JPH0356301B2 - - Google Patents

Info

Publication number
JPH0356301B2
JPH0356301B2 JP14538487A JP14538487A JPH0356301B2 JP H0356301 B2 JPH0356301 B2 JP H0356301B2 JP 14538487 A JP14538487 A JP 14538487A JP 14538487 A JP14538487 A JP 14538487A JP H0356301 B2 JPH0356301 B2 JP H0356301B2
Authority
JP
Japan
Prior art keywords
less
steel
strength
spot
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14538487A
Other languages
Japanese (ja)
Other versions
JPS63310939A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14538487A priority Critical patent/JPS63310939A/en
Publication of JPS63310939A publication Critical patent/JPS63310939A/en
Publication of JPH0356301B2 publication Critical patent/JPH0356301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、スポツト溶接性の良好な極低炭素
鋼板に関し、とくに鋼中成分と鋼板中の未再結晶
組織の割合に工夫を加えることによつてスポツト
溶接部の継手疲労強度の有利な改善を図ろうとす
るものである。 (従来の技術) 近年、冷延鋼板の焼鈍方法は、省エネルギーや
納期短縮などの要請をみたすため、箱焼鈍法から
連続焼鈍法へと変遷してきた。また、一般に冷延
鋼板に用いられる鋼は低炭素Alキルド鋼である。 連続焼鈍法によりプレス成形性の良好な冷延鋼
板を製造するには、再結晶焼鈍後、300〜500℃の
温度或で3〜10分程度の過時効処理を行なつて耐
時効性の改善を行う必要があり、さらに耐時効
性、絞り性を向上させるためにTi、Nb、Bのご
とき炭窒化物形成元素の添加も行われていた。 一方プレス成形性を向上させるために固溶C、
Nを数10ppmの水準にまで低下させた極低炭素鋼
が、近年採用されるようになつてきたが、このよ
うな極低炭素鋼を素材とした場合でも、絞り性、
耐時効性は若干の改善にとどまり、とくに深絞り
性の良好なあるいは完全非時効性の冷延鋼板を製
造するには一般に困難であつて、それらの特性を
改善するためやはり炭素化物形成元素の添加が必
要とされる。 さらに一般に、自動車用冷延鋼板は、プレス成
形後にスポツト溶接が施されるが、その継手の疲
労強度は自動車の耐久性を支配する重要な因子の
一つである。 かかるスポツト溶接継手の疲労強度は、素材と
して高張力鋼板を用いても改善されず、第3図に
曲線A,Bで示すように高荷重・低サイクル或で
は軟鋼より高いものの、低荷重・高サイクル或で
はかえつて軟鋼より低くなる傾向にあり、自動車
のハイテン化を阻害する大きな要因となつてい
る。 (発明が解決しようとする問題点) 上記の実情の鑑み、これまでにも高張力鋼板の
疲労強度を改善する努力が種々試みられている。 たとえば、特開昭58−3792号公報においては、
炭素当量が0.06〜0.60wt%(以下単に%で示す)、
引張強さが35Kgf/mm2以上の高張力鋼板をスポツ
ト溶接する際にテンパー通電する方法が開示され
ている。 また特開昭58−3793号公報においては、C含有
量が0.20%以下、引張強さがKgf/mm2以上の高張
力鋼板をスポツト溶接する際に、適度な“散り”
が発生する電流領域で溶接する方法が開示されて
いる。 しかしながら上記の例はいずれも、低炭素高張
力鋼板に関するものであり、極低炭素鋼にはその
まま適用することはできない。そして現在までの
ところ極低炭素鋼板に関する技術は全く開示され
ていないのが実情である。ただし鋼種に関係なく
実際の部品の接合強度を高める方法としては、ス
ポツト溶接点数を増す方法やナゲツト径を大きく
する方法などの対応が可能ではあるが、それぞれ
設計変更やコストアツプなどを伴うため、便宜上
採用される手段にすぎず、抜本的は解決手段の開
発が殊の外強く要望されていた。 この発明は、上記の要望に有利に応えるもの
で、煩雑な手間やコストアツプを必要とするよう
な手段によらず、成分組成と連続焼鈍条件とを調
整することにより、スポツト溶接性とくにその継
手疲労強度の有利な改善を可能ならしめた極低炭
素鋼板を提案することを目的とする。 (問題点を解決するための手段) まずこの発明の解明経緯について説明する。 さて発明者らは、軟鋼板、高張力鋼板および極
低炭素鋼板のスポツト溶接性とその継手疲労強度
について綿密な再検討を加えた。その結果、継手
疲労強度に影響を及ぼす因子として溶接部の硬度
と母材部の硬度との相互の関係が重要であること
の知見を得た。 第4図に、スポツト溶接継手部の硬度分布を示
す。 軟鋼板および高張力鋼板ではナゲツトと熱影響
部(HAZ)が硬化するため、溶接部の硬度分布
は曲線Aで示したようになる。また極低炭素鋼板
では曲線Bで示したように溶接部の硬度分布はほ
ぼフラツトとなる。さらに従来知られている低炭
素鋼を素材とした回復焼鈍鋼では、曲線Cで示さ
れるように軟化部が発生する。ここに曲線Aの硬
度分布ではJIS Z 3138による継手の引張剪断疲
労強度は、高荷重・低サイクル側で低く、また曲
線Bでは逆に低荷重・低サイクル域で低く、さら
に曲線Cでは低荷重と高荷重の両方で低いことが
判明した。 そこで発明者らぱ、以上の結果を基に継手疲労
強度が最良の状態となるような硬度分布について
検討したところ、硬度分布が曲線Dで示されるよ
うな鋼種が所期した目的の達成に極めて有効であ
ることを突き止め、かかる極低炭素鋼板を開発す
るべく鋭意研究を重ねた未に、前掲第3図に曲線
Cで示したような低サイクル域は勿論のこと高サ
イクル域においても高い継手疲労強度を呈するよ
うな鋼板を開発し、この発明を完成させるに至つ
たのである。 すなわちこの発明は、C:0.006%以下、Mn:
0.5%以下、Al:0.05%以下、N:0.006%以下お
よびP:0.05%以下を含みかつ、窒化物、硫化物
は不算入としたTi及び/又はNdの一種または二
種合計:0.001〜0.100%およびB:0.0001〜0.005
%を含有し、残部は鉄及び不可避的不純物の組成
から成り、断面組織面積率にて5〜30%の未再結
晶組織を有することから成るスポツト溶接性の良
好な極低炭素鋼板である。 以下この発明を具体的に説明する。 まずこの発明において成分組成を上記の範囲に
限定した理由について説明する。 C:0.006%以下 C量が多くなるとそれにつれて溶接部が母材よ
り硬化し、前掲第4図に示した曲線Dのような、
つまり溶接部の硬度が母材のそれよりも低い状態
がえられないため、C含有量は0.006%の範囲に
限定した。 Mn:0.5%以下 Mnは、熱間割れの原因となるSを固定するの
に有効な元素であり、製鋼工程で添加する必要が
あるが、0.5%を超える添加は材質を硬化させ、
延性を低下させることから、上限を0.5%とした。 Al:0.05%以下 Alは製鋼時の脱酸剤として、また固溶Nを
AlNとして固定する効果もあることから、Alの
添加は必要がある。しかし、あまりに多量の添加
は溶鋼コストを上昇させることから、この発明で
は0.05%以下とした。 N:0.006%以下 NはCと同様、結晶粒を微細にし加工性を低下
させる上、耐時効性も劣化させてしまうことか
ら、Nの含有量は0.006%以下とする必要がある。 P:0.05%以下 Pは強度を向上させる元素であるが、0.05%を
超える含有は材質を硬化させ加工性を劣化させる
ことから、上限を0.05%とした。 Tiおよび/またはNb:0.001〜0.100% 窒化物、硫化物については不算入としたTiも
しくはNbを1種または2種合計で、0.001〜0.100
%とした理由は、0.001%未満では加工性を向上
させることが難しく、一方0.100%を超えると、
再結晶温度を著しく上昇させ、溶鋼コストのみな
らず製造コストも高くなるからである。 B:0.0001〜0.005% Bは、スポツト溶接部の組織を微細にし、
HAZの粒成長を抑制し軟化を防止するのに有効
に寄与するが、0.0001%未満ではその添加効果に
乏しく、一方0.005%を超えて多量に添加すると
材質の劣化を招くので、0.0001〜0.005%の範囲
で添加するものとした。 さてこの発明における必須成分の適正範囲は上
記のとおりであるが、成分組成を上記の範囲に限
定しただけではこの発明で所期した目的を達成す
ることはできず、所期した目的達成のためには鋼
中の未再結晶組織を所定の範囲に制限することが
肝要である。 未再結晶組織 未再結晶組織の存在は、素材の強度を高めると
共に、スポツト溶接部の硬度分布を前掲第4図に
示した曲線Dに沿わせるのに重要である。未再結
晶組織が断面組織面積率にて5%未満の残存では
その効果は小さく、一方30%を超える残存では加
工性が著しく劣化することから、この発明ではそ
の残存量を断面組織面積率で5〜30%の範囲内に
限定した。 第1図に、0.0015%C−0.017%Nb−0.0010%
B:bal Feの組成になる極低炭素鋼の未再結晶
組織断面率とElおよび素材硬度(HV)との関係
について調べた結果を示す。 同図より明らかなように、未再結晶組織断面率
を5〜30%の範囲に限定することにより、Elを低
下させることなしに高いHVが得られている。 なお上記したような適正範囲の未再結晶組織断
面率を得るには、冷間圧延を経た冷延板を再結晶
温度範囲において適当な時間焼鈍してやればよ
く、たとえば厚み0.8mmの0.0019%C−0.024%Ti
−0.0008%B:balFe鋼については、第2図に示
したように610〜690℃の温度範囲において0.5分
程度の焼鈍処理を施せば良い。 (実施例) 表1に示す組成の鋼を溶製後、熱間圧延により
板厚3.2mmとし、脱スケール後、冷間圧延により
板厚0.7mmの冷延板としたのち、表2に示したよ
うな焼鈍を行なつた。 ついで得られた各最終製品を短冊形に剪断し、
ナゲツト径がすべて4.8mmとなるようにスポツト
溶接条件を調整しながら、引張剪断疲労試験片を
製作した。ここに疲労試験は完全片振りとし、試
験の停止は疲労クラツクが約5mmの長さに達した
ときとした。 得られた試験結果を表2に併記する。
(Industrial Application Field) The present invention relates to an ultra-low carbon steel plate with good spot weldability, and in particular, the present invention relates to an ultra-low carbon steel plate with good spot weldability. This is an attempt to advantageously improve fatigue strength. (Prior Art) In recent years, the method of annealing cold-rolled steel sheets has changed from a box annealing method to a continuous annealing method in order to meet the demands for energy conservation and shortened delivery times. Further, the steel generally used for cold rolled steel sheets is low carbon Al killed steel. In order to produce cold-rolled steel sheets with good press formability using the continuous annealing method, after recrystallization annealing, overaging treatment is performed at a temperature of 300 to 500°C for about 3 to 10 minutes to improve aging resistance. Furthermore, carbonitride-forming elements such as Ti, Nb, and B have been added to improve aging resistance and drawability. On the other hand, in order to improve press formability, solid solution C,
In recent years, ultra-low carbon steels with N content reduced to several tens of ppm have been used, but even when such ultra-low carbon steels are used as raw materials, drawability, drawability,
The aging resistance is only slightly improved, and it is generally difficult to produce cold-rolled steel sheets with particularly good deep drawability or completely non-aging properties, and it is still necessary to add carbide-forming elements to improve these properties. addition is required. Furthermore, cold rolled steel sheets for automobiles are generally spot welded after press forming, and the fatigue strength of the joints is one of the important factors governing the durability of automobiles. The fatigue strength of such spot welded joints is not improved even if high-strength steel plates are used as the material, and as shown by curves A and B in Figure 3, it is higher than mild steel at high loads and low cycles, but it is higher at low loads and high cycles. In terms of cycle strength, the steel tends to be lower than that of mild steel, and is a major factor inhibiting the shift to high-strength automobiles. (Problems to be Solved by the Invention) In view of the above-mentioned circumstances, various efforts have been made to improve the fatigue strength of high-tensile steel plates. For example, in Japanese Patent Application Laid-open No. 58-3792,
Carbon equivalent is 0.06-0.60wt% (hereinafter simply expressed as %),
A method is disclosed in which a tempering current is applied when spot welding high-tensile steel plates having a tensile strength of 35 Kgf/mm 2 or more. Furthermore, in JP-A No. 58-3793, when spot welding high-tensile steel plates with a C content of 0.20% or less and a tensile strength of Kgf/mm 2 or more, a suitable "spatter" is required.
Disclosed is a method for welding in a current range where . However, all of the above examples relate to low carbon high tensile strength steel plates, and cannot be directly applied to ultra low carbon steel. The reality is that no technology regarding ultra-low carbon steel sheets has been disclosed to date. However, regardless of the steel type, it is possible to increase the joint strength of actual parts by increasing the number of spot welds or increasing the nugget diameter, but each method requires design changes and increases in cost, so it is difficult to do so for convenience. This was just a means to be adopted, and there was a strong demand for the development of a fundamental solution. The present invention advantageously satisfies the above-mentioned needs, and improves spot weldability, especially joint fatigue, by adjusting the component composition and continuous annealing conditions, without resorting to complicated labor or increased costs. The purpose of this study is to propose an ultra-low carbon steel plate that can advantageously improve its strength. (Means for Solving the Problems) First, the background to the elucidation of this invention will be explained. Now, the inventors have conducted a thorough reexamination of the spot weldability of mild steel plates, high-strength steel plates, and ultra-low carbon steel plates, and the fatigue strength of their joints. As a result, it was found that the mutual relationship between the hardness of the weld and the hardness of the base metal is important as a factor that affects joint fatigue strength. Figure 4 shows the hardness distribution of the spot welded joint. In mild steel plates and high-strength steel plates, the nugget and heat-affected zone (HAZ) harden, so the hardness distribution of the weld becomes as shown by curve A. Furthermore, in the case of ultra-low carbon steel sheets, the hardness distribution of the welded portion is approximately flat, as shown by curve B. Furthermore, in the conventionally known recovery annealed steel made from low carbon steel, a softened portion occurs as shown by curve C. Here, in the hardness distribution of curve A, the tensile shear fatigue strength of the joint according to JIS Z 3138 is low in the high load/low cycle region, and in curve B, it is low in the low load/low cycle region, and furthermore, in curve C, the tensile shear fatigue strength of the joint is low in the low load/low cycle region. It was found to be low both at high loads and at high loads. Based on the above results, the inventors investigated the hardness distribution that would give the best joint fatigue strength, and found that the steel type with the hardness distribution shown by curve D was extremely effective in achieving the intended purpose. We have found that this is effective and have conducted intensive research to develop such ultra-low carbon steel sheets. They developed a steel plate that exhibits fatigue strength and completed this invention. That is, in this invention, C: 0.006% or less, Mn:
Total of one or two types of Ti and/or Nd, including 0.5% or less, Al: 0.05% or less, N: 0.006% or less, and P: 0.05% or less, and excluding nitrides and sulfides: 0.001 to 0.100 % and B: 0.0001-0.005
%, the remainder is iron and unavoidable impurities, and has an unrecrystallized structure of 5 to 30% in cross-sectional structure area ratio, and has good spot weldability. This invention will be specifically explained below. First, the reason why the component composition is limited to the above range in this invention will be explained. C: 0.006% or less As the amount of C increases, the welded part becomes harder than the base metal, and as shown in curve D shown in Figure 4 above,
In other words, since it was impossible to obtain a state in which the hardness of the welded part was lower than that of the base metal, the C content was limited to a range of 0.006%. Mn: 0.5% or less Mn is an effective element for fixing S, which causes hot cracking, and must be added during the steelmaking process, but addition of more than 0.5% will harden the material.
Since it reduces ductility, the upper limit was set at 0.5%. Al: 0.05% or less Al is used as a deoxidizing agent during steel manufacturing and as a solute N.
Addition of Al is necessary because it has the effect of fixing it as AlN. However, since adding too much increases the cost of molten steel, in this invention it is set at 0.05% or less. N: 0.006% or less Similar to C, N makes crystal grains finer and reduces workability, as well as deteriorating aging resistance, so the content of N needs to be 0.006% or less. P: 0.05% or less P is an element that improves strength, but a content exceeding 0.05% hardens the material and deteriorates workability, so the upper limit was set at 0.05%. Ti and/or Nb: 0.001 to 0.100% One or two types of Ti or Nb, excluding nitrides and sulfides, 0.001 to 0.100%
The reason why it is set as % is that if it is less than 0.001%, it is difficult to improve the workability, whereas if it exceeds 0.100%,
This is because it significantly increases the recrystallization temperature, increasing not only the cost of molten steel but also the manufacturing cost. B: 0.0001-0.005% B makes the structure of the spot weld fine,
It effectively contributes to suppressing grain growth and preventing softening of the HAZ, but if it is less than 0.0001%, its effect is poor, while if it is added in a large amount exceeding 0.005%, it will cause deterioration of the material, so 0.0001 to 0.005% It is assumed that the amount is added within the following range. Now, although the appropriate range of the essential components in this invention is as described above, it is not possible to achieve the intended purpose of this invention by simply limiting the component composition to the above range. Therefore, it is important to limit the unrecrystallized structure in the steel to a predetermined range. Unrecrystallized structure The presence of an unrecrystallized structure is important for increasing the strength of the material and for making the hardness distribution of the spot weld follow the curve D shown in FIG. 4 above. If less than 5% of the unrecrystallized structure remains in cross-sectional structure area ratio, the effect is small, while if more than 30% remains, workability deteriorates significantly. It was limited to a range of 5 to 30%. Figure 1 shows 0.0015%C-0.017%Nb-0.0010%
B: Shows the results of an investigation into the relationship between the non-recrystallized structure cross section of ultra-low carbon steel having a composition of bal Fe, El, and material hardness (H V ). As is clear from the figure, by limiting the cross-sectional area of the unrecrystallized structure to a range of 5 to 30%, a high H V can be obtained without reducing El. In order to obtain the cross-sectional area of the unrecrystallized structure in the appropriate range as described above, it is sufficient to anneal the cold-rolled cold-rolled sheet for an appropriate time in the recrystallization temperature range. For example, a 0.0019% C- 0.024%Ti
-0.0008% B:balFe steel may be annealed for about 0.5 minutes in the temperature range of 610 to 690°C as shown in FIG. (Example) After melting steel with the composition shown in Table 1, it was hot rolled to a plate thickness of 3.2 mm, descaled, and then cold rolled to a cold rolled plate with a plate thickness of 0.7 mm, as shown in Table 2. A similar annealing process was performed. Each final product obtained is then sheared into strips,
Tensile shear fatigue test specimens were manufactured while adjusting spot welding conditions so that all nuggets had a diameter of 4.8 mm. The fatigue test was conducted with complete oscillation, and the test was stopped when the fatigue crack reached a length of about 5 mm. The test results obtained are also listed in Table 2.

【表】【table】

【表】 表2の結果から明らかなように、この発明の鋼
組成を有し、かつ未再結晶率がこの発明の適正範
囲を満足するA1,B1およびC1鋼のみが継手疲労
強度が104サイクルにおいて400Kgf/spot以上、
107サイクルにおいて90Kgf/spot以上と低サイ
クル域から高サイクル域全域にわたつて高い値を
示した。 これに対し他の鋼はいずれも、両者とも良好な
継手疲労強度は得られなかつた。 (発明の効果) かくしてこの発明によれば、鋼板に部分的に未
再結晶組織を残存させることによつて強度を確保
すると共にスポツト溶接においてはナゲツトを硬
化させず、またHAZの硬化も抑えることができ
るので、安価な高張力鋼板でありながらスポツト
溶接継手の疲労強度を低サイクル域から高サイク
ル域までにわたつて格段に向上させることがで
き、ひいては自動車用鋼板としては勿論のこと、
スポツト溶接継手の疲労強度が問題となる機械部
品などに適用して偉功を奏する。
[Table] As is clear from the results in Table 2, only steels A1, B1, and C1, which have the steel composition of this invention and whose unrecrystallized ratio satisfies the appropriate range of this invention, have a joint fatigue strength of 10 4 400Kgf/spot or more in cycle,
In 10 7 cycles, it showed a high value of 90Kgf/spot or more across the entire low cycle range to high cycle range. In contrast, good joint fatigue strength could not be obtained with any of the other steels. (Effects of the Invention) Thus, according to the present invention, strength is ensured by partially leaving an unrecrystallized structure in the steel plate, and in spot welding, nuggets are not hardened and HAZ hardening is also suppressed. This makes it possible to significantly improve the fatigue strength of spot welded joints from low cycle to high cycle range, even though it is an inexpensive high-strength steel plate.
It has been successfully applied to mechanical parts where the fatigue strength of spot welded joints is a problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼中の未再結晶組織面積率とElおよ
び素材硬度との関係を示したグラフ、第2図は、
連続焼鈍温度と未再結晶組織面積率との関係を示
したグラフ、第3図は、スポツト溶接継手の引張
剪断疲労線図、第4図は、スポツト溶接継手の硬
度分布を示した図である。
Figure 1 is a graph showing the relationship between the area ratio of unrecrystallized structures in steel, El, and material hardness, and Figure 2 is
A graph showing the relationship between continuous annealing temperature and unrecrystallized structure area ratio, Figure 3 is a tensile shear fatigue diagram of a spot welded joint, and Figure 4 is a diagram showing the hardness distribution of a spot welded joint. .

Claims (1)

【特許請求の範囲】 1 C:0.006wt%以下、 Mn:0.5wt%以下、 Al:0.05wt%以下、 N:0.006wt%以下、および P:0.05wt%以下、 を含みかつ、 窒化物、硫化物は不算入としたTi及び/又は
Nbの一種または二種合計:0.001〜0.100wt%お
よび B:0.0001〜0.005wt% を含有し、残部は鉄及び不可避的不純物の組成か
ら成り、断面組織面積率にて5〜30%の未再結晶
組織を有することを特徴とするスポツト溶接性の
良好な極低炭素鋼板。
[Claims] 1 C: 0.006wt% or less, Mn: 0.5wt% or less, Al: 0.05wt% or less, N: 0.006wt% or less, and P: 0.05wt% or less, and nitride, Ti and/or sulfides not included
Contains a total of one or two types of Nb: 0.001 to 0.100wt% and B: 0.0001 to 0.005wt%, the remainder consists of iron and unavoidable impurities, and the cross-sectional structure area ratio is 5 to 30% unregenerated. An ultra-low carbon steel sheet with good spot weldability characterized by having a crystalline structure.
JP14538487A 1987-06-12 1987-06-12 Extra low carbon steel plate having good spot weldability Granted JPS63310939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14538487A JPS63310939A (en) 1987-06-12 1987-06-12 Extra low carbon steel plate having good spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14538487A JPS63310939A (en) 1987-06-12 1987-06-12 Extra low carbon steel plate having good spot weldability

Publications (2)

Publication Number Publication Date
JPS63310939A JPS63310939A (en) 1988-12-19
JPH0356301B2 true JPH0356301B2 (en) 1991-08-27

Family

ID=15383996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14538487A Granted JPS63310939A (en) 1987-06-12 1987-06-12 Extra low carbon steel plate having good spot weldability

Country Status (1)

Country Link
JP (1) JPS63310939A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317647A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Cold-rolled steel sheet excellent in strength and toughness in weld zone and its production
JPS63317648A (en) * 1987-06-19 1988-12-26 Kawasaki Steel Corp Cold-rolled steel sheet excellent in workability and spot weldability
KR20020010050A (en) * 2000-07-28 2002-02-02 이구택 Flux Core Wire Cold Sheet and the Manufacturing Method thereof

Also Published As

Publication number Publication date
JPS63310939A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH02175839A (en) High strength cold rolled steel sheet excellent in weldability and workability and its production
JPH0356301B2 (en)
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP3793244B2 (en) Structural steel welded joints with excellent fatigue strength
JPH07118792A (en) High-strength hot rolled steel plate and its production
JP2002327243A (en) Steel material for shear reinforcing bar with high strength, and weld-closed shear reinforcing bar with high strength
JPS623214B2 (en)
JPH0967643A (en) Welded joint excellent in fatigue strength and welding method therefor
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JP3420372B2 (en) Chromium steel sheet with excellent formability and weld ductility
KR900007445B1 (en) Method for producing a high tensile steel
JP2962054B2 (en) Manufacturing method of high strength electric resistance welded steel pipe for machine structure
JPS62256947A (en) Tempered high-phosphorus-type weather-resisting steel plate excellent in weldability and toughness at low temperature
JP2810154B2 (en) Hot rolled steel sheet for processing with excellent fatigue resistance of welded joints
JPH05171271A (en) Pr0duction of non-heattreated high tensile strength steel plate with low yield ratio
JPH0196329A (en) Manufacture of steel for welding construction excellent in sulfide stress corrosion cracking resistance and having >=56kgf/mm2 tensile strength
JPH08176731A (en) High tensile steel and production thereof
JPH06228708A (en) High strength hot rolled steel plate having superior weldability and its production
JP3526702B2 (en) Steel plate for high tensile welded structure excellent in fatigue strength of welded joint and method for producing the same
JP3371714B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JPH11323442A (en) Heat treating method for electric resistance weld zone increasing workability of electric resistance weld zone

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees