JPH0355537B2 - - Google Patents

Info

Publication number
JPH0355537B2
JPH0355537B2 JP61240865A JP24086586A JPH0355537B2 JP H0355537 B2 JPH0355537 B2 JP H0355537B2 JP 61240865 A JP61240865 A JP 61240865A JP 24086586 A JP24086586 A JP 24086586A JP H0355537 B2 JPH0355537 B2 JP H0355537B2
Authority
JP
Japan
Prior art keywords
alloy
strength
alloys
content
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61240865A
Other languages
Japanese (ja)
Other versions
JPS6396241A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24086586A priority Critical patent/JPS6396241A/en
Publication of JPS6396241A publication Critical patent/JPS6396241A/en
Publication of JPH0355537B2 publication Critical patent/JPH0355537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明はアルミニウム合金、特に押出材、圧
延材、あるいは鍛造材として、各種機械部品、構
造材等に使用されるAl−Zn−Mg系ないしAl−
Zn−Mg−Cu系の高強度で成形性に優れしかも耐
応力腐食割れ性が改善されたアルミニウム合金に
関する。 この明細書において、合金成分について用いら
れる「%」はいずれも重量基準によるものとす
る。 従来の技術と問題点 7000系の合金、即ちAl−Zn−Mg系の合金のう
ちでも、比較的高強度を有しつつ押出成形が可能
な構造用合金の代表的なものとして7003合金がよ
く知られているる。また7000系合金を含む各種の
アルミニウム合金のなかでも最高の強度を有しつ
つ、圧延が可能である合金の代表的なものとして
7075合金が良く知られている。しかしながら、上
記7003合金であつても必ずしも充分に満足すべき
優れた押出し性が得られるものではなかつたし、
7075合金も必ずしも満足すべき圧延適性に優れた
ものとはいい得なかつた。 まして、近時各種構造材の用途においても、
益々薄肉軽量化の要請に強いものがあり、合金強
度の増大をはかることが強く要請されている。こ
のような事情下にあつて、押出し性とか圧延性そ
の他のとくに熱間成形性を良好に保持しながら、
更なる強度の増大をはかる目的において、従来技
術ではZnの含有量を増大し、あるいは更にMgの
含有量を増大する試みがなされている。ところ
が、Znの含有量を増大すると、これに伴つて合
金の応力腐食割れに体する感受性が高いものとな
り、構造材等の用途において実用に耐え得ないも
のとなつてしまう傾向が見られる。またMgの含
有量を増大すると、成形性の低下、とくに圧延
性、押出性等の熱間成形性、あるいは更に冷間成
形性の低下を招き、生産性に劣るものとなる傾向
を生ずる。まして、7075合金の場合、それ自体応
力腐食割れ感受性が強いために、従来では該合金
本来の最高強度が得られる条件の熱処理である
T6処理よりも更に高い温度および長い時間の焼
戻しを行つて組織を安定化されたT7材相当の調
質状態で実用化されているのが実情である。この
ため最高強度が得られるT6材に較べると、強度
を10〜20%犠牲にせざるを得ないというような問
題点があつた。 上記のような事情から、従来技術では、強度と
耐応力腐食割れ性の両面に充分な満足が得られ、
しかも押出性とか圧延性等の成形性にも優れてい
るようなアルミニウム合金を得ることは甚だ困難
であつた。 上記のような従来技術の背景にもとずき、この
発明は、7000系のAl−Zn−Mg系ないしAl−Zn
−Mg−Cu系合金を基礎としてそれが本来的に有
する有益な諸性質を具備しながら、成形性及び耐
応力腐食割れ性に改善されたアルミニウム合金を
提供することを目的とする。 問題点を解決する為の手段 この発明者らは、上記の目的のもとに、種々の
実験と研究を重ねたところ、従来から高強度の展
伸材として広く用いられているAl−Zn−Mg系合
金をベースにして、そのMg含有量を比較的低く
抑え、Y、La、Ce、Pr、Nd、Sm等の希土類元
素を添加することにより、上記合金の固有の優れ
た機械的性質を保持させながら、合金の製造に際
しての押出し性はもとより、板材を得るための熱
間での圧延性、更には冷間での加工性を改善しう
ることに加えて、更にAl−Zn−Mg系合金の一般
的な欠点である低い耐応力腐食優れ性を顕著に改
善しうることを見出し得た。 而して、この発明は、上記のような知見から完
成し得たものであつて、その1つの発明合金は、
必須元素としてZnを3〜12%、Mgを1.5%をこえ
2.5%未満の範囲で含有し、あるいは更にCuを
0.05〜3.0%、および(または)Mn:0.1〜1.0%、
Cr:0.05〜0.3%、Zr:0.05〜0.25%のうちの1種
または2種以上を含有し、更に主要な必須元素と
して、例えばY、La、Ce、Pr、Nd、Sm等の希
土類元素の群中から選ばれた1種または2種以上
を総量で0.5〜10%の範囲で含有し、残りが実質
的にAlと不可避不純物からなるアルミニウム合
金を要旨とする。 この発明による上記の合金は、Zn及びMgの含
有によつて、Al−Zn−Mg系合金のもつ固有に優
れた機械的性質をそのまま保持しながら、希土類
元素の含有によつて、加工性、とくに熱間加工性
を向上すると共に、応力腐食割れ感受性を著るし
く低下し、負荷応力のかかる実用条件下において
も優れた耐久性を発揮するものである。また、
Cuの添加により、該合金は更に強度の増大化が
実現される。 また、この発明の合金は、更に、Mn、Cr、お
よびZrの群から選ばれた1種または2種以上の
元素を上記の範囲で含有することにより、合金の
熱間加工時に該合金中の結晶粒を微細化し、一段
と組織を安定なものとする。 次に、上記アルミニウム合金の各化学成分の意
義とその含有範囲の限定理由を説明すれば次のと
おりである。 Znは、周知のとおりアルミニウム合金の強度
の向上に寄与するものである。Znの含有量が3
%未満では該合金に所要の高い強度を得ることが
できない。しかし12%をこえて多量に含有しても
比較的に更に強度が向上するというものではな
く、それ以上の含有は実質的に無意味である。従
つて、Znの有効な含有量は3〜12%の範囲であ
るが、特に高強度を得たいという要請のもとに於
ては、Znを比較的多量に、即ち7.0〜10.0%の領
域範囲に添加含有せしめるものとするのが有効で
ある。 Mgは、これもアルミニウム合金の強度の向上
に寄付する。従つて、7000系合金に相当する良好
な高強度を得るためには、少なくとも1.5%をこ
えて含有せしめることが必要である。しかしなが
ら、Mgはその含有量が増えるにしたがつて合金
の延性が低下し、加工性が低下する。加工性をあ
る程度犠牲にしてでも可及的高強度を得たいとい
う要請のもとではMg含有量は5.0%程度まで含有
せしめることが可能であるが、この発明に所期す
る可及的良好な押出性、圧延性、その他の加工性
を得る目的のもとにおいては、Mg含有量は2.5%
未満を限度とする。即ち、2.5%以上のMgを含有
せしめるときは、延性の低下により、圧延性、押
出性その他の加工性の点において充分に満足すべ
き結果を得ることができない。 この発明の最も重要な添加元素とする希土類元
素は、原子番号57から71までの15元素、すなわち
La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、
Dy、Ho、Er、Tm、Yb、Lu、およびこれらに
Y、Scを加えた17元素の群からなる。これらの
元素は必ずしも個々な単独な元素として用いる必
要はなく、希土類金属の混合塩化物を電解して得
られるミツシユメタルを用いても良い。入手のし
易さから工業的にはY、La、Ce、Pr、Nd、Sm
のグループから選ばれた1種または2種以上を組
合わせて用いるのが好適である。この希土類に属
する元素は、本発明のアルミニウム合金中に含有
して主に合金の成形加工性を改善し、かつ耐応力
腐食割れ性を改善する効果を有する。この効果の
点から、本発明においては上記の群中の希土類元
素のすべてを相互に実質的に均等物として評価し
うるものである。従つて、その1種または2種以
上を任意に組合わせて用いうるが、合金中におけ
る含有量が総量で0.5%未満では成形加工性及び
耐応力腐食割れ性の改善効果に不充分であり、反
面、10%を越えて含有しても耐応力腐食割れ性は
あまり向上せず、むしろ合金中に粗大な晶出物が
多く発生し、強度の低下を招くおそれが増大す
る。従つて、希土類元素の許容含有量は0.5〜10
%の範囲に規定されるが、一般的に望まれるよう
な高い耐応力腐食割れ性を付与するためには、コ
ストとの関係も考慮して、上記の範囲中でも比較
的高い含有率を選んで、好ましくは2.0〜7.0%の
範囲に含有せしめることにより、更に最も好まし
くは4.0〜6.0%の範囲に含有せしめることによ
り、大きな満足を得ることができる。 希土類元素の含有は、耐応力腐食割れ性の増大
効果に加えて、上記のように合金中の結晶組織を
微細かつ安定なものとして、結果的に押出し、圧
延等の成形加工性を向上する点でも顕著な効果を
あらわす。したがつて、従来技術では、組成上高
強度を予測し得ても押出し加工とか圧延加工が甚
だ困難であつたような合金でも、この発明の適用
により支障なく能率的に工業生産が可能となる。
例えば強化元素であるZnを7.0%をこえて多量に
含むような高強度の合金をも支障なく容易に製造
することができる。 Cuは、これも既知のとおり強度の向上に寄与
するものであるが、含有量が0.05%未満ではその
効果に十分でなく、3.0%をこえて含有しても強
度の向上効果に較べて、溶接凝固割れ感受性を高
め、溶接性が悪くなると共に、耐食性、焼入れ性
も低下してくる弊害に強くなるため好ましくな
い。従つて、上記に規定される含有量の範囲内で
も、特に高強度が要請される場合には、上限近く
まで添加しても良いが、溶接構造材の用途に使用
されるような合金である場合には、不純物として
の含有範囲をこえて積極的にはCuを含有せしめ
ないか、又は比較的低い0.3%以下の程度の領域
範囲でそれを含有せしめるものとすることが望ま
しい。 この発明の合金において添加されるMn、Cr、
Zrは、いずれも熱間加工時の結晶粒の微細化に
役立つものであり、Mn:0.1未満、Cr:0.05%未
満、Zr:0.05%未満では上記効果に乏しく、
Mn:1.0%超過、Cr:0.3%超過、Zr:0.25%超
過の場合には、合金中に粗大な晶出物を生じて合
金の強度を低下する。 発明の効果 この発明に係るアルミニウム合金は、後掲の実
施例から理解されるように、Al−Zn−Mg系の合
金であつて、それに固有の高い強度を保有するも
のでありながら、従来合金に較べて押出性、圧延
性等の加工性に優れ、しかも顕著に耐応力腐食割
れ性に優れたものである。従つて、押出材、圧延
材、鍛造材等の展伸材として使用される各種の用
途において、従来合金より一段とその成形加工性
を向上しながら薄肉軽量化をおしすすめることが
可能となる。殊に、Mg、Cuの含有量において従
来の7075合金に相当する合金であつても、本発明
に従つて希土類元素を更に含有する改善された合
金にあつては、最高強度を帯有させうるT6の熱
処理材として実用に供することが可能となる。加
えて、押出し性、圧延性等の加工性の向上により
従来合金より一段と生産性を上げることができる
利点もある。 実施例 実施例 1 下記の第1表に示されるNo.1〜14までの各種組
成のアルミニウム合金を、水冷金型を用いて直径
3インチのビレツトに鋳造した。次に、このビレ
ツトに対し、460℃で12時間の均質化処理を施し
たのち、押出し機のコンテナに装填し、温度450
℃にて断面の大きさが3mm×30mmに平たい棒状物
に押出し加工を行つた。
Industrial Application Field This invention relates to aluminum alloys, particularly Al-Zn-Mg or Al-
This invention relates to a Zn-Mg-Cu-based aluminum alloy with high strength, excellent formability, and improved stress corrosion cracking resistance. In this specification, all "%" used for alloy components are based on weight. Conventional technology and problems Among 7000 series alloys, that is, Al-Zn-Mg alloys, 7003 alloy is a typical structural alloy that has relatively high strength and can be extruded. known. In addition, it is a representative alloy that has the highest strength among various aluminum alloys including 7000 series alloys and can be rolled.
7075 alloy is well known. However, even with the above-mentioned 7003 alloy, it was not always possible to obtain sufficiently satisfactory excellent extrudability.
The 7075 alloy could not necessarily be said to have satisfactory rolling properties. Furthermore, in recent years, in the use of various structural materials,
There is a strong demand for thinner and lighter materials, and there is a strong demand for increasing alloy strength. Under these circumstances, while maintaining good extrudability, rollability, and especially hot formability,
In order to further increase the strength, attempts have been made in the prior art to increase the Zn content or further increase the Mg content. However, when the Zn content is increased, the alloy becomes more susceptible to stress corrosion cracking, and there is a tendency for the alloy to become unusable in applications such as structural materials. Furthermore, when the Mg content is increased, the moldability decreases, particularly hot formability such as rollability and extrudability, or even cold formability, which tends to result in poor productivity. Furthermore, in the case of 7075 alloy, it is highly susceptible to stress corrosion cracking, so conventionally heat treatment was performed under conditions that would give the alloy its maximum strength.
The reality is that it is put into practical use in a tempered state equivalent to that of T7 material, whose structure has been stabilized by tempering at a higher temperature and for a longer time than T6 treatment. For this reason, there was a problem in that the strength had to be sacrificed by 10 to 20% compared to T6 material, which provides the highest strength. Due to the above-mentioned circumstances, the conventional technology provides sufficient satisfaction in both strength and stress corrosion cracking resistance.
Furthermore, it has been extremely difficult to obtain aluminum alloys that have excellent formability such as extrudability and rollability. Based on the background of the prior art as described above, the present invention is based on the 7000 series Al-Zn-Mg series or Al-Zn
An object of the present invention is to provide an aluminum alloy based on a -Mg-Cu alloy that has the beneficial properties inherent therein and has improved formability and stress corrosion cracking resistance. Means for Solving the Problems Based on the above objectives, the inventors conducted various experiments and research and found that Al-Zn-, which has been widely used as a high-strength wrought material, Based on Mg-based alloys, by keeping the Mg content relatively low and adding rare earth elements such as Y, La, Ce, Pr, Nd, and Sm, the inherent excellent mechanical properties of the above alloys are enhanced. In addition to improving extrudability during the production of alloys, hot rolling properties for obtaining plate materials, and furthermore cold workability, Al-Zn-Mg based It has been found that the low stress corrosion resistance, which is a common drawback of alloys, can be significantly improved. Therefore, this invention was completed based on the above findings, and one of the invented alloys is:
As essential elements, Zn is 3-12% and Mg is more than 1.5%.
Contains less than 2.5% of Cu, or further contains Cu.
0.05-3.0%, and (or) Mn: 0.1-1.0%,
Contains one or more of Cr: 0.05-0.3%, Zr: 0.05-0.25%, and further contains rare earth elements such as Y, La, Ce, Pr, Nd, and Sm as main essential elements. The gist is an aluminum alloy containing one or more selected from the group in a total amount in the range of 0.5 to 10%, with the remainder consisting essentially of Al and inevitable impurities. The above-mentioned alloy according to the present invention retains the inherently excellent mechanical properties of Al-Zn-Mg alloys by containing Zn and Mg, while improving workability and improving workability by containing rare earth elements. In particular, it improves hot workability, significantly reduces stress corrosion cracking susceptibility, and exhibits excellent durability even under practical conditions under load stress. Also,
The addition of Cu further increases the strength of the alloy. Furthermore, the alloy of the present invention further contains one or more elements selected from the group of Mn, Cr, and Zr in the above range, so that the alloy contains a Refine the crystal grains and make the structure even more stable. Next, the significance of each chemical component of the aluminum alloy and the reason for limiting its content range will be explained as follows. As is well known, Zn contributes to improving the strength of aluminum alloys. Zn content is 3
If it is less than %, the required high strength cannot be obtained from the alloy. However, even if it is contained in a large amount exceeding 12%, the strength will not be improved comparatively, and the content of more than that is essentially meaningless. Therefore, the effective content of Zn is in the range of 3 to 12%, but when it is desired to obtain particularly high strength, Zn can be added in a relatively large amount, that is, in the range of 7.0 to 10.0%. It is effective to add and contain it within the range. Mg also contributes to improving the strength of aluminum alloys. Therefore, in order to obtain good high strength equivalent to 7000 series alloys, it is necessary to contain at least 1.5%. However, as the Mg content increases, the ductility of the alloy decreases and the workability decreases. Although it is possible to increase the Mg content to about 5.0% in order to obtain as high strength as possible even at the cost of some degree of workability, it is possible to increase the Mg content to about 5.0%. For the purpose of obtaining extrudability, rollability, and other processability, the Mg content is 2.5%.
The limit is less than That is, when Mg is contained in an amount of 2.5% or more, the ductility decreases, making it impossible to obtain fully satisfactory results in terms of rolling properties, extrudability, and other processability. The rare earth elements that are the most important additive elements in this invention are 15 elements with atomic numbers from 57 to 71, i.e.
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb,
It consists of a group of 17 elements including Dy, Ho, Er, Tm, Yb, Lu, and these plus Y and Sc. These elements do not necessarily need to be used as individual elements, and Mitsushi metal obtained by electrolyzing mixed chlorides of rare earth metals may be used. Industrially, Y, La, Ce, Pr, Nd, Sm are used due to their ease of acquisition.
It is preferable to use one type or a combination of two or more types selected from the group below. This rare earth element is contained in the aluminum alloy of the present invention and has the effect of mainly improving the formability of the alloy and improving the stress corrosion cracking resistance. In view of this effect, all of the rare earth elements in the above groups can be evaluated as substantially equivalent to each other in the present invention. Therefore, one or more of them can be used in any combination, but if the total content in the alloy is less than 0.5%, it is insufficient to improve the formability and stress corrosion cracking resistance. On the other hand, if the content exceeds 10%, the stress corrosion cracking resistance will not improve much, but rather a large number of coarse crystallized substances will be generated in the alloy, increasing the possibility that the strength will decrease. Therefore, the permissible content of rare earth elements is 0.5-10
%, but in order to provide the generally desired high stress corrosion cracking resistance, a relatively high content within the above range should be selected, taking into account the relationship with cost. , preferably in the range of 2.0 to 7.0%, and most preferably in the range of 4.0 to 6.0%, great satisfaction can be obtained. In addition to the effect of increasing stress corrosion cracking resistance, the inclusion of rare earth elements also makes the crystal structure in the alloy fine and stable as described above, resulting in improved formability in extrusion, rolling, etc. However, it shows a remarkable effect. Therefore, with the application of this invention, it is possible to efficiently industrially produce alloys that are extremely difficult to extrude or roll even if high strength can be expected from their composition using conventional techniques. .
For example, a high-strength alloy containing a large amount of Zn, a reinforcing element, exceeding 7.0% can be easily produced without any problems. As is known, Cu contributes to improving strength, but if the content is less than 0.05%, the effect is not sufficient, and even if it is more than 3.0%, it has no effect on improving strength. This is not preferable because it increases the susceptibility to weld solidification cracking, worsens weldability, and reduces corrosion resistance and hardenability. Therefore, even within the content range specified above, if particularly high strength is required, it may be added close to the upper limit, but for alloys used for welded structural materials. In such cases, it is desirable not to actively include Cu beyond the content range as an impurity, or to include it within a relatively low range of 0.3% or less. Mn, Cr, added in the alloy of this invention
Zr is useful for refining crystal grains during hot working, but if Mn is less than 0.1, Cr is less than 0.05%, and Zr is less than 0.05%, the above effects will be poor.
When Mn: exceeds 1.0%, Cr: exceeds 0.3%, and Zr: exceeds 0.25%, coarse crystallized substances are generated in the alloy, reducing the strength of the alloy. Effects of the Invention As will be understood from the Examples described later, the aluminum alloy according to the present invention is an Al-Zn-Mg alloy, and although it has high strength inherent to it, it is different from conventional alloys. It has superior workability such as extrudability and rollability, and is also significantly superior in stress corrosion cracking resistance. Therefore, in various applications where the alloy is used as a wrought material such as extruded material, rolled material, forged material, etc., it is possible to make it thinner and lighter while improving its formability even more than conventional alloys. In particular, even if the alloy corresponds to the conventional 7075 alloy in terms of Mg and Cu contents, the improved alloy further containing rare earth elements according to the present invention can have the highest strength. It becomes possible to put it into practical use as a T6 heat treated material. In addition, it has the advantage of being able to further increase productivity compared to conventional alloys due to improved workability such as extrudability and rollability. Examples Example 1 Aluminum alloys of various compositions Nos. 1 to 14 shown in Table 1 below were cast into billets with a diameter of 3 inches using a water-cooled mold. Next, this billet was homogenized at 460°C for 12 hours, then loaded into an extruder container and heated to 450°C.
It was extruded at ℃ into a flat bar with a cross-sectional size of 3 mm x 30 mm.

【表】【table】

【表】 そして、上記の押出し加工時の限界押出し速度
でもつて、各合金の押出性の良否を評価した。ま
た、上記の各押出材を、温度460℃で2時間加熱
して溶体化処理した後、水冷して焼入れし、更に
120℃で24時間の人工時効処理を施してT6材に製
作した。これによつて得た各T6を試料として、
それらの耐応力腐食割れ性及び機械的性質の1つ
として引張り強さを調べた。それらの結果を第2
表に示す。 なお、第2表中の合金番号は、第1表の合金番
号と同じものが用いられている。押出し性の評価
として示されている数値は、代表的な押出し用合
金として知られているA6063アルミニウム合金と
較べて、該6063合金の限界押出し速度を100とし
た場合の相対評価値をあらわしている。また、耐
応力腐食割れ性の試験結果は、3.5%NaCl水溶液
中にて、該試験片の圧延又は押出し方向に20Kg
f/mm2の応力を負荷し、割れが発生するまでの日
数を測定して示したものである。
[Table] The extrudability of each alloy was also evaluated at the above-mentioned limit extrusion speed during extrusion processing. In addition, each of the above extruded materials was solution-treated by heating at a temperature of 460°C for 2 hours, then water-cooled and quenched, and further
Manufactured into T6 material by artificial aging treatment at 120℃ for 24 hours. Using each T 6 obtained by this as a sample,
Their stress corrosion cracking resistance and tensile strength as one of the mechanical properties were investigated. those results as a second
Shown in the table. Note that the alloy numbers in Table 2 are the same as the alloy numbers in Table 1. The numerical value shown as the evaluation of extrudability represents a relative evaluation value when compared to A6063 aluminum alloy, which is known as a typical extrusion alloy, and assuming that the limit extrusion speed of the 6063 alloy is 100. . In addition, the stress corrosion cracking resistance test results are as follows: 20 kg in the rolling or extrusion direction of the test piece in a 3.5% NaCl aqueous solution.
The graph shows the number of days until cracking occurs when a stress of f/mm 2 is applied.

【表】【table】

【表】 上記第2表の結果に見られるように、本発明に
係る合金は、Znを高率に含有し、Mgの含有量を
比較的低く押えたアルミニウム合金の範囲にあた
つて、その固有の性質としての高強度を保有した
ものでありながら、希土類元素を含有しない比較
合金に較べてそれと同等ないしそれ以上の優れた
押出性を有しつつ、耐応力腐食割れ性において顕
著に優れた性質を有するものであることがわか
る。しかも本発明による合金は、結晶粒も比較合
金に較べて微細化されたものであり、焼入れ性、
溶接性にも優れたものであつた。 実施例 2 前掲第1表に示す合金No.1〜5、7〜9及びNo.
15及び16の10種類の合金つき、それらを水冷金型
で厚さ50mm、幅150mmの大きさに鋳造した。次い
でこれを450℃にて3mmの厚さになるまで熱間圧
延した。 そして、この厚さ50mmから3mmまでの熱間圧延
の所要パス回数で圧延性を評価し、第3表にその
結果を示した。同表中にの合金番号は第1表の番
号に対応する。 また、上記によつて得られた各圧延板につき、
実施例1の場合と同じく熱処理を施してT6材と
したのち、これらを供試材として前記実施例1の
場合と同様にして応力腐食割れ寿命及び引張り強
さを調べた。 その結果を第3表に示す。
[Table] As seen in the results in Table 2 above, the alloy according to the present invention falls within the range of aluminum alloys containing a high percentage of Zn and a relatively low Mg content. Although it possesses high strength as an inherent property, it has excellent extrudability that is equivalent to or better than comparative alloys that do not contain rare earth elements, and it has significantly superior stress corrosion cracking resistance. It can be seen that it has properties. Moreover, the alloy according to the present invention has finer grains than comparative alloys, and has improved hardenability and
It also had excellent weldability. Example 2 Alloy Nos. 1 to 5, 7 to 9 and No. shown in Table 1 above.
10 types of alloys 15 and 16 were cast in a water-cooled mold to a size of 50 mm thick and 150 mm wide. This was then hot rolled at 450°C to a thickness of 3 mm. Then, the rollability was evaluated based on the required number of passes of hot rolling from 50 mm to 3 mm in thickness, and the results are shown in Table 3. The alloy numbers in the same table correspond to the numbers in Table 1. In addition, for each rolled plate obtained as above,
After applying heat treatment as in Example 1 to obtain T 6 materials, these were used as test materials to examine stress corrosion cracking life and tensile strength in the same manner as in Example 1 above. The results are shown in Table 3.

【表】【table】

【表】 第3表に示される結果から容易に理解されるよ
うに、この発明に従うアルミニウム合金は、圧延
材に製造した場合にあつても、比較合金と同程度
の高強度を有しつつ、耐応力腐食割れ性に優れた
ものであり、しかも圧延性に一段と優れたもので
あつた。
[Table] As can be easily understood from the results shown in Table 3, the aluminum alloy according to the present invention has a high strength comparable to that of the comparative alloy even when manufactured into a rolled material. It had excellent stress corrosion cracking resistance and even better rolling properties.

Claims (1)

【特許請求の範囲】 1 Zn:3〜12% Mg:1.5%をこえ2.5%未満 希土類元素のうち1種または2種以上 :0.5〜10% を含有し、残部Al及び不可避不純物からなる高
強度アルミニウム合金。 2 Zn:3〜12% Mg:1.5%をこえ2.5%未満 Cu:0.05〜3.0% 希土類元素のうち1種または2種以上 :0.5〜10% を含有し、残部Al及び不可避不純物からなる高
強度アルミニウム合金。 3 Zn:3〜12% Mg:1.5%をこえ2.5%未満 希土類元素のうち1種または2種以上 :0.5〜10% を含有し、かつ Mn:0.1〜1.0% Cr:0.05〜0.3% Zr:0.05〜0.25% のうちの1種または2種以上を含有し、残部Al
及び不可避不純物からなる高強度アルミニウム合
金。 4 Zn:3〜12% Mg:1.5%をこえ2.5%未満 Cu:0.05〜3.0% 希土類元素のうち1種または2種以上 :0.5〜10% を含有し、かつ Mn:0.1〜1.0% Cr:0.05〜0.3% Zr:0.05〜0.25% のうちの1種または2種以上を含有し、残部Al
及び不可避不純物からなる高強度アルミニウム合
金。
[Claims] 1. High strength containing 1 Zn: 3 to 12%, Mg: more than 1.5% and less than 2.5%, one or more rare earth elements: 0.5 to 10%, and the balance is Al and inevitable impurities. Aluminum alloy. 2 Zn: 3-12% Mg: More than 1.5% but less than 2.5% Cu: 0.05-3.0% One or more rare earth elements: 0.5-10% High strength consisting of Al and inevitable impurities. Aluminum alloy. 3 Zn: 3-12% Mg: More than 1.5% and less than 2.5% Contains one or more rare earth elements: 0.5-10%, and Mn: 0.1-1.0% Cr: 0.05-0.3% Zr: Contains one or more of 0.05 to 0.25%, with the remainder being Al.
A high-strength aluminum alloy consisting of and unavoidable impurities. 4 Contains Zn: 3-12% Mg: More than 1.5% and less than 2.5% Cu: 0.05-3.0% One or more rare earth elements: 0.5-10%, and Mn: 0.1-1.0% Cr: Contains one or more of the following: 0.05-0.3% Zr: 0.05-0.25%, the remainder being Al
A high-strength aluminum alloy consisting of and unavoidable impurities.
JP24086586A 1986-10-09 1986-10-09 High strength aluminum alloy having superior resistance to stress corrosion cracking Granted JPS6396241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24086586A JPS6396241A (en) 1986-10-09 1986-10-09 High strength aluminum alloy having superior resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24086586A JPS6396241A (en) 1986-10-09 1986-10-09 High strength aluminum alloy having superior resistance to stress corrosion cracking

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12986990A Division JPH0794698B2 (en) 1990-05-18 1990-05-18 High strength aluminum alloy with excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS6396241A JPS6396241A (en) 1988-04-27
JPH0355537B2 true JPH0355537B2 (en) 1991-08-23

Family

ID=17065853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24086586A Granted JPS6396241A (en) 1986-10-09 1986-10-09 High strength aluminum alloy having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6396241A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238937A (en) * 1985-04-12 1986-10-24 Showa Alum Corp High-strength aluminum alloy for welding construction material excelling in extrudability and stress corrosion cracking resistance
JPS61250143A (en) * 1985-04-27 1986-11-07 Showa Alum Corp High strength aluminum alloy for welding construction material excelling in extrudability
JPS6289838A (en) * 1985-08-22 1987-04-24 Showa Alum Corp High strength aluminum alloy excellent in rolling workability
JPS62207842A (en) * 1986-03-07 1987-09-12 Showa Alum Corp High strength aluminum alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238937A (en) * 1985-04-12 1986-10-24 Showa Alum Corp High-strength aluminum alloy for welding construction material excelling in extrudability and stress corrosion cracking resistance
JPS61250143A (en) * 1985-04-27 1986-11-07 Showa Alum Corp High strength aluminum alloy for welding construction material excelling in extrudability
JPS6289838A (en) * 1985-08-22 1987-04-24 Showa Alum Corp High strength aluminum alloy excellent in rolling workability
JPS62207842A (en) * 1986-03-07 1987-09-12 Showa Alum Corp High strength aluminum alloy

Also Published As

Publication number Publication date
JPS6396241A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
CA2142462C (en) Tough aluminum alloy containing copper and magnesium
CA2089171C (en) Improved lithium aluminum alloy system
KR101350126B1 (en) Magnesium gadolinium alloys
DE102009012073B4 (en) Use of an aluminum casting alloy
EP1359232B1 (en) Method of improving fracture toughness in aluminium-lithium alloys
CA2135790C (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
EP0202044A1 (en) Aluminium alloy
CN107604219A (en) A kind of formula and its production technology of high strength alumin ium alloy body part
JPH03111533A (en) High strength aluminum alloy excellent in stress corrosion cracking resistance
KR20230043868A (en) New 6XXX aluminum alloy and its manufacturing method
DE10231437A1 (en) Forged aluminum-magnesium alloy product
DE2023446A1 (en) Cast aluminum alloy of high strength
JPS61250138A (en) Titanium alloy excelling in cold workability
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
EP2021521B1 (en) Magnesium-based alloy
JPS62207842A (en) High strength aluminum alloy
JPH0355537B2 (en)
JP3248263B2 (en) Al-Mn alloy for cryogenic forming
JPS6135262B2 (en)
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
EP0643145B1 (en) High strength magnesium-based alloy materials and method for producing the same
JPS6331537B2 (en)
JP3481064B2 (en) Slow acting aluminum alloy extruded material for bending
JPH0741896A (en) Aluminum alloy sheet for forming excellent in formability and its production