator lens 4, becomes parallel light and enters the reference standard 5 having a highly accurate reference plane 5-a. A portion of the light incident on the reference prototype 5 is reflected by the reference plane 5-a, returns to the original path, passes through the half mirror 3, and reaches the observation section 11, and most of the remaining light is reflected by the reference plane 5-a. -a and enters the cylindrical lens 6. The incident light becomes a convergent light 8 due to the lens action in the cross section 6-1 that includes the sagittal line of the cylindrical lens 6, and becomes a parallel light 9 in the cross section 6-2 that includes the generatrix because there is no lens action, and the focal line 7 Form. When a concave mirror 10 having a highly accurate concave shape whose center of curvature is the intersection of the focal line 7 and the collimator optical axis is arranged, a part of the light forming the focal line 7 is reflected by the concave mirror 10 and returns to the original optical path. The light returns to the observation section 11 via the half mirror 3, and interferes with the reflected light from the reference surface 5-a, forming interference fringes. The interference fringes obtained at this time indicate the transmitted wavefront aberration of one cross section in the sagittal direction of the cylindrical lens 6. In order to measure the transmitted wavefront aberration in the entire cross section, the cylindrical lens 6 or the concave mirror 10 must be It is necessary to sequentially measure the lens 6 while moving it along the generatrix direction. However, when the object is moved, the optical path length between the reference plane 5-a and the test object becomes unrelated to the previous measurement point. Even if they are combined, only interference fringes with discontinuous phase can be obtained as shown in Figure 2, and it is difficult to measure the transmitted wavefront aberration of a cylindrical lens. Things are complicated and time-consuming.

また、動かしながら子線断面を連続して測定す
れば、透過波面収差を知る事はできるが、この方
法では参照平面と被検物との光路長差を光の波長
よりも十分小さい範囲内で一定に保持しなければ
ならず、動かす機構が精密で高価になる。
In addition, it is possible to know the transmitted wavefront aberration by continuously measuring the meridian cross section while moving, but this method requires that the optical path length difference between the reference plane and the object to be measured be within a range sufficiently smaller than the wavelength of the light. It must be held constant, and the mechanism for moving it is precise and expensive.

他の方法としては、反射面を凹面鏡の代わりに
凹シリンドリカル鏡を使用する事が考えられる
が、高精度の面精度を有する凹シリンドリカル面
を加工する事は難しいなど、種々の欠点を有して
いた。
Another method is to use a concave cylindrical mirror instead of a concave mirror for the reflective surface, but this method has various drawbacks, such as the difficulty of machining a concave cylindrical surface with high surface accuracy. Ta.

そこで本発明は、上述した欠点を取り除くため
になされたもので、被検物の焦線上に、被検物の
母線方向断面の光に対しては反射光路と同一と
し、子線方向断面の光に対しては反射光路と入射
光路とを反射面の法線に対して対称とするような
作用を持ち、しかも高精度面も製作容易な平面や
凸球面などの形状を有する反射面を配し、被検物
透過後の光で該反射面からの反射光と前記参照面
からの反射光とにより生ずる干渉縞から被検物の
透過波面収差を測定しようというものである。
Therefore, the present invention has been made to eliminate the above-mentioned drawbacks, and the focal line of the specimen is set to be the same as the reflected optical path for the light in the generatrix direction cross section of the specimen, and the light in the sagittal direction cross section is The reflective surface has a shape such as a flat surface or a convex spherical surface that has the effect of making the reflected optical path and the incident optical path symmetrical with respect to the normal line of the reflective surface, and can be easily manufactured with high precision. In this method, the transmitted wavefront aberration of the test object is measured from interference fringes generated by the light reflected from the reflective surface and the reference surface after the light passes through the test object.

本発明によるトーリツクレンズの透過波面収差
測定法は、以上の目的を達成するために、可干渉
光源より出射した光を二分し、その二分した一方
の光を、直交する二方向に異なる曲率面を有する
被検物であるトーリツクレンズに照射し、該トー
リツクレンズ透過後の光を、該トーリツクレンズ
の焦線上に配され、該トーリツクレンズの一方向
の曲率に対しては入射光路と反射光路とが同一光
路となるよう反射し、前記一方向と直交する他方
向の曲率面に対しては入射光路と反射光路とが反
射面の法線に対して対称となるよう反射する反射
面で反射させるとともに、前記二分した他方の光
を参照面で反射させ、前記反射面からの被検反射
光と前記参照面からの参照光とを干渉パターン発
生光路に導くことにより干渉縞を発生させ、この
干渉縞で被検物であるトーリツクレンズの透過波
面収差の情報を得る事を特徴とする。
In order to achieve the above objectives, the transmitted wavefront aberration measurement method of a Torytsu lens according to the present invention divides the light emitted from a coherent light source into two, and divides one of the two halves of the light into two different curvature surfaces in two orthogonal directions. The light after passing through the Tory lens is arranged on the focal line of the Tory lens, and the incident optical path and the reflected optical path are arranged with respect to the curvature of the Tory lens in one direction. The light is reflected so that it follows the same optical path, and for a surface of curvature in the other direction orthogonal to the one direction, it is reflected by a reflecting surface so that the incident optical path and the reflected optical path are symmetrical with respect to the normal line of the reflecting surface. , the other bisected light is reflected by a reference surface, and interference fringes are generated by guiding the test reflected light from the reflecting surface and the reference light from the reference surface to an interference pattern generation optical path; The method is characterized in that information on the transmitted wavefront aberration of the Toric lens, which is the object to be tested, is obtained.

以下、一実施例に基づいて本発明を詳細に説明
する。
Hereinafter, the present invention will be explained in detail based on one embodiment.

第3図は本発明を用いてシリンドリカルレンズ
の透過波面収差を測定する一実施例を示す。尚、
従来例である第1図と同一番号は同一物を表わ
し、ここでは従来例と異なる点について説明をす
る。シリンドリカルレンズ6の焦線上に高精度の
面精度を有する平面を有する平面鏡12を配す
る。シリンドリカルレンズ6の子線断面6−1で
は、平面鏡12に入射した光は、反射面の法線に
対して対称な方向に反射され、再び元来た経路を
たどり、ハーフミラーを経て観測部11に至る。
一方、母線方向6−2の光は、平面鏡12で反射
され、反射光は入射方向と反射方向が変わる事な
く元来た経路をたどり観測部に至る。前述した観
測部11に至る母線方向及び子線方向での反射光
は、シリンドリカルレンズ6の透過波面収差の情
報すべてを含んだ光で、該反射光と参照平面5−
aからの反射光との干渉縞は、シリンドリカルレ
ンズ6の透過波面収差の干渉パターンそのもので
あり、被検物を動かして測定していないため、第
4図に示すように、滑らかにつながつた連続性を
有する干渉パターンとなる。
FIG. 3 shows an example of measuring the transmitted wavefront aberration of a cylindrical lens using the present invention. still,
The same numerals as in FIG. 1, which is a conventional example, represent the same parts, and the points that are different from the conventional example will be explained here. A plane mirror 12 having a plane with high surface accuracy is disposed on the focal line of the cylindrical lens 6. In the sagittal cross section 6-1 of the cylindrical lens 6, the light incident on the plane mirror 12 is reflected in a direction symmetrical to the normal to the reflecting surface, retraces its original path, and passes through the half mirror to the observation unit 11. leading to.
On the other hand, the light in the generatrix direction 6-2 is reflected by the plane mirror 12, and the reflected light follows its original path to the observation section without changing its incident direction and reflection direction. The reflected light in the generatrix direction and the sagittal direction that reaches the observation unit 11 described above is light that contains all the information of the transmitted wavefront aberration of the cylindrical lens 6, and the reflected light and the reference plane 5-
The interference fringes with the reflected light from a are the interference patterns of the transmitted wavefront aberration of the cylindrical lens 6, and since the measurement was not performed by moving the object, as shown in Fig. 4, it is a smoothly connected continuous pattern. This results in an interference pattern with characteristics.

また、第5図には本発明を用いてトロイダルレ
ンズの透過波面収差を測定する一実施例を示す。
13は被検物であるトロイダルレンズで、13−
1はトロイダルレンズ13の子線方向の断面を表
わし、13−2は母線方向の断面を表わす。14
は凸球面鏡であり、該凸球面鏡14は、母線方向
ではトロイダルレンズ13透過後の光の集光点1
5を曲率中心とするような球面を持ち、子線方向
では光の集光点16が球面上に一致するように配
されている。
Further, FIG. 5 shows an example in which the transmitted wavefront aberration of a toroidal lens is measured using the present invention.
13 is a toroidal lens which is a test object; 13-
1 represents a cross section of the toroidal lens 13 in the sagittal direction, and 13-2 represents a cross section in the generatrix direction. 14
is a convex spherical mirror, and the convex spherical mirror 14 has a converging point 1 of the light after passing through the toroidal lens 13 in the generatrix direction.
It has a spherical surface whose center of curvature is 5, and is arranged so that the light convergence point 16 coincides with the spherical surface in the sagittal direction.

今、トロイダルレンズ13の子線断面13−1
では、凸球面鏡14に入射した光は反射面の法線
に対して対称な方向に反射され、元来た経路をた
どりハーフミラーを経て観測部に至る。一方、母
線方向の断面13−2の光は、凸球面鏡14の反
射面で反射され、その反射光は入射方向と反射方
向が変わる事なく元来た経路をたどり観測部11
に至る。ここでトロイダルレンズ13の透過波面
収差の情報すべてを含んだ前記子線及び母線方向
からの反射光と参照平面5−aからの反射光とが
干渉し、透過波面収差の干渉パターンが観測され
る。もちろん、被検物(トロイダルレンズ13)
を動かしていないので、第4図と同様に滑らかに
つながつた連続性を有する干渉縞が観測される事
は言うまでもない。
Now, the sagittal cross section 13-1 of the toroidal lens 13
Then, the light incident on the convex spherical mirror 14 is reflected in a direction symmetrical with respect to the normal to the reflecting surface, follows the original path, and reaches the observation section via the half mirror. On the other hand, the light at the cross section 13-2 in the generatrix direction is reflected by the reflecting surface of the convex spherical mirror 14, and the reflected light follows the original path without changing the incident direction and the reflection direction and returns to the observation unit 11.
leading to. Here, the reflected light from the sagittal and generatrix directions, which includes all the information about the transmitted wavefront aberration of the toroidal lens 13, interferes with the reflected light from the reference plane 5-a, and an interference pattern of the transmitted wavefront aberration is observed. . Of course, the test object (toroidal lens 13)
Needless to say, since the interference fringes are not moved, smoothly connected and continuous interference fringes can be observed as in Fig. 4.

なお、上述したシリンドリカルレンズ及びトロ
イダルレンズの透過波面収差の干渉パターンは、
被検物からの反射光による反射波面に対して、参
照光による参照波面を子線方向及び母線方向にテ
イルトする事により、それぞれ母線方向及び子線
方向の透過波面収差を独立に測定する事ができ
る。
Note that the interference pattern of the transmitted wavefront aberration of the cylindrical lens and toroidal lens described above is
By tailing the reference wavefront of the reference light in the meridian direction and the generatrix direction relative to the reflected wavefront of the reflected light from the test object, it is possible to independently measure the transmitted wavefront aberration in the generatrix direction and the meridian direction, respectively. can.

以上述べた如く、本発明を用いると、特殊な原
器を使用したり、精密な移動機構や防振機構も不
要で、滑らかにつながつた連続性を有する干渉縞
が得られ、トーリツクレンズの透過波面収差を容
易に測定する事が可能となる。
As described above, by using the present invention, it is possible to obtain interference fringes that are smoothly connected and continuous without using special prototypes, precise moving mechanisms, or vibration-proofing mechanisms. It becomes possible to easily measure wavefront aberration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフイゾー型の干渉計を用いてシ
リンドリカルレンズの透過波面収差を測定する方
法を示す図、第2図は従来の測定による各断面の
透過波面収差で位相の不連続性を有する干渉縞を
示す図、第3図は本発明を用いてシリンドリカル
レンズの透過波面収差を測定する実施例を示す
図、第4図は本発明で測定された透過波面収差の
干渉パターンを示す図、第5図は本発明を用いて
トロイダルレンズの透過波面収差を測定する実施
例を示す図である。 1……レーザ、2……ビームエキスパンダ、3
……ハーフミラー、4……コリメータレンズ、5
……参照原器、5−a……参照平面、6……シリ
ンドリカルレンズ、6−1……子線方向断面、6
−2……母線方向断面、7……焦線、10……凹
面鏡、11……観測部、12……平面鏡、13…
…トロイダルレンズ、14……凸球面鏡。
Figure 1 shows a method of measuring the transmitted wavefront aberration of a cylindrical lens using a conventional Fizeau type interferometer, and Figure 2 shows the transmitted wavefront aberration of each cross section obtained by conventional measurement, which has phase discontinuity. FIG. 3 is a diagram showing an example of measuring the transmitted wavefront aberration of a cylindrical lens using the present invention; FIG. 4 is a diagram showing the interference pattern of the transmitted wavefront aberration measured by the present invention; FIG. 5 is a diagram showing an example of measuring transmitted wavefront aberration of a toroidal lens using the present invention. 1...Laser, 2...Beam expander, 3
...Half mirror, 4...Collimator lens, 5
... Reference prototype, 5-a ... Reference plane, 6 ... Cylindrical lens, 6-1 ... Sagittal direction cross section, 6
-2... Cross section in the generatrix direction, 7... Focal line, 10... Concave mirror, 11... Observation section, 12... Plane mirror, 13...
...Toroidal lens, 14... Convex spherical mirror.

Claims (1)

【特許請求の範囲】 1 可干渉光源より出射した光を二分し、その二
分した一方の光を、直交する二方向に異なる曲率
面を有する被検物であるトーリツクレンズに照射
し、該トーリツクレンズ透過後の光を、該トーリ
ツクレンズの焦線上に配され、該トーリツクレン
ズの一方向の曲率に対しては入射光路と反射光路
とが同一光路となるよう反射し、前記一方向と直
交する他方向の曲率面に対しては入射光路と反射
光路とが反射面の法線に対して対称となるよう反
射する反射面で反射させるとともに、前記二分し
た他方の光を参照面で反射させ、前記反射面から
の被検反射光と前記参照面からの参照光とを干渉
パターン発生光路に導くことにより干渉縞を発生
させ、この干渉縞で被検物であるトーリツクレン
ズの透過波面収差の情報を得る事を特徴とするト
ーリツクレンズの透過波面収差測定法。 2 前記トーリツクレンズがシリンドリカルレン
ズであり、前記反射面が平面である事を特徴とす
る特許請求の範囲第1項記載の透過波面収差測定
法。 3 前記トーリツクレンズがトロイダルレンズで
あり、前記反射面が凸球平面である事を特徴とす
る特許請求の範囲第1項記載の透過波面収差測定
法。 4 前記参照面からの反射による参照波面と、前
記トーリツクレンズを透過し反射面で反射し再び
戻る被検波面との間に、母線方向及び子線方向に
テイルトを与え、子線方向及び母線方向の透過波
面収差をそれぞれ独立に測定することを特徴とす
る特許請求の範囲第1項記載の透過波面収差測定
法。
[Scope of Claims] 1. Light emitted from a coherent light source is divided into two, and one of the two halves is irradiated onto a Toritsu lens, which is an object to be inspected, which has surfaces of curvature different in two orthogonal directions, and the Toritsu lens is The transmitted light is placed on the focal line of the toric lens, and is reflected so that the incident optical path and the reflected optical path are the same optical path for the curvature of the toric lens in one direction, and the optical path is orthogonal to the one direction. With respect to the curvature surface in the direction, the incident light path and the reflected light path are reflected by a reflecting surface such that they are symmetrical with respect to the normal line of the reflecting surface, and the other bisected light is reflected by a reference surface. By guiding the test reflected light from the reflective surface and the reference light from the reference surface to an interference pattern generation optical path, interference fringes are generated, and with these interference fringes, information on the transmitted wavefront aberration of the Toric lens, which is the test object, is obtained. A method for measuring the transmitted wavefront aberration of a Torritsu lens, which is characterized by the following: 2. The transmitted wavefront aberration measurement method according to claim 1, wherein the toric lens is a cylindrical lens, and the reflective surface is a flat surface. 3. The transmitted wavefront aberration measuring method according to claim 1, wherein the Toric lens is a toroidal lens, and the reflecting surface is a convex spherical plane. 4 A tilt is given in the generatrix direction and the meridian direction between the reference wavefront reflected from the reference surface and the test wavefront that passes through the toric lens, is reflected by the reflection surface, and returns again, and 2. The transmitted wavefront aberration measuring method according to claim 1, wherein the transmitted wavefront aberration of each of the transmitted wavefront aberrations is independently measured.
JP3294684A 1984-02-22 1984-02-22 Measuring method of transmitted wave aberration of toric lens Granted JPS60177240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294684A JPS60177240A (en) 1984-02-22 1984-02-22 Measuring method of transmitted wave aberration of toric lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294684A JPS60177240A (en) 1984-02-22 1984-02-22 Measuring method of transmitted wave aberration of toric lens

Publications (2)

Publication Number Publication Date
JPS60177240A JPS60177240A (en) 1985-09-11
JPH0356419B2 true JPH0356419B2 (en) 1991-08-28

Family

ID=12373111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294684A Granted JPS60177240A (en) 1984-02-22 1984-02-22 Measuring method of transmitted wave aberration of toric lens

Country Status (1)

Country Link
JP (1) JPS60177240A (en)

Also Published As

Publication number Publication date
JPS60177240A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US3518007A (en) Measuring device utilizing the diffraction of light
JP2004530898A (en) Interferometric scanning for aspheric surfaces and wavefronts
JP2013504762A (en) Method for measuring shape of optical surface and interference measuring device
EP0804712B1 (en) Interferometric measurement of surfaces with diffractive optics at grazing incidence
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
US8154733B2 (en) Method and system for the optical measurement of large radii of curvature of optical functional surfaces
Nomura et al. Shape measurements of mirror surfaces with a lateral-shearing interferometer during machine running
US20040174531A1 (en) System for interferometric fit testing
JP2022551063A (en) Measuring device for interferometric measurement of surface shape
US4693604A (en) Interference method and interferometer for testing the surface precision of a parabolic mirror
US4917498A (en) Arrangement for testing grazing hyperboloids and similar reflective solid bodies for shape deviations
Stevens Zone-plate interferometers
JPH0356419B2 (en)
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
Sommargren et al. Sub-nanometer interferometry for aspheric mirror fabrication
JP4286001B2 (en) Reduction of coherent artifacts in interferometers
US4541720A (en) Apparatus for phase symmetrizing optical wave fronts
JPH03156305A (en) Aspherical-shape measuring apparatus
JPH116784A (en) Device and method for measuring shape of aspherical surface
CN112964203B (en) Glancing incidence common-path self-interference device for detecting rough plane surface type
JPH08219737A (en) Interferometer
JPS63210605A (en) Apparatus for measuring configuration of optical surface
Weingaertner et al. High-accuracy interferometric measurement of aspheres
JPH02156106A (en) Spherometer
JPS60100734A (en) Device for testing optical shape of specular surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees