JPH0355493B2 - - Google Patents

Info

Publication number
JPH0355493B2
JPH0355493B2 JP24405786A JP24405786A JPH0355493B2 JP H0355493 B2 JPH0355493 B2 JP H0355493B2 JP 24405786 A JP24405786 A JP 24405786A JP 24405786 A JP24405786 A JP 24405786A JP H0355493 B2 JPH0355493 B2 JP H0355493B2
Authority
JP
Japan
Prior art keywords
polymer
parts
ppta
amount
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24405786A
Other languages
Japanese (ja)
Other versions
JPS6346222A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS6346222A publication Critical patent/JPS6346222A/en
Publication of JPH0355493B2 publication Critical patent/JPH0355493B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、改良されたポリパラフエニレンテレ
フタルアミド(以下PPTAと略称する)に関する
ものであり、更に詳しくは、その光学異方性ドー
プから成形して得られる成形物の吸湿を低下させ
るべく、ポリマー中のアミン末端基量及びカルボ
ン酸末端基量を減少せしめたPPTAに関するもの
である。 〔従来の技術〕 テレフタル酸ジクロライド(以下TPCと略称
する)とパラフエニレンジアミン(以下PDAと
略称する)を重合して得られるPPTAは、剛直な
分子骨格を有することから、機械的物性の優れた
成形物を生成するであろうことは古くから予言さ
れ、実際にクウオレク(特公昭50−8474号公報)
やブレーズ(特開昭47−39458号公報)らによつ
て高強度繊維の製造方法が開示されて以来、
PPTA繊維はその優れた機械的物性と耐熱性から
タイヤコードやFRP用補強材等の産業用資材と
して近年特に注目されている。またPPTAフイル
ムは、磁気テープ用ベースフイルム等の高い機械
的物性を要求される産業分野において有望な素材
として注目されており、いくつかのPPTAフイル
ムの製造方法が開示されている(例えば、特公昭
57−17886号公報)。 PPTAは、その製造を、アミド系の極性溶剤中
で低温溶液重合して得られることが知られている
(例えば、特開昭54−100496号公報)が、かかる
方法によつて得られるPPTAは、モノマーの脱塩
酸縮合によつて生成するアミド結合及び重合終了
時に分子鎖末端基としてアミン末端基及びカルボ
ン酸末端基等の親水基を有することから、このよ
うな通常のPPTAを用いて成形した成形物は吸湿
し易く、その為、吸湿による寸法の変化、強度や
弾性率の低下、電気的特性の変動等の欠点を有す
ることになる。 〔発明が解決しようとする問題点〕 本発明の目的は、成形性や、得られる成形物の
機械的、熱的特性が良好で、更に上記のような吸
湿による欠点を示さず、高温、多温の苛酷な状況
下においても優れた寸法安定性と優れた機械的、
電気的特性を兼ね備えたPPTA成形物を得るのに
好適なPPTAポリマーを提供することにある。 〔問題点を解決するための手段〕 前述した通り、TPCとPDAの重合によつて得
られるPPTAは、アミン末端基とカルボン酸末端
基の分子鎖末端を有するが、本発明者は、末端基
組成の異なる種々のPPTAポリマーと、これを成
形して得られる成形物の吸湿による寸法変化の割
合、すなわち吸湿寸法変化率との関係について検
討を続けるうちに、分子鎖末端を適当な疎水性の
置換基によつて封鎖し、単位重量のポリマー当り
のアミン及びカルボン酸両末端基量が減少するに
従い、これを用いて調製した成形物の吸湿寸法変
化率が低下するという意外な現象を見出し、更に
鋭意研究を重ねた結果本発明として完成するに到
つたものである。 本発明は、すなわち、ηinhが3.0以上であり、
見掛け密度が1.38g/cm3以下であり、アミン未端
基が80−10×(ηinh)ミリ当量/Kg以下であり、
かつカルボン酸末端基が80−10×(ηinh)ミリ当
量/Kg以下であることを特徴とする、PPTAを提
供するものである。 本発明のポリマーは、下記、 を繰り返し単位とするPPTAであるが、以下に述
べる要件を満たすものでなければならない。すな
わち、本発明のPPTAの重合度は、あまりに低い
とPPTA本来の優れた機械的特性を有する成形物
が得られなくなる為、通常3.0以上、好ましくく
は3.5以上の対数粘度(ηinh)を与える重合度の
ものが選ばれる。 本発明のポリマーは1.38g/cm3以下、好ましく
は1.36g/cm3以下の密度を有するものである。密
度が大きいものは一般に結晶性が高く、そのよう
なポリマーは、ドープ調製時に濃硫酸への溶解性
が悪く、不均一なドープとなつたり、未溶解ポリ
マーが残存したりすること、また溶解に要する時
間の増大に伴い、ポリマーの分解によつて、分子
量の低下の度合が増大すること等により、成形性
や成形物の物性に悪影響を及ぼすため好ましくな
い。 更に、本発明のポリマーは、その末端基に関し
以下の条件を満たすもでなければならない。すな
わち、アミン末端基量が80×10×(ηinh)ミリ当
量/Kg以下(好ましくは70−10×(ηinh)ミリ当
量/Kg以下)でかつカルボン酸末端基量が80−10
×(ηinh)ミリ当量/Kg以下(好ましくは70−10
×(ηinh)ミリ当量/Kg以下)でなくてはならな
い。PPTA成形物の吸湿性は末端基量と密接な関
係を有しており、この範囲外の末端基のポリマー
を用いた場合、得られる成形物の吸湿性を充分に
低下せしめることができず、従つて機械的物性の
低下や、電気絶縁性等の電気的特性の変動を生じ
易くなるからである。 〔発明の作用〕 このアミン及びカルボン酸末端基量の減少によ
る吸湿性の低下の理由については、明らかではな
いが、以下のように考えることができる。高分子
の成形物は、いかにPPTAといえども、完全な結
晶とはなり得ず、非晶部分をある程度有してお
り、分子鎖末端は殆んどこの非晶部分に存在する
ものと考えられる。これに対して水分が成形物中
に浸入する場合、非晶部分から選択的に取り込ま
れる。従つて、水と親和性の強い極性末端基が減
少することで、吸湿性が低下するものと考えられ
るのである。従つて、本発明のポリマーを用いて
得られた成形物を、ポリマーが劣化しない範囲で
熱処理することによつて、一段と吸湿しにくくす
ることも効果的であり、好ましい実施態様であ
る。 ところで、一定の重量のポリマー中の全末端基
量はそのポリマーの数平均分子量と反比例の関係
にあり、またPPTAの濃硫酸溶液の粘度と数平均
分子量の関係が幾人かの研究者達によつて研究さ
れ、明らかにされている(例えば、M.アーピン
デイマクロモレキユラーレ ヘミー、第177巻、
第581頁(1976))。その知見に従えば、TPCと
PDAを化学量論的に重合せしめた場合、ηinhが
5の時その数平均分子量はおよそ20000であり、
20000gのポリマー中に2個の末端基が存在する。
言い換えれば、ポリマー1Kg中にはおよそ100ミ
リ当量の末端基が存在し、もしモノマーの仕込み
が完全にバランスし、且つ他の停止反応がないと
すれば、50ミリ当量ずつのアミン及びカルボン酸
末端基が存在するはずである。またηinhが6のと
きは、数平均分子量はおよそ24000であり、ポリ
マー1Kg当り約40ミリ当量ずつのアミン及びカル
ボン酸末端基が存在することになる。これらの数
字と比較すると、本発明のポリマーはアミン及び
カルボン酸両末端基量が非常に少ないことが明ら
かである。 これまでにも、PPTAポリマーの製造技術に関
してTPCとPDAの組成についても検討がなされ
て来てはいるものの、それらは得られるポリマー
の分子量の増大に主眼が置かれ、TPCとPDAの
仕込比を変更する程度のものであり、分子鎖末端
基に対して目を向けた例は殆んどない。重合時の
TPCとPDAのモルバランスを操作し、アミン末
端基を過度に多くしたポリマーを用いた紡糸方法
が開示されてはいるが(米国特許第3933963号)、
これも紡糸性の改善を意図するだけであり、本発
明のように、分子鎖末端基を積極的に操作するこ
とにより、成形物の物性までも改良しようとする
技術は全く前例がなく、また、これら公知の技術
によつては、本発明のPPTAポリマーを得ること
ができない。 次に、本発明のポリマーの製造方法の一例を示
す。このような、アミン末端基もカルボン酸末端
基も少ないPPTAをいわゆる低温溶液重合法を用
い、PDAとTPCの反応によつて調製する場合は、
アミンあるいはカルボン酸クロライドと反応性を
有する。TPC,PDA以外の物質を1種以上添加
し、末端のアミンあるいは末端のカルボン酸クロ
ライドと反応せしめ分子鎖末端を封鎖することに
より製造できる。 添加する物質は、上記の通りアミンあるいはカ
ルボン酸クロライドと反応性を有する物質であれ
ば何でもよく、特に限定されない。添加する物質
の例としては、アニリン、o−、m−もしくはp
−クロルアニリン、o−、m−もしくはp−トル
イジン、o−、m−もしくはp−ニトロアニリ
ン、α−もしくはβ−ナフチルアミン、2−,3
−もしくは4−ビフエニルアミン、エチルアミ
ン、プロピルアミン、イソプロピルアミン、シク
ロヘキシルアミン等のモノ一級アミン類、N−メ
チルアニリン、ジエチルアミン、ピペリジン等の
二級モノアミン類、あるいはベンゾイルクロライ
ド、o−、m−もしくはp−トルオイルクロライ
ド、プロピオニルクロライド、シクロヘキサンカ
ルボニルクロライド等のモノカルボン酸クロライ
ド、あるいはフエニルイソシアネート、エチルイ
ソシアネート、フエニルイソチオシアネート、エ
チルイソチオシアネートなどが用いられる。な
お、このような末端封鎖の効果をより一層顕著な
ものにするために、例えば、上記の化合物中の水
素原子の1個以上がフツ素で置換された化合物を
用いることも有用な実施態様である。 また、それらの物質を添加、反応せしめる方法
も特に限定されるものではなく、例えば公知の重
合方法(例えば特開昭54−100496号公報)におい
て、重合の任意の時期にそれらを添加、反応せし
めてもよく、あるいは一旦重合したポリマーに、
適当な溶媒中でそれらを含浸、反応せしめてもよ
い。 本発明のポリマーのより具体的な製造方法の例
を以下に示す。しかしながら、本発明のポリマー
の製造方法(重合方法)が以下に示す方法に限定
されないことは言うまでもない。 重合は、アミド系溶剤中でTPCとPDAを撹拌
混合する、いわゆる低温溶液重合法に依るのが最
も簡便である。重合における溶剤としては、N−
メチルピロリドン、N,N−ジメチルアセトアミ
ド、N−アセチルピロリジン、テトラメチル尿
素、ヘキサメチルホスホールアミド等又はこれら
の任意の割合の混合物、或いはこれらと塩化リチ
ウム、塩化カルシウムなどとの混合物が用いられ
る。重合時のモノマー濃度は大略0.1〜1.0モル/
である。従来のPPTA重合法はTPCとPDAが
ほぼ1対1になるように仕込み、前記溶剤中で撹
拌混合するものであるが、本発明のポリマーを得
るには特別な工夫を要する。例えば、TPCと
PDAのモルバランスをTPCが過剰になるように
し(その度合は、PDAを100とした時、TPCが
100.0〜101程度が好ましい。これは、あまり大き
くモルバランスを崩すと、分子量を充分に高くす
ることができないからである。)モノマー仕込時
に、前記したモノアミンの1種又は2種以上を、
全体としてのアミノ基とカルボン酸クロライド基
との比がほぼ1対1となるように添加する。その
結果、カルボン酸末端が封鎖され、従来の方法で
得られるポリマーに比べてアミン末端もカルボン
酸末端も少ないPPTAを得ることができる。当然
ながら、TPCとPDAのモルバランスを上記と逆
にとり、末端封止剤としてモノカルボン酸クロラ
イド化合物などを用いることも可能である。 添加する末端封止剤の量は、酸クロライド基と
アミノ基のモルバランスを等しくする為、TPC
(あるいはPDA)100に対し、0.1から1.0が適当で
ある。また、重合して得られるポリマーにおい
て、全モノマーに対する末端基の割合は、ηinhが
3.0のとき、およそ0.7%、ηinhが5.0のときおよそ
0.5%であるから、このことからも、上記の割合
が適当である。 重合がある程度進行した所で封止剤を添加し、
反応させることも可能である。重合が進行する
と、生成するPPTAは溶媒から析出することがあ
るため、このときは封止剤との反応は不均一系の
反応となる。従つて、重合途中に封止剤を添加す
るに際しては、封止剤とアミノ基(あるいはカル
ボン酸クロライド基)との反応の確率を高くし、
効果的な封止を行う為に、封止剤の量を過剰にす
るのが良い。好ましくは、アミノ基とカルボン酸
クロライド基のモルバランスを等しくするのに必
要な量の5〜10倍であるのが良い。但し、あまり
に過剰にするとそれ以後の重合の進行を阻害され
るため好ましくない。 重合温度は約−30℃〜100℃の間に選ばれる。
また重合時は系全体を撹拌するのが好ましく、更
に好ましくはポリマーが固化した後も、最終重合
度に到るまで撹拌を続けるのがよい。 最終重合度に到達したポリマーは、例えば、ヘ
ンシエルミキサー中に移され、ほぼ等量の水を加
えて粉砕され、更に数回水で洗浄された後濾別あ
るいは遠心分離され乾燥されて、最終的に淡黄色
のポリマーとして得られる。 本発明のPPTAの特別の製造方法として、従来
と同様に重合させたポリマーを単離した後、固相
でモノイソシアネートやモノカルボン酸クロライ
ド、モノ脂肪族アミンなどと反応させて末端封鎖
を行なうことも可能である。 こうして得られるPPTAの対数粘度(ηinh)は
次の通り定義される。 ηinh=l nηrel/0.5 式中、ηrelはポリマー溶液(96重量%硫酸100
ml中0.5gPPTA)と純溶媒との、25℃において毛
細管粘度計にて測定した、流出時間の比である。 次に本発明における末端基の定量方法について
説明する。 アミン末端基定量方法 乾燥したポリマー0.2gを400mlの平底フラスコ
に秤り取り、イオン交換水25mlを加える。これに
炭酸水素ナトリウム0.2gとエタノール25mlを加
え、更に1.25gの1−フルオロ−2,4−ジニト
ロベンゼンを添加する。このフラスコにジムロー
ト冷却管を取り付け、フラスコの内容物をマグネ
チツクスターラで撹拌しつつ、80℃に保つた水浴
中で4時間還流する。赤褐色に着色したポリマー
を濾過し、アセトンで充分に洗浄する。次いでポ
リマーを80℃で4時間減圧乾燥する。こうし得ら
れたポリマー0.025gを5.0mlのビーカーに秤り取
り、メタンスルホン酸25mlを加え室温において完
全に溶解するまでマグネチツクスターラーで撹拌
する。その際ビーカーの口を適当なシール材で密
封し、また溶解の間はできるだけ遮光するように
しておく。これは、ジニトロベンゼン基の光反応
性が高く、露光による濃色化を避ける為である。
この溶液の430nmの波長における透過率測定を
分光光度計(本発明者らの用いた装置は、平間理
化研究所製吸光光度計6B型)で、光路長1cmの
石英セルを用いて行なう。このとき、ポリマー1
Kg当りのアミン末端基量は log T0/T1/ε×106ミリ当量/Kgで与えられる。 但し、 T0はメタンスルホン酸の透過率を100%とした
時の未処理PPTA0.025gをメタンスルホン酸25
mlに溶解した溶液の透過率であり、 T1はメタンスルホン酸の透過率を100%とした
時の、上述の処理を施したPPTAのメタンスルホ
ン酸溶液の透過率であり、 εは下記のモデル化合物を用いて測定したジニ
トロベンゼン基のモル吸光係数であつて、値は
7100(/mol・cm)である。 カルボン酸末端基の定量方法 カルボン酸末端基の定量に当つては、まずポリ
マーを水で充分に洗浄し、ポリマー中に、遊離の
酸分やアルカリ分が残存しないことを確める。こ
れを確めるには、ポリマーを適当量の水中に分散
し、50℃程度で加熱撹拌し、ポリマーを濾別した
後、濾液を苛性ソーダ、塩酸等のアルカリまたは
酸で滴定すればよい。洗浄を終えたポリマーは充
分に乾燥し、以下の方法でカルボン酸末端基の定
量を行なう。 乾燥したポリマー0.2gを平底フラスコに秤り
取り、10-3規定の水酸化ナトリウム溶液(水−エ
タノール1対1溶液)25mlを加える。このフラス
コにジムロート冷却管を取り付け、マグネチツク
スターラーで撹拌しながら、80℃に保つた水浴中
で4時間還流する。ポリマーを濾別し、少量のエ
タノールで洗浄し、この洗液と、先の濾液と合わ
せ、これを10-3規定の塩酸水溶液で滴定する。こ
の時中和に要した10-3規定の塩酸水溶液の量を
V1mlとする。また同様の手順で10-3規定水酸化
ナトリウム溶液のみを還流させ、次いで10-3規定
の塩酸水溶液で滴定を行い、中和に要した塩酸水
溶液の量をV0mlとすると、求めるカルボン酸末
端基量はポリマー1Kg当り、 V0−V1/0.2ミリ当量/Kg となる。尚、カルボン酸末端基の定量は、大気中
からの炭酸ガスの吸収を避ける為に、全工程を不
活性ガス雰囲気中で行なう。 本発明のポリマーを用いて実際に成形を行なう
に当つては、公知のPPTAの成形方法、即ち
PPTAと濃硫酸等とからなる光学異方性ドープか
ら成形する方法を利用することができる。 ドープを調製するのに用いる溶媒は、硫酸以外
にクロル硫酸、フルオル硫酸またはこれらと硫酸
の混合物を用いることができるが、溶解性の点で
96重量%以上の濃硫酸が好ましい。ポリマー濃度
は室温またはそれ以上の温度で光学異方性を示す
濃度以上である。具体的には、約10重量%以上、
好ましくは15重量%以上である。これは光学等方
性ドープから成形した成形物は一般に密度が小さ
く、強度も小さくなり、PPTAが本来有する高い
機械的物性を示し難くなるためである。このよう
なポリマー濃度のドープは、流動、成形できるよ
う少し加温する必要のあることが多いが、温度が
高くなると、劣化速度が大きくなるので、通常は
室温〜100℃の範囲のドープが使用される。また
ドープには、通常の添加剤、例ば、抗酸化剤、紫
外線安定化剤等が配合されていてもよい。 このようなドープからPPTA繊維を製造するに
当つては、例えば、特開昭47−39458号公報に記
載されている方法等を用いることができる。また
PPTAフイルムの製造については、例えば、特公
昭57−17886号公報の方法等を用いることができ
るが、これらに限定されるものではない。 〔実施例〕 本発明を下記実施例によつて更に説明する。言
うまでもないが、これらの実施例は本発明を説明
するものであり、本発明を限定するものではな
い。 実施例 1 高速回転する撹拌翼と乾燥窒素の出入口と原料
の投入口を有する重合槽中でN−メチルピロリド
ン1000部に塩化カルシウム70部を溶解し、次いで
PDAを44.2部(溶媒1当り0.4モルに相当)及
びアニリン0.4部(PDAに対し1モル%相当)を
溶解した。−2℃に冷却した後TPC85.1部(PDA
に対して101モル%相当)を溶融状態で一気に加
えた。3分後に重合物はチーズ状に固化したので
この重合反応物を直ちに2軸の密閉型ニーダーに
移し、同ニーダー中で粉砕、せん断力付与を20分
間行つた。次に、粉砕した重合物をヘンシエルミ
キサー中に移し、ほぼ等量の水を加えてさらに粉
砕した後、濾過し数回温水で洗浄して110℃の熱
風中で乾燥した。その結果、ηinh4.3、みかけ密
度1.35g/cm3の淡黄色のPPTA95部を得た。 前述の方法で末端基量を測定した結果は以下の
通りであつた。 アミン末端基量31.3ミリ当量/Kg、カルボン酸
末端基量25.9ミリ当量/Kg 次に、このポリマーを用いて、以下の方法で製
膜を行つた。 500mlのセパラブルフラスコに99.6%硫酸88部
を入れ、これに12部の上記ポリマーを2回に分
け、全体で40分間をかけてドープを撹拌しつつ投
入し(室温)10分間更に撹拌をつづけた後温度を
60℃に上げて5時間脱泡を行い、光学異方性ドー
プを調製した。 このドープをあらかじめ120℃に加熱したガラ
ス板上に取り、0.1mmのスリツトを有するアブリ
ケータを用いて、手動で製膜した。直ちにこれを
120℃に保つた熱風中に入れ、10分間放置し、光
学異方性から等方化処理を行つた。その後、フイ
ルムをガラス板ごと純水中に浸して脱酸せしめ、
フイルムを剥離させた。この湿潤フイルムを金枠
にはさみ、250℃で時間熱風中で乾燥し、厚さ
25μmの黄色透明なフイルムを得た。 得られたフイルムの吸湿寸法変化率を以下の方
法で測定した。 試料を窒素気流下100℃で絶乾し、室温まで冷
却後、相対湿度85%の雰囲気下でTMA(熱機械
測定装置、島津製作所製TMA−30)を用いて、
試料の伸びを測定し、以下の式で算出した。 吸湿寸法変化率(mm/mm・%RH) 試料の伸び(mm)/試料の元の長さ(mm)×85(%
RH) 尚、測定時の試料の大きさは、幅2mm、有効つ
かみ間8mmであつた。 その結果、上記フイルムの吸湿寸法変化率は、 長手方向 3.9×10-5mm/mm・%RH 幅方向 6.5×10-5mm/mm・%RH であつた。 実施例 2 実施例1と同じポリマーを99.7%の硫酸88部に
対して12部の割合で投入し、65℃で光学異方性の
ドープを調製した。ドープタンクからギアポンプ
を経てダイに至る1.5mの曲管を65℃に保ち、0.1
mm×300mmのスリツトを有するダイから、鏡面に
磨いたタンタル製のベルトに、引き取り速度2
m/分の速度でキヤストし、相対湿度73%、温度
36℃の空気中に60秒間曝露し、ドープが透明にな
つた後、10℃の水中に凝固させた。この凝固フイ
ルムを室温の水で一晩洗浄した後250℃の熱風に
て1時間定長乾燥し、厚さ20μmの黄色透明のフ
イルムを得た。得られたフイルムの物性を第1表
に示す。 比較例 1 重合槽中で、N−メチルピロリドン1000部に塩
化カルシウム70部を溶解し、次いでPDAを44.2
部(溶媒1当り0.4モル相当)を溶解した。−2
℃に冷却した後TPC85.1部(溶媒1当り0.4モ
ル相当)を一気に添加し、その後は実施例1に示
した方法と同じ条件で重合を行い、ηinhが4.6、
みかけ密度1.35g/cm3の淡黄色のPPTAを得た。 得られたポリマーの末端基量は以下の通りであ
つた。 アミン末端基量 47.3ミリ当量/Kg カルボン酸末端基量 35.9ミリ当量/Kg このポリマーを用い、実施例1と同様の方法で
フイルムを調製し、吸湿寸法変化率を測定した結
果は次の通りで、実施例1に比べ寸法安定性が劣
るものであつた。 長手方向 9.0×10-5mm/mm・%RH 幅方向 10.8×10-5mm/mm・%RH 比較例 2 比較例1に示した重合方法と同じ方法でηinhが
5.78、みかけ密度1.37g/cm3の淡黄色のPPTAを
得た。このポリマーの末端基量はそれぞれ、 アミン末端基量 40.5ミリ当量/Kg カルボン酸末端基量 32.1ミリ当量/Kg であつた。 このポリマーを99.4重量%の硫酸100部に対し
て12部の割合で投入し、65℃で光学異方性のドー
プを得た。 このドープから実施例2と同じ条件で製膜を行
い、厚さ15μmの黄色透明フイルムを得た。 得られたフイルムの物性を第1表に示す。 実施例 3 実施例1と同じポリマーを99.7重量%の硫酸
80.1部に対して19.3部を徐々に溶解し、70℃で光
学異方性を示すドープを調製した。ドープタンク
からギアポンプを経て、5μmのSUS316製焼結フ
イルターを装着した紡糸口金(孔径0.07mmΦ−50
ホール)に至る配管を70℃に加温し、吐出圧50
Kg/cm2で口金からドープを押出した。押出された
ドープは5mmの空気層を通過した後、0℃の水中
に導入され、この凝固浴から、紡水の流下するガ
ラス管を通過する間に凝固が進行し、周速200
m/分で回転するボビンに捲き取つた。得られた
糸条は流水で一晩洗浄した後、100℃の熱風で乾
燥し、単糸が1.5デニールの黄色の糸条を得た。 得られた糸条の物性を第2表に示した。 この紡糸の際、紡口詰まり、紡口圧異常上昇等
の紡糸トラブルは全くなく、非常に安定した紡糸
性を示した。 比較例 3 比較例2と同じポリマーを用い、実施例3と同
じ方法で光学異方性ドープを調製し、更に同じ条
件下で紡糸を行なつた。 これによつて得られた糸条の物性を第2表に示
す。実施例3の糸条に比べ、強伸度がやや劣るの
に加えて、吸湿率が大きかつた。 この紡糸においても殆んどトラブルは発生しな
かつたが、紡口圧の上昇がかなり大きかつた。 実施例 4 実施例1と同じ重合槽中でN−メチルピロリド
ン1000部に塩化リチウム21部を溶解し、次いで
PDAを44.6部(後で加えるTPCに対して1モル
%過剰)を溶解した。−2℃に冷却した後
TPC84.3部(溶媒1に対して0.4モル相当)を
溶融状態で添加し、引き続いてベンゾイルクロラ
イド0.6部(TPCに対して1モル%相当)を粉末
状で一度に添加した。2〜3分で重合物が固化し
たので、その後は実施例1と同じ方法で重合を行
ない。ηinh5.1の淡黄色のPPTA96部を得た。 このポリマーの末端基量及びみかけ密度は アミン末端基量 25.1ミリ当量/Kg カルボン酸末端基量 22.7ミリ当量/Kg みかけ密度 1.36g/cm3 であつた。 このポリマーを用いて実施例1と同様に製膜し
23μmの厚みに黄色透明フイルムを得た。 このフイルムの吸湿寸法変化率は、 長手方向 3.7×10-5mm/mm・%RH 幅方向 5.5×10-5mm/mm・%RH であつた。 実施例 5 実施例1で用いた重合槽中で、N−メチルピロ
リドン1000部に対し塩化カルシウム70部を溶解
し、次いでPDA44.6部を溶解した。−2℃まで冷
却した後85.1部のTPCを溶融状態で一気に加え、
その後は実施例1の方法と同じ条件下で重合を行
なつた。得られた黄色ポリマーはηinhが4.9、み
かけ密度1.36g/cm3で、 アミン末端基 45.1ミリ当量/Kg カルボン酸末端基 31.8ミリ当量/Kg であつた。 乾燥したこのポリマー100部をテトラヒドロフ
ラ中に分散させ、フエニルイソシアナート0.8部
を加え、25℃の水浴上でマグネチツクスターラー
を用いて2時間撹拌した。 ポリマーを濾別乾燥し、末端基量を定量した結
果、ηinh及び密度は変化なく、 アミン末端基 27.8ミリ当量/Kg カルボン酸末端基 29.8ミリ当量/Kg という値を有するPPTAを得た。 このポリマーを用い、実施例1と同じ方法で光
学異方性ドープを調製し、製膜を行い、厚さ24μ
mの黄色透明のフイルムを得た。このフイルムの
吸湿寸法変化率は 長手方向 6.1×10-5mm/mm・%RH 幅方向 7.3×10-5mm/mm・%RH であつた。 実施例 6 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.2部(溶媒1当り0.4モルに相当)を
溶解した。この溶液を−2℃に冷却した後、
TPC85.1部(PDAに対し101モル%に相当)を溶
融状態で一気に加えた。3分後、チーズ状に固化
した重合反応物を2軸の密閉型ニーダーに移し、
その直後にN−メチルピロリドン100部に、アニ
リン2部(PDAに対して5モル%)を溶解した
溶液を添加して、同じニーダー中で30分間粉砕及
びせん断力付与を行つた。粉砕された重合物をヘ
ンシエルミキサー中に移し、ほぼ等量の水を加え
て更に粉砕し、次いで温水で数回洗浄後110℃で
乾燥した。これにより、ηinh4.1、見かけ密度
1.36g/cm3のPPTA95部を得た。このポリマーの
末端基量は アミン末端基量 28.3ミリ当量/Kg カルボン酸末端基量 25.6ミリ当量/Kg であつた。 次に、このポリマーを用い、実施例1と同じ方
法で、光学異方性ドープを調製し、製膜を行い、
厚さ20μmの黄色透明なフイルムを得た。得られ
たフイルムの吸湿寸法変化率は 長手方向 4.8×10-5mm/mm・%RH 幅方向 6.6×10-5mm/mm・%RH であつた。 実施例 7 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.6部(TPCに対して101モル%に相当)
を溶解した。この溶液を−2℃に冷却した後、
TPC84.3部(溶媒1当り0.4モル%に相当)を
溶融状態で一気に添加した。2.5分後、チーズ状
に固化した重合反応物を実施例6と同様に、2軸
の密閉型ニーダーに移し、その直後にN−メチル
ピロリドン100部にベンゾイルクロライド3部
(TPCに対して5モル%に相当)を溶解した溶液
を添加して、30分間粉砕及びせん断力付与を行つ
た。粉砕された重合物をヘンシエルミキサー中に
移し、ほぼ等量の水を加えて更に粉砕し、次いで
温水で数回洗浄後110℃で乾燥した。これにより、
ηinh4.1、見かけ密度1.35g/cm3のPPTA93部を
得た。また、このPPTAの末端基量は、 アミン末端基量 22.8ミリ当量/Kg カルボン酸末端基量 26.1ミリ当量/Kg であつた。 実施例1と同様の方法で、光学異方性ドープを
調製し、更に手動製膜して得られたフイルムは、
黄色透明、厚さ21μmで、吸湿寸法変化率は 長手方向 4.2×10-5mm/mm・%RH 幅方向 6.1×10-5mm/mm・%RH であつた。 実施例 8 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.2部(溶媒1当り0.4モルに相当)及
びオクチルアミン0.4部(PDAに対し1モル%相
当)を溶解した。−2℃に冷却した後、TPC81.6
部(PDAに対して101モル%相当)を溶融状態で
一気に加えた。3分後に重合物はチーズ状に固化
したので、この重合反応物を直ちに2軸の密閉型
ニーダーに移し、同ニーダー中で粉砕及びせん断
力付与を20分間行つた。次に、粉砕した重合物を
ヘンシエルミキサー中に移し、ほぼ等量の水を加
えてさらに粉砕した後、濾過し、数回温水で洗浄
して、110℃で熱風中で乾燥した。その結果、
ηinh4.3、みかけ密度1.36g/cm3の淡黄色の
PPTA95部を得た。 末端基量を測定した結果は、以下の通りであつ
た。 アミン末端基量 30.4ミリ当量/Kg カルボン酸末端基量 23.1ミリ当量/Kg 更に、このポリマーを用い、実施例1の方法
で、光学異方性ドープを調製し、製膜を行つた結
果、厚さ25μmの黄色透明のフイルムを得た。得
られたフイルムの吸湿寸法変化率は以下の通りで
あつた。 長手方向 6.1×10-5mm/mm・%RH 幅方向 6.9×10-5mm/mm・%RH 実施例 9 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.2部(溶媒1当り0.4モルに相当)及
びシクロヘキシルアミン0.4部(PDAに対し1モ
ル%相当)を溶解した。−2℃に冷却した後、
TPC81.6部(PDAに対して101モル%に相当)を
溶融状態で一気に加えた。3分後に重合物はチー
ズ状に固化したので、この重合反応物を直ちに2
軸の密閉型ニーダーに移し、同ニーダー中で粉砕
及びせん断力付与を20分間行つた。次に、粉砕し
た重合物をヘンシエルミキサー中に移し、ほぼ等
量の水を加えてさらに粉砕した後、濾過し、数回
温水で洗浄して、110℃の熱風中で乾燥した。こ
れにより、ηinh4.23、みかけ密度1.36g/cm3
PPTA94部を得た。末端基量はそれぞれ、 アミノ末端基量 32.1ミリ当量/Kg カルボン酸末端基量 26.7ミリ当量/Kg このPPTAを用い、実施例1と同じ方法を用い
て光学異方性ドープを調製し、製膜した結果、 長手方向 7.0×10-5mm/mm%・RH 幅方向 7.8×10-5mm/mm%・RH の吸湿寸法変化率を有する、厚さ23μmのフイル
ムを得た。 実施例 10 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.2部(溶媒1当り0.4モルに相当)及
びp−フルオロアニリン0.5部(PDAに対し1モ
ル%相当)を溶解した。−2℃に冷却した後、
TPC81.6部(PDAに対して101モル%に相当)を
溶融状態で一気に加えた。3分後に重合物はチー
ズ状に固化したので、この重合反応物を直ちに2
軸の密閉型ニーダーに移し、同ニーダー中で粉砕
及びせん断力付与を20分間行つた。次に、粉砕し
た重合物をヘンシエルミキサー中に移し、ほぼ等
量の水を加えてさらに粉砕した後、濾過し、数回
温水で洗浄して、110℃の熱風中で乾燥した。 その結果、ηinh4.7、みかけ密度1.36g/cm3
PPTA95部を得た。末端基量を測定した結果は アミノ末端基量 23.1ミリ当量/Kg カルボン酸末端基量 18.3ミリ当量/Kg であつた。 このポリマーを用い、実施例1と同じ方法で、
光学異方性ドープを調製し、手動製膜した結果、
厚さ25μmの黄色透明のフイルムを得た。 このフイルムの吸湿寸法変化率は、以下の通り
であつた。 長手方向 3.3×10-5mm/mm・%RH 幅方向 4.3×10-5mm/mm・%RH 実施例 11 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.6部(後で加えるTPCに対して1モル
%過剰)を溶解した。−2℃に冷却した後
TPC84.3部(溶媒1に対して0.4モル相当)を
溶融状態で添加し、引き続いてp−フルオロベン
ゾイルクロライド0.6部(TPCに対して1モル%
相当)を粉末状で一度に添加した。2〜3分で重
合物が固化したので、その後は実施例1と同じ方
法で重合を行ない、ηinh4.5のPPTA95部を得た。 このポリマーの末端基量及びみかけ密度は アミン末端基量 24.0ミリ当量/Kg カルボン酸末端基量 24.2ミリ当量/Kg みかけ密度 1.35g/cm3 であつた。 このポリマーを用いて実施例1と同様に製膜
し、23μmの厚みの黄色透明フイルムを得た。 このフイルムの吸湿寸法変化率は、 長手方向 5.7×10-5mm/mm・%RH 幅方向 6.6×10-5mm/mm・%RH であつた。 実施例 12 実施例10と同じポリマーを用い、実施例3の方
法で紡糸を行い、単糸デニールが1.5の黄色のフ
イラメントを得た。紡糸の際、紡口詰まり、紡口
圧異常上昇等のトラブルは全くなく非常に安定し
た紡糸性であつた。 この糸条と、この糸条を更に300℃で150秒熱処
理したものの物性を第3表に示す。 実施例 13 実施例1と同じ重合槽中で、N−メチルピロリ
ドン1000部に塩化カルシウム70部を溶解し、次い
でPDA44.2部(溶媒1当り0.4モルに相当)及
び2,4,6−トリフルオロアニリン0.6部
(PDAに対し1モル%相当)を溶解した。−2℃
に冷却した後、TPC81.6部(PDAに対して101モ
ル%相当)を溶融状態で一気に加えた。3分後に
重合物はチーズ状に固化したので、この重合反応
物を直ちに2軸の密閉型ニーダーに移し、同ニー
ダー中で粉砕及びせん断力付与を20分間行つた。
次に、粉砕した重合物をヘンシエルミキサー中に
移し、ほぼ等量の水を加えてさらに粉砕した後、
濾過し、数回温水で洗浄して、110℃の熱風中で
乾燥した。その結果、ηinh4.1、みかけ密度1.35
g/cm3のPPTA95部を得た。末端基量を測定した
結果は アミノ末端基量 32.5ミリ当量/Kg カルボン酸末端基量 24.6ミリ当量/Kg であつた。 このポリマーを用い、実施例1と同じの方法で
光学異方性ドープを調製し、製膜した結果、厚さ
23μmの黄色透明のフイルムを得た。このフイル
ムの吸湿寸法変化率は以下の通りであつた。 長手方向 3.2×10-5mm/mm・%RH 幅方向 4.0×10-5mm/mm・%RH
[Industrial Application Field] The present invention relates to improved polyparaphenylene terephthalamide (hereinafter abbreviated as PPTA), and more specifically, to a molded product obtained by molding an optically anisotropic dope thereof. This relates to PPTA in which the amount of amine terminal groups and the amount of carboxylic acid terminal groups in the polymer are reduced in order to reduce moisture absorption. [Prior art] PPTA, which is obtained by polymerizing terephthalic acid dichloride (hereinafter abbreviated as TPC) and paraphenylenediamine (hereinafter abbreviated as PDA), has excellent mechanical properties because it has a rigid molecular skeleton. It has been predicted for a long time that molded products will be produced, and it has actually been reported that
Since the method for producing high-strength fibers was disclosed by Yasuda Blaze (Japanese Patent Application Laid-open No. 47-39458),
Due to its excellent mechanical properties and heat resistance, PPTA fiber has attracted particular attention in recent years as an industrial material such as tire cords and reinforcing materials for FRP. In addition, PPTA film is attracting attention as a promising material in industrial fields that require high mechanical properties, such as base films for magnetic tapes, and several methods for manufacturing PPTA film have been disclosed (for example,
57-17886). It is known that PPTA can be produced by low-temperature solution polymerization in an amide-based polar solvent (for example, Japanese Patent Application Laid-Open No. 100496/1983). , because it has an amide bond produced by dehydrochloric acid condensation of monomers and a hydrophilic group such as an amine terminal group and a carboxylic acid terminal group as the molecular chain terminal group at the end of polymerization, it is possible to mold it using such ordinary PPTA. Molded products tend to absorb moisture, and therefore have drawbacks such as changes in dimensions, decreases in strength and modulus of elasticity, and fluctuations in electrical properties due to moisture absorption. [Problems to be Solved by the Invention] It is an object of the present invention to have good moldability and mechanical and thermal properties of the obtained molded product, not to exhibit the above-mentioned drawbacks due to moisture absorption, and to be able to withstand high temperatures and high temperatures. Excellent dimensional stability and excellent mechanical properties even under harsh temperature conditions.
The object of the present invention is to provide a PPTA polymer suitable for obtaining a PPTA molded product having good electrical properties. [Means for Solving the Problems] As mentioned above, PPTA obtained by polymerizing TPC and PDA has molecular chain ends consisting of an amine end group and a carboxylic acid end group. As we continued to study the relationship between various PPTA polymers with different compositions and the rate of dimensional change due to moisture absorption, that is, the rate of dimensional change due to moisture absorption of molded products obtained by molding them, we found that We discovered the surprising phenomenon that as the amount of both amine and carboxylic acid end groups per unit weight of polymer decreases by capping with substituents, the hygroscopic dimensional change rate of molded products prepared using this decreases. As a result of further intensive research, the present invention has been completed. In other words, in the present invention, ηinh is 3.0 or more,
The apparent density is 1.38 g/cm 3 or less, the amine end group is 80−10×(ηinh) milliequivalents/Kg or less,
The present invention also provides PPTA, which is characterized in that the carboxylic acid terminal group is 80−10×(ηinh) milliequivalents/Kg or less. The polymer of the present invention is as follows: This is a PPTA with a repeating unit, but it must meet the requirements described below. In other words, if the degree of polymerization of the PPTA of the present invention is too low, it will not be possible to obtain a molded product having the excellent mechanical properties inherent to PPTA, so polymerization should be carried out to give an logarithmic viscosity (ηinh) of usually 3.0 or more, preferably 3.5 or more. The degree is selected. The polymers of the present invention have a density of less than 1.38 g/cm 3 , preferably less than 1.36 g/cm 3 . Polymers with high density generally have high crystallinity, and such polymers have poor solubility in concentrated sulfuric acid during dope preparation, resulting in an uneven dope, undissolved polymer remaining, and problems with dissolution. As the time required increases, the degree of decrease in molecular weight increases due to decomposition of the polymer, which adversely affects the moldability and physical properties of the molded product, which is not preferable. Furthermore, the polymer of the present invention must also satisfy the following conditions regarding its terminal groups. That is, the amount of amine end groups is 80×10×(ηinh) milliequivalents/Kg or less (preferably 70−10×(ηinh) milliequivalents/Kg or less) and the amount of carboxylic acid end groups is 80−10 milliequivalents/Kg or less.
× (ηinh) milliequivalent/Kg or less (preferably 70−10
x (ηinh) milliequivalents/Kg or less). The hygroscopicity of a PPTA molded product has a close relationship with the amount of end groups, and if a polymer with a terminal group outside this range is used, the hygroscopicity of the resulting molded product cannot be sufficiently reduced. This is because mechanical properties tend to deteriorate and electrical properties such as electrical insulation properties tend to fluctuate. [Action of the Invention] The reason for the decrease in hygroscopicity due to the decrease in the amount of amine and carboxylic acid terminal groups is not clear, but it can be considered as follows. Molded polymers, no matter how PPTA, cannot be completely crystalline and have a certain amount of amorphous parts, and it is thought that most of the molecular chain ends exist in these amorphous parts. . On the other hand, when moisture infiltrates into the molded product, it is selectively taken in from the amorphous portion. Therefore, it is thought that hygroscopicity decreases due to a decrease in polar end groups that have a strong affinity for water. Therefore, it is also effective and a preferred embodiment to heat-treat a molded article obtained using the polymer of the present invention within a range that does not cause deterioration of the polymer, thereby making it even more difficult to absorb moisture. By the way, the total amount of end groups in a given weight of polymer is inversely proportional to the number average molecular weight of that polymer, and some researchers have also found that the relationship between the viscosity of a concentrated sulfuric acid solution of PPTA and the number average molecular weight is (For example, M. Arpin Dei Macromolecule Hemy, Vol. 177 ,
No. 581 (1976)). According to that knowledge, TPC and
When PDA is polymerized stoichiometrically, when ηinh is 5, its number average molecular weight is approximately 20,000,
There are 2 end groups in 20000 g of polymer.
In other words, there are approximately 100 milliequivalents of end groups in 1 kg of polymer, and 50 milliequivalents each of amine and carboxylic acid ends, assuming a perfectly balanced monomer charge and no other termination reactions. There must be a group. When ηinh is 6, the number average molecular weight is approximately 24,000, and approximately 40 milliequivalents of amine and carboxylic acid end groups are present per 1 kg of polymer. Comparing these numbers, it is clear that the polymers of the present invention have very low amounts of both amine and carboxylic acid end groups. Up until now, the composition of TPC and PDA has been studied regarding the production technology of PPTA polymer, but the main focus has been on increasing the molecular weight of the resulting polymer, and the charging ratio of TPC and PDA has been studied. There are few examples that focus on the terminal group of the molecular chain. during polymerization
Although a spinning method using a polymer with an excessively large number of amine end groups by manipulating the molar balance of TPC and PDA has been disclosed (US Pat. No. 3,933,963),
This is also intended only to improve spinnability, and there is no precedent for technology that attempts to improve the physical properties of molded products by actively manipulating the molecular chain terminal groups, as in the present invention. However, the PPTA polymer of the present invention cannot be obtained by these known techniques. Next, an example of a method for producing the polymer of the present invention will be shown. When PPTA with few amine end groups and carboxylic acid end groups is prepared by the reaction of PDA and TPC using a so-called low-temperature solution polymerization method,
Reactive with amines or carboxylic acid chlorides. It can be produced by adding one or more substances other than TPC and PDA and reacting with the terminal amine or terminal carboxylic acid chloride to block the molecular chain ends. The substance to be added is not particularly limited and may be any substance as long as it is reactive with the amine or carboxylic acid chloride as described above. Examples of substances to be added include aniline, o-, m- or p-
- Chloraniline, o-, m- or p-toluidine, o-, m- or p-nitroaniline, α- or β-naphthylamine, 2-,3
- or monoprimary amines such as 4-biphenylamine, ethylamine, propylamine, isopropylamine, cyclohexylamine, secondary monoamines such as N-methylaniline, diethylamine, piperidine, or benzoyl chloride, o-, m- or p- Monocarboxylic acid chlorides such as toluoyl chloride, propionyl chloride, and cyclohexane carbonyl chloride, or phenyl isocyanate, ethyl isocyanate, phenyl isothiocyanate, and ethyl isothiocyanate are used. In addition, in order to make the effect of such terminal blocking even more remarkable, it is also a useful embodiment to use, for example, a compound in which one or more of the hydrogen atoms in the above compound is substituted with fluorine. be. Furthermore, the method of adding and reacting these substances is not particularly limited. For example, in a known polymerization method (for example, Japanese Patent Application Laid-Open No. 54-100496), they may be added and reacted at any time during polymerization. or once polymerized,
They may be impregnated and reacted in a suitable solvent. A more specific example of a method for producing the polymer of the present invention is shown below. However, it goes without saying that the method for producing the polymer (polymerization method) of the present invention is not limited to the method shown below. Polymerization is most easily carried out by a so-called low-temperature solution polymerization method in which TPC and PDA are stirred and mixed in an amide solvent. As a solvent in polymerization, N-
Methylpyrrolidone, N,N-dimethylacetamide, N-acetylpyrrolidine, tetramethylurea, hexamethylphosphoramide, etc., or mixtures thereof in arbitrary proportions, or mixtures of these with lithium chloride, calcium chloride, etc. are used. The monomer concentration during polymerization is approximately 0.1 to 1.0 mol/
It is. In the conventional PPTA polymerization method, TPC and PDA are charged in a ratio of approximately 1:1 and mixed with stirring in the solvent, but special measures are required to obtain the polymer of the present invention. For example, TPC and
Adjust the molar balance of PDA so that TPC is in excess (the degree is that when PDA is 100, TPC is
Approximately 100.0 to 101 is preferable. This is because if the molar balance is disturbed too much, the molecular weight cannot be made sufficiently high. ) At the time of monomer preparation, one or more of the above-mentioned monoamines,
They are added so that the overall ratio of amino groups to carboxylic acid chloride groups is approximately 1:1. As a result, the carboxylic acid ends are blocked, making it possible to obtain PPTA with fewer amine and carboxylic acid ends than polymers obtained by conventional methods. Of course, it is also possible to reverse the molar balance of TPC and PDA to the above and use a monocarboxylic acid chloride compound or the like as an end-capping agent. The amount of end-capping agent to be added should be adjusted to equalize the molar balance of acid chloride groups and amino groups.
(or PDA) 0.1 to 1.0 is appropriate for 100. In addition, in the polymer obtained by polymerization, the ratio of terminal groups to all monomers is ηinh.
When ηinh is 3.0, it is approximately 0.7%, and when ηinh is 5.0, it is approximately
Since it is 0.5%, from this reason as well, the above ratio is appropriate. Add a sealant when polymerization has progressed to a certain extent,
It is also possible to react. As the polymerization progresses, the generated PPTA may precipitate from the solvent, so in this case the reaction with the sealant becomes a heterogeneous reaction. Therefore, when adding a capping agent during polymerization, the probability of reaction between the capping agent and the amino group (or carboxylic acid chloride group) is increased.
For effective sealing, it is best to use an excess amount of sealant. Preferably, the amount is 5 to 10 times the amount required to equalize the molar balance of amino groups and carboxylic acid chloride groups. However, if the amount is too excessive, the progress of the subsequent polymerization will be inhibited, which is not preferable. The polymerization temperature is selected between about -30°C and 100°C.
During polymerization, it is preferable to stir the entire system, and more preferably to continue stirring even after the polymer has solidified until the final degree of polymerization is reached. The polymer that has reached the final degree of polymerization is, for example, transferred to a Henschel mixer, pulverized by adding approximately the same amount of water, washed several times with water, filtered or centrifuged, and dried. It is obtained as a pale yellow polymer. As a special method for producing PPTA of the present invention, after isolating a polymer polymerized in the same manner as before, terminal capping is performed by reacting it with a monoisocyanate, monocarboxylic acid chloride, monoaliphatic amine, etc. in a solid phase. is also possible. The logarithmic viscosity (ηinh) of the PPTA thus obtained is defined as follows. ηinh=l nηrel/0.5 where ηrel is the polymer solution (96% by weight sulfuric acid 100%
0.5 g PPTA in ml) and pure solvent, measured in a capillary viscometer at 25°C. Next, a method for quantifying terminal groups in the present invention will be explained. Amine end group determination method: Weigh 0.2 g of dried polymer into a 400 ml flat bottom flask and add 25 ml of ion exchange water. To this are added 0.2 g of sodium hydrogen carbonate and 25 ml of ethanol, and further 1.25 g of 1-fluoro-2,4-dinitrobenzene. A Dimroth condenser was attached to this flask, and the contents of the flask were stirred with a magnetic stirrer and refluxed for 4 hours in a water bath maintained at 80°C. The reddish-brown colored polymer is filtered and washed thoroughly with acetone. The polymer is then dried under reduced pressure at 80°C for 4 hours. Weigh 0.025 g of the polymer thus obtained into a 5.0 ml beaker, add 25 ml of methanesulfonic acid, and stir with a magnetic stirrer at room temperature until completely dissolved. At this time, seal the mouth of the beaker with a suitable sealant and keep it out of light as much as possible during the melting process. This is because the dinitrobenzene group has high photoreactivity and to avoid darkening due to exposure to light.
The transmittance of this solution at a wavelength of 430 nm is measured using a spectrophotometer (the device used by the present inventors is an absorption photometer model 6B manufactured by Hirama Rika Kenkyusho) using a quartz cell with an optical path length of 1 cm. At this time, polymer 1
The amount of amine end groups per kg is given by log T 0 /T 1 /ε×10 6 meq/Kg. However, T 0 is 0.025 g of untreated PPTA when the transmittance of methanesulfonic acid is 100%.
ml, T1 is the transmittance of a methanesulfonic acid solution of PPTA treated as described above, when the transmittance of methanesulfonic acid is taken as 100%, and ε is the transmittance of a methanesulfonic acid solution of PPTA treated as described above. The molar extinction coefficient of the dinitrobenzene group measured using a model compound, and the value is
7100 (/mol・cm). Method for quantifying carboxylic acid end groups To quantify carboxylic acid end groups, first wash the polymer thoroughly with water to make sure that no free acid or alkali remains in the polymer. To confirm this, the polymer is dispersed in an appropriate amount of water, heated and stirred at about 50°C, the polymer is filtered off, and the filtrate is titrated with an alkali or acid such as caustic soda or hydrochloric acid. The washed polymer is thoroughly dried, and the carboxylic acid end groups are quantified by the following method. Weigh 0.2 g of the dried polymer into a flat-bottomed flask and add 25 ml of 10 -3 normal sodium hydroxide solution (1:1 water-ethanol solution). A Dimroth condenser was attached to the flask, and the mixture was refluxed for 4 hours in a water bath kept at 80°C while stirring with a magnetic stirrer. The polymer is separated by filtration, washed with a small amount of ethanol, this washing liquid is combined with the previous filtrate, and this is titrated with a 10 -3 N aqueous hydrochloric acid solution. At this time, the amount of 10 -3 normal hydrochloric acid aqueous solution required for neutralization is
V: 1 ml. In addition, using the same procedure, reflux only the 10 -3 N sodium hydroxide solution, then titrate with a 10 -3 N aqueous hydrochloric acid solution, and assuming that the amount of the aqueous hydrochloric acid solution required for neutralization is V 0 ml, the desired carboxylic acid The amount of terminal groups is V 0 −V 1 /0.2 milliequivalent/Kg per 1Kg of polymer. Incidentally, the entire process for quantifying the carboxylic acid terminal group is carried out in an inert gas atmosphere in order to avoid absorption of carbon dioxide gas from the atmosphere. When actually molding using the polymer of the present invention, a known PPTA molding method, i.e.
A method of molding from an optically anisotropic dope made of PPTA, concentrated sulfuric acid, etc. can be used. In addition to sulfuric acid, chlorosulfuric acid, fluorosulfuric acid, or a mixture of these and sulfuric acid can be used as the solvent for preparing the dope, but in terms of solubility,
Concentrated sulfuric acid of 96% by weight or more is preferred. The polymer concentration is at least a concentration that exhibits optical anisotropy at room temperature or higher temperatures. Specifically, about 10% by weight or more,
Preferably it is 15% by weight or more. This is because molded products made from optically isotropic dopes generally have low density and low strength, making it difficult to exhibit the high mechanical properties inherent to PPTA. Dopes with such polymer concentrations often need to be slightly warmed to allow them to flow and be molded; however, higher temperatures increase the rate of deterioration, so dopes with temperatures ranging from room temperature to 100°C are usually used. be done. The dope may also contain conventional additives such as antioxidants and ultraviolet stabilizers. In producing PPTA fibers from such dope, for example, the method described in Japanese Patent Application Laid-Open No. 47-39458 can be used. Also
For the production of PPTA film, for example, the method disclosed in Japanese Patent Publication No. 17886/1986 can be used, but the method is not limited thereto. [Example] The present invention will be further explained by the following example. It goes without saying that these examples are illustrative of the invention and are not intended to limit it. Example 1 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone in a polymerization tank equipped with a stirring blade rotating at high speed, an inlet and an inlet for dry nitrogen, and an inlet for raw materials.
44.2 parts of PDA (equivalent to 0.4 mol per 1 solvent) and 0.4 part of aniline (equivalent to 1 mol % relative to PDA) were dissolved. After cooling to -2℃, 85.1 parts of TPC (PDA)
(equivalent to 101 mol%) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so the polymerization reaction product was immediately transferred to a twin-screw closed kneader, and pulverized and subjected to shearing force in the same kneader for 20 minutes. Next, the pulverized polymer was transferred to a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by filtration, washing with hot water several times, and drying in hot air at 110°C. As a result, 95 parts of pale yellow PPTA with an ηinh of 4.3 and an apparent density of 1.35 g/cm 3 was obtained. The results of measuring the amount of terminal groups using the method described above were as follows. Amine terminal group amount: 31.3 milliequivalents/Kg, carboxylic acid terminal group amount: 25.9 milliequivalents/Kg Next, using this polymer, a film was formed by the following method. Pour 88 parts of 99.6% sulfuric acid into a 500 ml separable flask, add 12 parts of the above polymer in two portions, and add the dope with stirring over a total of 40 minutes (at room temperature) and continue stirring for another 10 minutes. After setting the temperature
The temperature was raised to 60°C and defoaming was performed for 5 hours to prepare an optically anisotropic dope. This dope was placed on a glass plate preheated to 120°C, and a film was formed manually using an ablator with a 0.1 mm slit. Do this immediately
It was placed in hot air maintained at 120°C and left for 10 minutes to perform isotropic treatment based on optical anisotropy. After that, the film was immersed together with the glass plate in pure water to deoxidize it.
The film was peeled off. This wet film was sandwiched between metal frames and dried in hot air at 250℃ for an hour to reduce the thickness.
A yellow transparent film of 25 μm was obtained. The moisture absorption dimensional change rate of the obtained film was measured by the following method. After drying the sample at 100℃ under a nitrogen stream and cooling it to room temperature, it was measured using a TMA (thermomechanical measuring device, TMA-30 manufactured by Shimadzu Corporation) in an atmosphere with relative humidity of 85%.
The elongation of the sample was measured and calculated using the following formula. Moisture absorption dimensional change rate (mm/mm・%RH) Elongation of sample (mm)/original length of sample (mm) x 85 (%)
RH) The size of the sample at the time of measurement was 2 mm in width and 8 mm in effective grip distance. As a result, the moisture absorption dimensional change rate of the above film was 3.9×10 -5 mm/mm・%RH in the longitudinal direction and 6.5×10 −5 mm/mm・%RH in the width direction. Example 2 The same polymer as in Example 1 was added at a ratio of 12 parts to 88 parts of 99.7% sulfuric acid to prepare an optically anisotropic dope at 65°C. The 1.5m curved pipe from the dope tank to the die via the gear pump is maintained at 65℃, and the temperature of 0.1
From a die with a slit of mm x 300 mm, a tantalum belt with a mirror-polished
Cast at a speed of m/min, relative humidity 73%, temperature
After being exposed to air at 36°C for 60 seconds and the dope becoming transparent, it was coagulated in water at 10°C. This coagulated film was washed with water at room temperature overnight and then dried with hot air at 250° C. for 1 hour to obtain a transparent yellow film with a thickness of 20 μm. Table 1 shows the physical properties of the obtained film. Comparative Example 1 In a polymerization tank, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA was dissolved.
part (equivalent to 0.4 mol per 1 solvent) was dissolved. -2
After cooling to ℃, 85.1 parts of TPC (equivalent to 0.4 mol per solvent) was added at once, and then polymerization was carried out under the same conditions as in Example 1, and ηinh was 4.6.
A pale yellow PPTA with an apparent density of 1.35 g/cm 3 was obtained. The amount of terminal groups of the obtained polymer was as follows. Amount of amine terminal groups: 47.3 milliequivalents/Kg Amount of carboxylic acid terminal groups: 35.9 milliequivalents/Kg Using this polymer, a film was prepared in the same manner as in Example 1, and the dimensional change rate upon moisture absorption was measured. The results are as follows. , the dimensional stability was inferior to that of Example 1. Longitudinal direction 9.0×10 -5 mm/mm・%RH Width direction 10.8×10 −5 mm/mm・%RH Comparative example 2 ηinh was
5.78, pale yellow PPTA with an apparent density of 1.37 g/cm 3 was obtained. The amount of end groups of this polymer was 40.5 meq/Kg for amine end groups and 32.1 meq/Kg for carboxylic acid end groups. This polymer was added at a ratio of 12 parts to 100 parts of 99.4% by weight sulfuric acid to obtain an optically anisotropic dope at 65°C. A film was formed from this dope under the same conditions as in Example 2 to obtain a yellow transparent film with a thickness of 15 μm. Table 1 shows the physical properties of the obtained film. Example 3 The same polymer as in Example 1 was added to 99.7% by weight sulfuric acid.
A dope exhibiting optical anisotropy at 70°C was prepared by gradually dissolving 19.3 parts in 80.1 parts. From the dope tank through the gear pump, the spinneret (pore diameter 0.07mmΦ-50) equipped with a 5μm SUS316 sintered filter
The piping leading to the hole) is heated to 70℃, and the discharge pressure is 50℃.
The dope was extruded from the nozzle at Kg/cm 2 . After passing through a 5 mm air layer, the extruded dope is introduced into water at 0°C. From this coagulation bath, coagulation progresses while passing through a glass tube through which spinning water flows, and the peripheral speed is 200.
It was wound onto a bobbin that rotates at m/min. The obtained yarn was washed with running water overnight and then dried with hot air at 100°C to obtain a yellow yarn with a single yarn of 1.5 denier. The physical properties of the obtained yarn are shown in Table 2. During this spinning, there were no spinning troubles such as spinneret clogging or abnormal increase in spinneret pressure, and very stable spinnability was exhibited. Comparative Example 3 Using the same polymer as in Comparative Example 2, an optically anisotropic dope was prepared in the same manner as in Example 3, and spinning was performed under the same conditions. Table 2 shows the physical properties of the yarn thus obtained. Compared to the yarn of Example 3, the strength and elongation were slightly inferior, and the moisture absorption rate was high. Almost no trouble occurred during this spinning, but the spinneret pressure increased considerably. Example 4 In the same polymerization tank as in Example 1, 21 parts of lithium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then
44.6 parts of PDA (1 mol % excess with respect to TPC added later) was dissolved. After cooling to -2℃
84.3 parts of TPC (equivalent to 0.4 mol relative to solvent 1) was added in a molten state, and subsequently 0.6 part of benzoyl chloride (equivalent to 1 mol % relative to TPC) was added all at once in powder form. Since the polymer solidified in 2 to 3 minutes, the polymerization was carried out in the same manner as in Example 1. 96 parts of pale yellow PPTA with ηinh5.1 was obtained. The amount of end groups and apparent density of this polymer were as follows: amine end group amount: 25.1 meq/Kg, carboxylic acid end group amount: 22.7 meq/Kg, and apparent density: 1.36 g/cm 3 . A film was formed using this polymer in the same manner as in Example 1.
A yellow transparent film with a thickness of 23 μm was obtained. The moisture absorption dimensional change rate of this film was 3.7×10 -5 mm/mm・%RH in the longitudinal direction and 5.5×10 −5 mm/mm・%RH in the width direction. Example 5 In the polymerization tank used in Example 1, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.6 parts of PDA were dissolved. After cooling to -2℃, 85.1 parts of TPC was added in a molten state at once.
Thereafter, polymerization was carried out under the same conditions as in Example 1. The yellow polymer obtained had an ηinh of 4.9, an apparent density of 1.36 g/cm 3 , and amine end groups of 45.1 meq/Kg and carboxylic acid end groups of 31.8 meq/Kg. 100 parts of this dried polymer was dispersed in tetrahydrofuran, 0.8 parts of phenyl isocyanate was added, and the mixture was stirred for 2 hours using a magnetic stirrer on a 25°C water bath. The polymer was filtered and dried, and the amount of end groups was quantified. As a result, PPTA was obtained with the following values: amine end group: 27.8 milliequivalents/Kg, carboxylic acid end group: 29.8 milliequivalents/Kg, with no change in ηinh or density. Using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and a film was formed to a thickness of 24 μm.
A yellow transparent film of m was obtained. The moisture absorption dimensional change rate of this film was 6.1×10 -5 mm/mm・%RH in the longitudinal direction and 7.3×10 −5 mm/mm・%RH in the width direction. Example 6 In the same polymerization tank as in Example 1, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA (equivalent to 0.4 mol per 1 solvent) was dissolved. After cooling this solution to -2°C,
85.1 parts of TPC (equivalent to 101 mol % based on PDA) was added in a molten state all at once. After 3 minutes, the polymerization reaction product solidified into a cheese-like shape was transferred to a twin-screw closed kneader.
Immediately thereafter, a solution of 2 parts of aniline (5 mol % based on PDA) dissolved in 100 parts of N-methylpyrrolidone was added, and pulverization and shearing force were applied in the same kneader for 30 minutes. The pulverized polymer was transferred into a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by washing several times with warm water and drying at 110°C. This gives ηinh4.1, apparent density
95 parts of PPTA of 1.36 g/cm 3 were obtained. The amount of terminal groups of this polymer was 28.3 meq/Kg of amine end groups and 25.6 meq/Kg of carboxylic acid end groups. Next, using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and a film was formed.
A yellow transparent film with a thickness of 20 μm was obtained. The moisture absorption dimensional change rate of the obtained film was 4.8×10 -5 mm/mm・%RH in the longitudinal direction and 6.6×10 −5 mm/mm・%RH in the width direction. Example 7 In the same polymerization tank as in Example 1, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.6 parts of PDA (equivalent to 101 mol% based on TPC) was added.
was dissolved. After cooling this solution to -2°C,
84.3 parts of TPC (corresponding to 0.4 mol % per solvent) was added in a molten state all at once. After 2.5 minutes, the polymerization reaction product solidified into a cheese-like shape was transferred to a twin-screw closed kneader in the same manner as in Example 6, and immediately after that, 3 parts of benzoyl chloride (5 mol based on TPC) was added to 100 parts of N-methylpyrrolidone. %) was added, and pulverization and shearing force were applied for 30 minutes. The pulverized polymer was transferred into a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by washing several times with warm water and drying at 110°C. This results in
93 parts of PPTA having an ηinh of 4.1 and an apparent density of 1.35 g/cm 3 was obtained. Further, the amount of terminal groups of this PPTA was as follows: amine terminal group amount: 22.8 milliequivalents/Kg; carboxylic acid terminal group amount: 26.1 milliequivalents/Kg. An optically anisotropic dope was prepared in the same manner as in Example 1, and the film obtained by manual film formation was as follows:
It was transparent yellow and had a thickness of 21 μm, and its moisture absorption dimensional change rate was 4.2×10 -5 mm/mm・%RH in the longitudinal direction and 6.1×10 −5 mm/mm・%RH in the width direction. Example 8 In the same polymerization tank as in Example 1, 70 parts of calcium chloride were dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA (corresponding to 0.4 mol per 1 solvent) and 0.4 parts of octylamine (in PDA) were dissolved. (equivalent to 1 mol %) was dissolved. After cooling to -2℃, TPC81.6
(equivalent to 101 mol% based on PDA) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a twin-screw closed kneader, and pulverization and shearing force were applied in the same kneader for 20 minutes. Next, the pulverized polymer was transferred into a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by filtration, washing with hot water several times, and drying in hot air at 110°C. the result,
Pale yellow with ηinh4.3 and apparent density 1.36g/ cm3 .
Obtained 95 copies of PPTA. The results of measuring the amount of terminal groups were as follows. Amine terminal group amount: 30.4 milliequivalents/Kg Carboxylic acid terminal group amount: 23.1 milliequivalents/Kg Furthermore, using this polymer, an optically anisotropic dope was prepared by the method of Example 1, and as a result of film formation, the thickness A yellow transparent film with a diameter of 25 μm was obtained. The moisture absorption dimensional change rate of the obtained film was as follows. Longitudinal direction 6.1×10 -5 mm/mm・%RH Width direction 6.9×10 −5 mm/mm・%RH Example 9 In the same polymerization tank as in Example 1, 70 parts of calcium chloride was added to 1000 parts of N-methylpyrrolidone. Then, 44.2 parts of PDA (equivalent to 0.4 mol per solvent) and 0.4 part of cyclohexylamine (equivalent to 1 mol % based on PDA) were dissolved. After cooling to -2℃,
81.6 parts of TPC (equivalent to 101 mol % based on PDA) was added in a molten state all at once. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately
The mixture was transferred to a closed-shaft kneader, and pulverization and shearing force were applied in the same kneader for 20 minutes. Next, the pulverized polymer was transferred into a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by filtration, washing with hot water several times, and drying in hot air at 110°C. As a result, ηinh4.23, apparent density 1.36g/cm 3
Obtained 94 copies of PPTA. The amounts of terminal groups were as follows: Amino terminal group amount: 32.1 milliequivalents/Kg Carboxylic acid terminal group amount: 26.7 milliequivalents/Kg Using this PPTA, an optically anisotropic dope was prepared using the same method as in Example 1, and a film was formed. As a result, a film with a thickness of 23 μm was obtained, which had a moisture absorption dimensional change rate of 7.0×10 −5 mm/mm%・RH in the longitudinal direction and 7.8×10 −5 mm/mm%・RH in the width direction. Example 10 In the same polymerization tank as in Example 1, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA (corresponding to 0.4 mole per 1 solvent) and 0.5 parts of p-fluoroaniline ( (equivalent to 1 mol % based on PDA) was dissolved. After cooling to -2℃,
81.6 parts of TPC (equivalent to 101 mol % based on PDA) was added in a molten state all at once. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately
The mixture was transferred to a closed-shaft kneader, and pulverization and shearing force were applied in the same kneader for 20 minutes. Next, the pulverized polymer was transferred into a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization, followed by filtration, washing with hot water several times, and drying in hot air at 110°C. As a result, ηinh4.7, apparent density 1.36g/ cm3
Obtained 95 copies of PPTA. The results of measuring the amount of terminal groups were as follows: amino terminal group amount: 23.1 milliequivalents/Kg; carboxylic acid terminal group amount: 18.3 milliequivalents/Kg. Using this polymer, in the same manner as in Example 1,
As a result of preparing an optically anisotropic dope and manually forming a film,
A yellow transparent film with a thickness of 25 μm was obtained. The moisture absorption dimensional change rate of this film was as follows. Longitudinal direction 3.3×10 -5 mm/mm・%RH Width direction 4.3×10 −5 mm/mm・%RH Example 11 In the same polymerization tank as in Example 1, 70 parts of calcium chloride was added to 1000 parts of N-methylpyrrolidone. was dissolved, and then 44.6 parts of PDA (1 mol % excess with respect to TPC added later) was dissolved. After cooling to -2℃
84.3 parts of TPC (equivalent to 0.4 mol relative to 1 solvent) was added in the melt, followed by 0.6 part of p-fluorobenzoyl chloride (1 mol % relative to TPC).
(equivalent) was added all at once in powder form. Since the polymer solidified in 2 to 3 minutes, the polymerization was carried out in the same manner as in Example 1 to obtain 95 parts of PPTA with an ηinh of 4.5. The amount of end groups and apparent density of this polymer were as follows: amine end group amount: 24.0 meq/Kg, carboxylic acid end group amount: 24.2 meq/Kg, and apparent density: 1.35 g/cm 3 . A film was formed using this polymer in the same manner as in Example 1 to obtain a yellow transparent film with a thickness of 23 μm. The moisture absorption dimensional change rate of this film was 5.7×10 -5 mm/mm・%RH in the longitudinal direction and 6.6×10 −5 mm/mm・%RH in the width direction. Example 12 Using the same polymer as in Example 10, spinning was performed by the method of Example 3 to obtain a yellow filament with a single yarn denier of 1.5. During spinning, there were no problems such as spinneret clogging or abnormal increase in spinneret pressure, and the spinning performance was very stable. Table 3 shows the physical properties of this yarn and that of the yarn further heat-treated at 300° C. for 150 seconds. Example 13 In the same polymerization tank as in Example 1, 70 parts of calcium chloride were dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA (equivalent to 0.4 mole per 1 solvent) and 2,4,6-tripropylene were added. 0.6 part of fluoroaniline (equivalent to 1 mol % based on PDA) was dissolved. -2℃
After cooling to , 81.6 parts of TPC (equivalent to 101 mol % based on PDA) was added all at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a twin-screw closed kneader, and pulverization and shearing force were applied in the same kneader for 20 minutes.
Next, the pulverized polymer was transferred to a Henschel mixer, and approximately the same amount of water was added thereto for further pulverization.
It was filtered, washed several times with warm water, and dried in hot air at 110°C. As a result, ηinh4.1, apparent density 1.35
95 parts of PPTA of g/cm 3 were obtained. The results of measuring the amount of terminal groups were as follows: amino terminal group amount: 32.5 milliequivalents/Kg; carboxylic acid terminal group amount: 24.6 milliequivalents/Kg. Using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and as a result of forming a film, the thickness was
A yellow transparent film of 23 μm was obtained. The moisture absorption dimensional change rate of this film was as follows. Longitudinal direction 3.2×10 -5 mm/mm・%RH Width direction 4.0×10 −5 mm/mm・%RH

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明のPPTAの特徴は、アミンあるいはカル
ボン酸クロライドと反応性を有する、疎水性の置
換基によつてアミンまたは/およびカルボン酸末
端が封止されていることであり、本発明のPPTA
を用いることにより、得られる成形物の吸湿性が
低下し、吸湿(または吸水)寸法変化率が低下す
るところにある。これは、分子鎖末端を疎水性の
置換基で封止することにより、分子鎖末端に起因
する。成形物の非晶部位が疎水化されることに依
るものと考えられる。ηinhが3以上のPPTAポリ
マーにおいて、その末端基量は、全体のアミド結
合に対しておよそ1%以下であり、その一部を疎
水化しただけで著しく吸湿性が低下するという現
象は、これまで多くの研究者がPPTAについて研
究を継続して来たにも拘らず、到達し得なかつた
ものである。 更には、実施例から明らかなように、本発明の
PPTAによつて得られる成形物は、優れた吸湿寸
法安定性を示すばかりか、吸湿率の低下に伴い、
高い機械的物性が安定して達成でき、紡口圧の上
昇が少ないことからもわかるように成形性も改良
され、またPPTA本来の耐熱性、耐化学薬品性あ
るいは電気絶縁性も向上する。 これらの大きな改良により、本発明のPPTAを
用いて得られる成形物は、高い寸法精度や耐熱
性、機械的特性を要求される分野、例えば、フレ
キシブルプリント配線基板用フイルム、磁気テー
プ用ベースフイルム、あるいは光フアイバーケー
ブル補強用繊維等の用途に好ましく使用できる。
また、PPTA繊維で補強したプラスチツクスにお
いて、これを例えば航空機部品として使用したと
き、その使用環境の温湿度が大幅に変動し、かつ
それが繰り返されることから、PPTA繊維が次第
に吸湿し、その結果寸法変化を引き起こして、や
がてプラスチツクスにクラツクの入ることが報告
されているが、このような用途に対しても、本発
明のポリマーから得られる繊維は、上記の如き欠
点のない繊維として非常に有用である。
The PPTA of the present invention is characterized in that the amine or/and carboxylic acid terminals are capped with a hydrophobic substituent that is reactive with amines or carboxylic acid chlorides.
By using a molded product, the hygroscopicity of the obtained molded product is reduced, and the dimensional change rate due to moisture absorption (or water absorption) is reduced. This is caused by the end of the molecular chain being capped with a hydrophobic substituent. This is thought to be due to the fact that the amorphous parts of the molded product are made hydrophobic. In PPTA polymers with ηinh of 3 or more, the amount of terminal groups is approximately 1% or less of the total amide bonds, and until now there has been no phenomenon in which hygroscopicity is significantly reduced just by making a part of them hydrophobic. Although many researchers have continued to study PPTA, they have not been able to achieve it. Furthermore, as is clear from the examples, the present invention
Molded products obtained using PPTA not only exhibit excellent moisture absorption dimensional stability, but also exhibit a decrease in moisture absorption.
High mechanical properties can be stably achieved, moldability is improved as evidenced by the small increase in spinneret pressure, and PPTA's inherent heat resistance, chemical resistance, and electrical insulation properties are also improved. Due to these major improvements, molded products obtained using the PPTA of the present invention can be used in fields that require high dimensional accuracy, heat resistance, and mechanical properties, such as films for flexible printed wiring boards, base films for magnetic tapes, Alternatively, it can be preferably used for applications such as fibers for reinforcing optical fiber cables.
In addition, when plastics reinforced with PPTA fibers are used, for example, in aircraft parts, the temperature and humidity of the environment in which they are used fluctuates significantly and this is repeated, resulting in the PPTA fibers gradually absorbing moisture. It has been reported that plastics eventually crack due to dimensional changes, but even for such uses, the fibers obtained from the polymer of the present invention are very suitable as fibers without the above-mentioned drawbacks. Useful.

Claims (1)

【特許請求の範囲】[Claims] 1 ηinhが3.0以上であり、見掛け密度が1.38
g/cm3以下であり、アミン未端基が80−10×
(ηinh)ミリ当量/Kg以下であり、且つ、カルボ
ン酸末端基が80−10×(ηinh)ミリ当量/Kg以下
であることを特徴とする、ポリパラフエニレンテ
レフタルアミド。
1 ηinh is 3.0 or more and the apparent density is 1.38
g/ cm3 or less, and the amine terminal group is 80−10×
(ηinh) milliequivalent/Kg or less, and a polyparaphenylene terephthalamide characterized by having a carboxylic acid terminal group of 80−10×(ηinh) milliequivalent/Kg or less.
JP24405786A 1986-04-18 1986-10-16 Poly-p-phenylene terephthalamide Granted JPS6346222A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8822686 1986-04-18
JP61-88226 1986-04-18

Publications (2)

Publication Number Publication Date
JPS6346222A JPS6346222A (en) 1988-02-27
JPH0355493B2 true JPH0355493B2 (en) 1991-08-23

Family

ID=13936954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24405786A Granted JPS6346222A (en) 1986-04-18 1986-10-16 Poly-p-phenylene terephthalamide

Country Status (1)

Country Link
JP (1) JPS6346222A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery
CN112694610B (en) * 2020-12-16 2022-05-27 烟台泰和新材料股份有限公司 Modified para-aramid polymer solution, coating slurry, lithium battery diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JPS6346222A (en) 1988-02-27

Similar Documents

Publication Publication Date Title
US4075172A (en) Novel aromatic copolyamides prepared from 3,4' diphenylene type diamines, and shaped articles therefrom
KR960002963B1 (en) A melt stable polymer and method for preparing it
JP4786546B2 (en) Method for producing DAPBI-containing aramid crumb
DE60006169T2 (en) Solid phase polymerized polyamides and process for their preparation
JP6276850B2 (en) Process for producing polybenzimidazole
JPS6139976B2 (en)
JP3879196B2 (en) Method for purifying polyarylene sulfide
JPH0627369B2 (en) Aromatic polyamide fiber
JPH03215526A (en) Production of polyarylene sulfide
US4178431A (en) Aromatic copolyamide fiber from benzidine sulfone or diamino phenanthridone
JPH0355493B2 (en)
JPH0355494B2 (en)
WO2007052834A1 (en) Polyazole fiber and method for producing same
JP2791362B2 (en) Method for producing polyamide anion solution
US3932365A (en) Preparation of high molecular weight polymer from oxalic acid and para-phenylene diisocyanate
WO2002008123A1 (en) Liquid raw material for producing formed polyurethane or aromatic polyamide and use of hydrotalcite compound particles therefor
JPH01108257A (en) Production of processed article from isotropic and anisotripic polyamide anion solution
JP2006299079A (en) Method for manufacturing polyimide precursor molded product
JPH0551615B2 (en)
TWI272280B (en) Process for continuous production of branched polyarylene sulfides
US4057536A (en) Process for preparing wholly aromatic polyamides by mixing solid particulate reactants and polymerizing
JPH0376810B2 (en)
CN118047945B (en) High-viscosity aromatic polyamide copolymerization stock solution and preparation method and application thereof
KR920009001B1 (en) Process for the production of aromatic polyamide fiber
JPH02225523A (en) Polyarylene thioether ketone of improved melting stability and its production