JPS6346222A - Poly-p-phenylene terephthalamide - Google Patents

Poly-p-phenylene terephthalamide

Info

Publication number
JPS6346222A
JPS6346222A JP24405786A JP24405786A JPS6346222A JP S6346222 A JPS6346222 A JP S6346222A JP 24405786 A JP24405786 A JP 24405786A JP 24405786 A JP24405786 A JP 24405786A JP S6346222 A JPS6346222 A JP S6346222A
Authority
JP
Japan
Prior art keywords
polymer
carboxylic acid
parts
ppta
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24405786A
Other languages
Japanese (ja)
Other versions
JPH0355493B2 (en
Inventor
Goro Furumoto
五郎 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Publication of JPS6346222A publication Critical patent/JPS6346222A/en
Publication of JPH0355493B2 publication Critical patent/JPH0355493B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To obtain the titled polymer giving a molded article having excellent dimensional stability to moisture, mechanical properties, electrical properties and moldability and low hygroscopicity, by decreasing the amount of terminal amine group and terminal carboxylic acid group in the polymer. CONSTITUTION:The objective polymer has a logarithmic viscosity etainh of >=3, an apparent density of <=1.38g/cm<3> and amounts of terminal amine group and terminal carboxylic acid group of <=80-10X(etainh)m-equivalent/kg each. The polymer can be produced e.g. by using terephthaloyl dichloride (TPC) and p- phenylenediamine as starting raw materials in excess of TPC, carrying out low-temperature solution polymerization adding an aniline, etc., as a terminal blocking agent keeping the overall ratio of amino group to carboxylic acid chloride group to 1:1 and blocking the terminal carboxylic acid group of the resultant polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改良されたポリパラフェニレンテレフタルア
ミド(以下PPTAと略称する)に関するものであり、
更に詳しくは、その光学異方性ドープから成形して得ら
れる成形物の吸湿を低下させるべく、ポリマー中のアミ
ン末端基量及びカルボン酸末端基量を減少せしめたPP
TAに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improved polyparaphenylene terephthalamide (hereinafter abbreviated as PPTA),
More specifically, PP in which the amount of amine end groups and the amount of carboxylic acid end groups in the polymer is reduced in order to reduce the moisture absorption of the molded product obtained by molding the optically anisotropic dope.
This is related to TA.

〔従来の技術〕[Conventional technology]

テレフタル酸ジクロライド(以下TPOと略称する)と
パラフェニレンジアミン(以下PDAと略称する)を重
合して得られるPPTAは、剛直な分子骨格を有するこ
とから、機械的物性の優れた成形物を生成するであろう
ことは古くから予言され、実際にクウォレク(特公昭5
0−8474号公報)やブレーズ(特開昭47−394
58号公報)らによって高強度繊維の製造方法が開示さ
れて以来、PPTA繊維はその優れた機械的物性と耐熱
性からタイヤコードやFRP用補強材等の産業用資材と
して近年特に注目されている。またPPTAフィルムは
、磁気テープ用ベースフィルム等の高い機械的物性を要
求される産業分野において有望な素材として注目されて
おり、いくつかのPPTAフィルムの製造方法が開示さ
れている(例えば、特公昭5747886号公幸旧 。
PPTA, which is obtained by polymerizing terephthalic acid dichloride (hereinafter abbreviated as TPO) and paraphenylenediamine (hereinafter abbreviated as PDA), has a rigid molecular skeleton, so it produces molded products with excellent mechanical properties. It has been predicted for a long time that this would happen, and it was actually
0-8474) and Blaze (Japanese Unexamined Patent Publication No. 47-394)
Since a method for producing high-strength fibers was disclosed by Patent Publication No. 58), PPTA fibers have recently attracted particular attention as industrial materials such as tire cords and reinforcing materials for FRP due to their excellent mechanical properties and heat resistance. . In addition, PPTA film is attracting attention as a promising material in industrial fields that require high mechanical properties, such as base films for magnetic tapes, and several methods for manufacturing PPTA film have been disclosed (for example, No. 5747886 Koyuki Old.

PPTAは、その製造を、アミド系の掻性溶剤中で低温
溶液重合して得られることが知られている(例えば、特
開昭54−100496号公報)が、かかる方法によっ
て得られるPPTAは、モノマーの脱塩酸縮合によって
生成するアミド結合及び重合終了時に分子鎖末端基とし
てアミン末端基及びカルボン酸末端基等の親水基を有す
ることから、このような通常のPPTAを用いて成形し
た成形物は吸湿し易く、その為、吸湿による寸法の変化
、強度や弾性率の低下、電気的特性の変動等の欠点を有
することになる。
It is known that PPTA can be produced by low-temperature solution polymerization in an amide-based scratchy solvent (for example, JP-A-54-100496). Because it has an amide bond produced by dehydrochloric acid condensation of the monomer and a hydrophilic group such as an amine terminal group and a carboxylic acid terminal group as the molecular chain terminal group at the end of polymerization, molded products made using such ordinary PPTA are It easily absorbs moisture, and therefore has disadvantages such as changes in dimensions, decreases in strength and elastic modulus, and fluctuations in electrical characteristics due to moisture absorption.

〔発明が解決しようとする問題点] 本発明の目的は、成形性や、得られる成形物の機械的、
熱的特性が良好で、更に上記のような吸湿による欠点を
示さず、高温、多湿の苛酷な状況下においても優れた寸
法安定性と優れた機械的、電気的特性を兼ね備えたPP
TA成形物を得るのに好適なPPTAポリマーを提供す
ることにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to improve the moldability and the mechanical and
PP has good thermal properties, does not exhibit the moisture absorption defects mentioned above, and has excellent dimensional stability and excellent mechanical and electrical properties even under harsh conditions of high temperature and high humidity.
The object of the present invention is to provide a PPTA polymer suitable for obtaining TA molded articles.

〔問題点を解決するための手段〕[Means for solving problems]

前述した通り、TPCとPDAの重合によって得られる
PPTAは、アミン末端基とカルボン酸末端基の分子鎖
末端を有するが、本発明者は、末端基組成の異なる種々
のPPTAポリマーと、これを成形して得られる成形物
の吸湿による寸法変化の割合、すなわち吸湿寸法変化率
との関係について検討を続けるうちに、分子鎖末端を適
当な疎水性の置換基によって封鎖し、単位重量のポリマ
ー当りのアミン及びカルボン酸両末端基量が減少するに
従い、これを用いてli製した成形物の吸湿寸法変化率
が低下するという意外な現象を見出し、更に鋭意研究を
重ねた結果本発明として完成するに到ったものである。
As mentioned above, PPTA obtained by polymerizing TPC and PDA has molecular chain ends consisting of amine end groups and carboxylic acid end groups. As we continued to study the relationship between the rate of dimensional change due to moisture absorption, that is, the rate of dimensional change due to moisture absorption, of molded products obtained by As the amount of both amine and carboxylic acid terminal groups decreases, we discovered the surprising phenomenon that the moisture absorption dimensional change rate of Li molded products using this decreases.As a result of further intensive research, we completed the present invention. It has arrived.

本発明は、すなわち、ηinhが3.0以上であり、見
掛は密度が1.38g/cd以下であり、アミン末端基
が80−10X (ηinh)ミリ当it / 1g以
下であり、かつカルボン酸末端基が80−10X  (
ηinh)ミリ当it / 1g以下であることを特徴
とする、PPTAを提供するものである。
Specifically, the present invention has an ηinh of 3.0 or more, an apparent density of 1.38g/cd or less, an amine end group of 80-10X (ηinh) milliliter/1g or less, and a carbon The acid end group is 80-10X (
The present invention provides PPTA characterized in that it is less than or equal to ηinh) per milliliter/1g.

本発明のポリマーは、下記、 + CO+CO−N H+NI+ )−を繰り返し単位
とするPPTAであるが、以下に述べる要件を満たすも
のでなければならない、 すなわち、本発明のPPTA
の重合度は、あまりに低いとPPTA本来の優れた機械
的特性を有する成形物が得られなくなる為、通常3.0
以上、好ましくは3.5以上の対数粘度(ηinh)を
与える重合度のものが選ばれる。
The polymer of the present invention is PPTA having the repeating unit +CO+CO-NH+NI+)- as shown below, and must satisfy the following requirements, that is, the PPTA of the present invention
The degree of polymerization is usually 3.0 because if it is too low, molded products with the excellent mechanical properties inherent to PPTA cannot be obtained.
As mentioned above, a polymer having a degree of polymerization that provides an logarithmic viscosity (ηinh) of 3.5 or more is preferably selected.

本発明のポリマーは1.38g/−以下、好ましくは1
.36g/cal以下の密度を有するものである。密度
が大きいものは一般に結晶性が高く、そのようなポリマ
ーは、ドープ調製時に濃硫酸への溶解性が悪く、不均一
なドープとなったり、未溶解ポリマーが残存したりする
こと、また溶解に要する時間の増大に伴い、ポリマーの
分解によって、分子量の低下の度合が増大すること等に
より、成形性や成形物の物性に悪影響を及ぼすため好ま
しくない。
The polymer of the present invention is less than 1.38 g/-, preferably 1
.. It has a density of 36 g/cal or less. Polymers with high density generally have high crystallinity, and such polymers have poor solubility in concentrated sulfuric acid during dope preparation, resulting in uneven dope, undissolved polymer remaining, and difficulty in dissolving. As the time required increases, the degree of decrease in molecular weight increases due to decomposition of the polymer, which adversely affects the moldability and physical properties of the molded product, which is not preferable.

更に、本発明のポリマーは、その末端基に関し以下の条
件を満たすものでなければならない。すなわち、アミン
末端基量が80−10x (ηinh)ミリ当量/ 1
g以下(好ましくは7O−10X  (77inh)ミ
リ当量/ 1g以下)でかつカルボン酸末端基量が80
−1Qx (771nh)ミリ当量/kg以下(好まし
くは70−10×(ηinh)ミリ当量/ 1g以下)
でなくてはならない、 PPTA成形物の吸湿性は末端
基量と密接な関係を有しており、この範囲外の末端基量
のポリマーを用いた場合、得られる成形物の吸湿性を充
分に低下せしめることができず、従って機械的物性の低
下や、電気絶縁性等の電気的特性の変動を生じ易くなる
からである。
Furthermore, the polymer of the present invention must satisfy the following conditions regarding its terminal groups. That is, the amount of amine end groups is 80-10x (ηinh) milliequivalent/1
g or less (preferably 7O-10
-1Qx (771nh) milliequivalent/kg or less (preferably 70-10×(ηinh) milliequivalent/1g or less)
The hygroscopicity of a PPTA molded product is closely related to the amount of end groups, and if a polymer with an amount of end groups outside of this range is used, the hygroscopicity of the resulting molded product cannot be sufficiently improved. This is because mechanical properties tend to deteriorate and electrical properties such as electrical insulation properties tend to fluctuate.

〔発明の作用〕[Action of the invention]

このアミン及びカルボン酸末端基量の減少による吸湿性
の低下の理由については、明らかではないが、以下のよ
うに考えることができる。高分子の成形物は、いかにP
PTAといえども、完全な結晶とはなり得ず、非晶部分
をある程度有しており、分子鎖末端は殆んどこの非晶部
分に存在するものと考えられる。これに対して水分が成
形物中に浸入する場合、非晶部分から選択的に取り込ま
れる。
Although the reason for the decrease in hygroscopicity due to the decrease in the amount of amine and carboxylic acid terminal groups is not clear, it can be considered as follows. How can polymer molded products be made of P?
Even though it is PTA, it cannot be completely crystalline and has a certain amount of amorphous portion, and it is thought that most of the molecular chain ends are present in this amorphous portion. On the other hand, when moisture infiltrates into the molded product, it is selectively taken in from the amorphous portion.

従って、水と親和性の強い極性末端基が減少することで
、吸湿性が低下するものと考えられるのである。従って
、本発明のポリマーを用いて得られた成形物を、ポリマ
ーが劣化しない範囲で熱処理することによって、一段と
吸湿しにくくすることも効果的であり、好ましい実施態
様である。
Therefore, it is thought that hygroscopicity decreases due to a decrease in polar end groups that have a strong affinity for water. Therefore, it is also effective and a preferred embodiment to heat-treat the molded product obtained using the polymer of the present invention within a range that does not cause the polymer to absorb moisture.

ところで、一定の重量のポリマー中の全末端基量はその
ポリマーの数平均分子量と反比例の関係にあり、またP
PTAの濃硫酸溶液の粘度と数平均分子量の関係が幾人
かの研究者達によって研究され、明らかにされている(
例えば、M、アーピン ディマクロモレキュラーレ ヘ
ミ−1第」n巻、第581頁(1976))。その知見
に従えば、TPOとPDAを化学量論的に重合せしめた
場合、ηinhが5の時その数平均分子量はおよそ20
000であり、20000 gのポリマー中に2個の末
端基が存在する。
By the way, the total amount of end groups in a given weight of polymer is inversely proportional to the number average molecular weight of that polymer, and P
Several researchers have studied and clarified the relationship between the viscosity and number average molecular weight of concentrated sulfuric acid solutions of PTA (
For example, M. Arpin Dimacromoleculare Hemi-1 Vol. n, p. 581 (1976)). According to that knowledge, when TPO and PDA are stoichiometrically polymerized, when ηinh is 5, the number average molecular weight is approximately 20.
000 and there are 2 end groups in 20000 g of polymer.

言い換えれば、ポリマー1 kg中にはおよそ100ミ
リ当量の末端基が存在し、もしモノマーの仕込みが完全
にバランスし、且つ他の停止反応がないとすれば、50
ミリ当量ずつのアミン及びカルボン酸末端基が存在する
はずである。またηinhが6のときは、数平均分子量
はおよそ24000であり、ポリマー1 kg当り約4
0ミリ当量ずつのアミン及びカルボン酸末端基が存在す
ることになる。これらの数字と比較すると、本発明のポ
リマーはアミン及びカルボン酸両末端基量が非常に少な
いことが明らかである。
In other words, there are approximately 100 milliequivalents of end groups in 1 kg of polymer, and if the monomer charge is perfectly balanced and there are no other termination reactions, 50
There should be milliequivalents of each amine and carboxylic acid end group. When ηinh is 6, the number average molecular weight is approximately 24,000, which is approximately 4% per kg of polymer.
There will be 0 milliequivalents each of amine and carboxylic acid end groups. Comparing these numbers, it is clear that the polymers of the present invention have very low amounts of both amine and carboxylic acid end groups.

これまでにも、PPTAポリマーの製造技術に関してT
PCとPDAの組成についても検討がなされて来てはい
るものの、それらは得られるポリマーの分子量の増大に
主眼が置かれ、TPCとPDAの仕込比を変更する程度
のものであり、分子鎖末端基に対して目を向けた例は殆
んどない。重合時のTPOとPDAのモルバラジスを操
作し、アミン末端基を過度に多くしたポリマーを用いた
紡糸方法が開示されてはいるが(米国特許第39339
63号)、これも紡糸性の改善を意図するだけであり、
本発明のように、分子鎖末端基を積極的に操作すること
により、成形物の物性までも改良しようとする技術は全
く前例がなく、また、これら公知の技術によっては、本
発明のPPTAポリマーを得ることができない。
Until now, T.
Although the composition of PC and PDA has been studied, the main focus of these studies has been on increasing the molecular weight of the resulting polymer, and only by changing the charging ratio of TPC and PDA. There are very few examples that focus on the basics. Although a spinning method using a polymer with an excessively large number of amine end groups by manipulating the molar distribution of TPO and PDA during polymerization has been disclosed (US Pat. No. 39,339).
No. 63), which is also only intended to improve spinnability,
As in the present invention, there is no precedent for a technology that attempts to improve even the physical properties of a molded product by actively manipulating the molecular chain terminal groups, and these known technologies cannot can't get it.

次に、本発明のポリマーの製造方法の一例を示す。この
ような、アミン末端基もカルボン酸末端基も少ないPP
TAをいわゆる低温溶液重合法を用い、PDAとTPC
の反応によって調製する場合は、アミンあるいはカルボ
ン酸クロライドと反応性を有する、TPC、PDA以外
の物質を1種以上添加し、末端のアミンあるいは末端の
カルボン酸クロライドと反応せしめ分子鎖末端を封鎖す
ることにより製造できる。
Next, an example of a method for producing the polymer of the present invention will be shown. Such PP with few amine end groups and few carboxylic acid end groups
Using TA, PDA and TPC using a so-called low-temperature solution polymerization method.
When preparing by reaction, one or more substances other than TPC and PDA that are reactive with amines or carboxylic acid chlorides are added to react with the terminal amine or terminal carboxylic acid chloride to block the molecular chain ends. It can be manufactured by

添加する物質は、上記の通りアミンあるいはカルボン酸
クロライドと反応性を有する物質であれば何でもよく、
特に限定されない。添加する物質の例としては、アニリ
ン、0−lm−もしくはp−クロルアニリン、〇−1m
−もしくはp−)ルイジン、0−lm−もしくはp−ニ
トロアニリン、α−もしくはβ−ナフチルアミン、2−
13−もしくは4−ビフェニルアミン、エチルアミン、
プロピルアミン、イソプロピルアミン、シクロヘキシル
アミン等のモノー級アミン類、N−メチルアニリン、ジ
エチルアミン、ピペリジン等の二級モノアミン類、ある
いはベンゾイルクロライド、0−lm−もしくはp−)
ルオイルクロライド、プロピオニルクロライド、シクロ
ヘキサンカルボニルクロライド等のモノカルボン酸クロ
ライド、あるいはフェニルイソシアネート、エチルイソ
シアネート、フェニルインチオシアネート、エチルイソ
チオシアネートなどが用いられる。なお、このような末
端封鎖の効果をより一層顕著なものにするために、例え
ば、上記の化合物中の水素原子の1個以上がフッ素で置
換された化合物を用いることも有用な実施態様である。
The substance to be added may be any substance as long as it is reactive with the amine or carboxylic acid chloride as described above.
Not particularly limited. Examples of substances to be added include aniline, 0-lm- or p-chloroaniline, 0-1m
- or p-) luidine, 0-lm- or p-nitroaniline, α- or β-naphthylamine, 2-
13- or 4-biphenylamine, ethylamine,
Mono-class amines such as propylamine, isopropylamine, cyclohexylamine, secondary monoamines such as N-methylaniline, diethylamine, piperidine, or benzoyl chloride, 0-lm- or p-)
Monocarboxylic acid chlorides such as luoyl chloride, propionyl chloride, and cyclohexane carbonyl chloride, or phenyl isocyanate, ethyl isocyanate, phenyl inthiocyanate, and ethyl isothiocyanate are used. In addition, in order to make the effect of such terminal blocking even more remarkable, it is also a useful embodiment to use, for example, a compound in which one or more of the hydrogen atoms in the above compound is substituted with fluorine. .

また、それらの物質を添加、反応せしめる方法も特に限
定されるものではなく、例えば公知の重合方法(例えば
特開昭54−100496号公報)において、重合の任
意の時期にそれらを添加、反応せしめてもよく、あるい
は一旦重合したポリマーに、適当な溶媒中でそれらを含
浸、反応せしめてもよい。
Furthermore, the method of adding and reacting these substances is not particularly limited. For example, in a known polymerization method (for example, Japanese Patent Application Laid-Open No. 100496/1983), they may be added and reacted at any time during polymerization. Alternatively, the polymer once polymerized may be impregnated with them in a suitable solvent and reacted.

一本発明のポリマーのより具体的な製造方法の例を以下
に示す。しかしながら、本発明のポリマーの製造方法(
重合方法)が以下に示す方法に限定されないことは言う
までもない。
A more specific example of a method for producing the polymer of the present invention is shown below. However, the method for producing the polymer of the present invention (
It goes without saying that the polymerization method (polymerization method) is not limited to the method shown below.

重合は、アミド系溶剤中でTPOとPDAを攪拌混合す
る、いわゆる低温溶液重合法に依るのが最も簡便である
0重合における溶剤としては、N−メチルピロリドン、
N、N−ジメチルアセトアミド、N−アセチルピロリジ
ン、テトラメチル尿素、ヘキサメチルホスホ−ルアミド
等又はこれらの任意の割合の混合物、或いはこれらと塩
化リチウム、塩化カルシウムなどとの混合物が用いられ
る。重合時のモノマー濃度は大略0.1〜1.0モル/
itである。従来のPPTA重合法はTPCとPDAが
ほぼ1対lになるように仕込み、前記溶剤中で攪拌混合
するものであるが、本発明のポリマーを得るには特別な
工夫を要する。例えば、TPC諷PDAのモルバランス
をTPCが過剰になるようにしくその度合は、PDAを
100とした時、TPCが100.Q〜101程度が好
ましい、これは、あまり大きくモルバランスを崩すと、
分子量を充分に高くすることができないからである。)
七ツマー仕込時に、前記したモノアミンの1種又は2種
以上を、全体としてのアミノ基とカルボン酸クロライド
基との比がほぼ1対1となるように添加する。その結果
、カルボン酸末端が封鎖され、従来の方法で得られるポ
リマーに比べてアミン末端もカルボン酸末端も少ないP
PTAを得ることができる。当然ながら、TPCとPD
Aのモルバランスを上記と逆にとり、末端封止剤として
モノカルボン酸クロライド化合物などを用いることも可
能である。
Polymerization is most conveniently carried out by a so-called low-temperature solution polymerization method in which TPO and PDA are stirred and mixed in an amide solvent.Solvents for polymerization include N-methylpyrrolidone, N-methylpyrrolidone,
N,N-dimethylacetamide, N-acetylpyrrolidine, tetramethylurea, hexamethylphosphoramide, etc., or mixtures thereof in arbitrary proportions, or mixtures of these with lithium chloride, calcium chloride, etc. are used. The monomer concentration during polymerization is approximately 0.1 to 1.0 mol/
It is. In the conventional PPTA polymerization method, TPC and PDA are charged in a ratio of approximately 1:1 and mixed with stirring in the solvent, but special measures are required to obtain the polymer of the present invention. For example, the molar balance of TPC and PDA is such that TPC is in excess.When PDA is 100, TPC is 100. About Q~101 is preferable; this means that if the molar balance is disturbed too much,
This is because the molecular weight cannot be made sufficiently high. )
At the time of preparing the 7mer, one or more of the monoamines described above are added so that the overall ratio of amino groups to carboxylic acid chloride groups is approximately 1:1. As a result, the carboxylic acid ends are blocked, and compared to polymers obtained by conventional methods, P has fewer amine and carboxylic acid ends.
PTA can be obtained. Naturally, TPC and PD
It is also possible to reverse the molar balance of A to the above and use a monocarboxylic acid chloride compound or the like as the terminal capping agent.

添加する末端封止剤の量は、酸クロライド基とアミノ基
のモルバランスを等しくする為、TPC(あるいはP 
D A)100に対し、0.1から1.0が適当である
。また、重合して得られるポリマーにおいて、金子ツマ
−に対する末端基の割合は、ηinhが3.0のとき、
およそ0.7%、ηinhが5.0のときおよそ0.5
%であるから、このことからも、上記の割合が適当であ
る。
The amount of end-capping agent to be added is determined by adjusting the amount of TPC (or P
D A) 0.1 to 1.0 is appropriate for 100. In addition, in the polymer obtained by polymerization, the ratio of terminal groups to Kaneko Tsumar is when ηinh is 3.0,
Approximately 0.7%, approximately 0.5 when ηinh is 5.0
%, and from this reason as well, the above ratio is appropriate.

重合がある程度進行した所で封止剤を添加し、反応させ
ることも可能である0重合が進行すると、生成するPP
TAは溶媒から析出することがあるため、このときは封
止剤との反応は不均一系の反応となる。従って、重合途
中に封止剤を添加するに際しては、封止剤とアミノ基(
あるいはカルボン酸クロライド基)との反応の確率を高
くし、効果的な封止を行う為に、封止剤の量を過剰にす
るのが良い。好ましくは、アミノ基とカルボン酸クロラ
イド基のモルバランスを等しくするのに必要な量の5〜
10倍であるのが良い。但し、あまりに過剰にするとそ
れ以後の重合の進行を阻害されるため好ましくない。
It is also possible to add a sealant and cause the reaction to occur once the polymerization has progressed to a certain extent. When the polymerization progresses, the PP produced
Since TA may precipitate from the solvent, the reaction with the sealant in this case is a heterogeneous reaction. Therefore, when adding a sealant during polymerization, the sealant and amino groups (
In order to increase the probability of reaction with the carboxylic acid chloride group (or carboxylic acid chloride group) and perform effective sealing, it is preferable to use an excessive amount of the sealant. Preferably, the amount of 5- to
10 times better. However, if the amount is too excessive, the progress of the subsequent polymerization will be inhibited, which is not preferable.

重合温度は約−30℃〜100℃の間辷選ばれる。The polymerization temperature is selected to be between about -30°C and 100°C.

また重合時は系全体を攪拌するのが好ましく、更に好ま
しくはポリマーが固化した後も、最終重合度に到るまで
攪拌を続けるのがよい。
Further, during polymerization, it is preferable to stir the entire system, and more preferably to continue stirring even after the polymer has solidified until the final degree of polymerization is reached.

最終重合度に到達したポリマーは、例えば、ヘンシェル
ミキサー中に移され、はぼ等量の水を加えて粉砕され、
更に数回水で洗浄された後濾別あるいは遠心分離され乾
燥されて、最終的に淡黄色のポリマーとして得られる。
The polymer that has reached the final degree of polymerization is transferred, for example, into a Henschel mixer and ground by adding approximately the same amount of water.
After further washing with water several times, it is filtered or centrifuged and dried to finally obtain a pale yellow polymer.

本発明のPPTAの特別の製造方法として、従来と同様
に重合させたポリマーを単離した後、固相でモノイソシ
アネートやモノカルボン酸クロライド、モノ脂肪族アミ
ンなどと反応させて末端封鎖を行なうことも可能である
As a special method for producing PPTA of the present invention, a polymer polymerized in the same manner as before is isolated, and then reacted with a monoisocyanate, a monocarboxylic acid chloride, a monoaliphatic amine, etc. in a solid phase to perform end-blocking. is also possible.

こうして得られるPPTAの対数粘度(ηinh)は次
の通り定義される。
The logarithmic viscosity (ηinh) of the PPTA thus obtained is defined as follows.

0、5 式中、ηrelはポリマー溶液(96重量%硫酸100
m7!中0.5 g PPTA)と純溶媒との、25℃
において毛細管粘度計にて測定した、流出時間の比であ
る。
0,5 where ηrel is the polymer solution (96% by weight sulfuric acid 100%
m7! 0.5 g PPTA) and pure solvent at 25°C.
This is the ratio of outflow times measured with a capillary viscometer at .

次に本発明における末端基の定量方法について説明する
Next, a method for quantifying terminal groups in the present invention will be explained.

アミン末端基定量方法 乾燥したポリマー0.2gを400m1の平底フラスコ
に秤り取り、イオン交換水25mffを加える。
Amine end group determination method: Weigh 0.2 g of the dried polymer into a 400 ml flat bottom flask and add 25 mff of ion-exchanged water.

これに炭酸水素ナトリウム0.2gとエタノール25m
1を加え、更に1.25 gの1−フルオロ−2゜4−
ジニトロベンゼンを添加する。このフラスコにジムロー
ト冷却管を取り付け、フラスコの内容物をマグネチック
スターラーで攪拌しつつ、80℃に保った水浴中で4時
間還流する。赤褐色に着色したポリマーを濾過し、アセ
トンで充分に洗浄する。次いでポリマーを80℃で4時
間減圧乾燥する。こうして得られたポリマー0.025
 gを5.0mlのビーカーに秤り取り、メタンスルホ
ン酸25m1を加え室温において完全に溶解するまでマ
グネチックスターラーで攪拌する。その際ビーカーの口
を適当なシール材で密封し、また溶解の間はできるだけ
遮光するようにしておく、これは、ジニトロベンゼン基
の光反応性が高く、露光による濃色化を避ける為である
。この溶液の430nmの波長における透過率測定を分
光光度計(本発明者らの用いた装置は、手間理化研究所
製吸光光度計6B型)で、光路長1備の石英セルを用い
て行なう。このとき、ポリマー1−当りのアミン末端基
量は さ れる。但し、 T、はメタンスルホン酸の透過率を100%とした時の
未処理PPTA O,025gをメタンスルホン酸25
m1に溶解した溶液の透過率であり、T+はメタンスル
ホン酸の透過率を100%とした時の、上述の処理を施
したPPTAのメタンスルホン酸溶液の透過率であり、 εは下記のモデル化合物を用いて測定したジニトロベン
ゼン基のモル吸光係数であって、値は7100 (1/
mol −cs)である。
Add to this 0.2g of sodium hydrogen carbonate and 25m of ethanol.
1 and further 1.25 g of 1-fluoro-2゜4-
Add dinitrobenzene. A Dimroth condenser was attached to this flask, and the contents of the flask were stirred with a magnetic stirrer and refluxed for 4 hours in a water bath maintained at 80°C. The reddish-brown colored polymer is filtered and washed thoroughly with acetone. The polymer is then dried under reduced pressure at 80° C. for 4 hours. The polymer thus obtained is 0.025
g into a 5.0 ml beaker, add 25 ml of methanesulfonic acid, and stir with a magnetic stirrer at room temperature until completely dissolved. At this time, the mouth of the beaker should be sealed with a suitable sealant, and the light should be shielded as much as possible during the dissolution. This is because the dinitrobenzene group is highly photoreactive and to avoid darkening due to exposure to light. . The transmittance of this solution at a wavelength of 430 nm is measured using a spectrophotometer (the device used by the present inventors is Absorption Photometer Model 6B manufactured by Te Rika Kenkyusho) using a quartz cell with an optical path length of 1. At this time, the amount of amine end groups per polymer is determined. However, T is 25 g of untreated PPTA O when the transmittance of methanesulfonic acid is 100%.
m1 is the transmittance of the solution dissolved in ml, T+ is the transmittance of the methanesulfonic acid solution of PPTA subjected to the above treatment, when the transmittance of methanesulfonic acid is taken as 100%, and ε is the transmittance of the methanesulfonic acid solution of PPTA subjected to the above treatment. The molar extinction coefficient of dinitrobenzene group measured using the compound, the value is 7100 (1/
mol-cs).

カルボン酸末端基の定量方法 カルボン酸末端基の定量に当っては、まずポリマーを水
で充分に洗浄し、ポリマー中に、遊離の酸分やアルカリ
分が残存しないことを確める。これを確めるには、ポリ
マーを適当量の水中に分散し、50℃程度で加熱撹拌し
、ポリマーを濾別した後、濾液を苛性ソーダ、塩酸等の
アルカリまたは酸で滴定すればよい、洗浄を終えたポリ
マーは充分に乾燥し、以下の方法でカルボン酸末端基の
定量を行なう。
Method for quantifying carboxylic acid end groups To quantify carboxylic acid end groups, first wash the polymer thoroughly with water to make sure that no free acid or alkali remains in the polymer. To confirm this, disperse the polymer in an appropriate amount of water, heat and stir at around 50°C, filter the polymer, and then titrate the filtrate with an alkali or acid such as caustic soda or hydrochloric acid. The polymer is thoroughly dried, and the carboxylic acid end groups are quantified by the following method.

乾燥したポリマー0.2gを平底フラスコに秤り取り、
10−3規定の水酸化ナトリウム溶液(水−エタノール
1対1溶液)25mj!を加える。このフラスコにジム
ロート冷却管を取り付け、マグネチソクスクーラーで攪
拌しながら、80℃に保った水浴中で4時間還流する。
Weigh 0.2 g of the dried polymer into a flat bottom flask,
10-3 normal sodium hydroxide solution (water-ethanol 1:1 solution) 25mj! Add. A Dimroth condenser was attached to this flask, and the mixture was refluxed for 4 hours in a water bath kept at 80° C. while stirring with a magnetic cooler.

ポリマーを濾別し、少量のエタノールで洗浄し、この洗
液と、先の濾液と合わせ、これを10−3規定の塩酸水
溶液で滴定する。この時中和に要した10−3規定の塩
酸水溶液の量をV、mlとする。また同様の手順で10
−3規定水酸化ナトリウム溶液のみを還流させ、次いで
10−’規定の塩酸水溶液で滴定を行い、中和に要した
塩酸水溶液の量を■。mlとすると、求めるカルボン酸
末端基量はポリマー1 kg当り、となる、尚、カルボ
ン酸末端基の定量は、大気中からの炭酸ガスの吸収を避
ける為に、全工程を不活性ガス雰囲気中で行なう。
The polymer is separated by filtration, washed with a small amount of ethanol, this washing liquid is combined with the previous filtrate, and this is titrated with a 10-3 N aqueous hydrochloric acid solution. The amount of 10-3 normal hydrochloric acid aqueous solution required for neutralization at this time is defined as V, ml. In the same procedure, 10
- Reflux only the 3N sodium hydroxide solution, then titrate with a 10N hydrochloric acid aqueous solution, and calculate the amount of the hydrochloric acid aqueous solution required for neutralization. ml, the desired amount of carboxylic acid end groups is per 1 kg of polymer.The amount of carboxylic acid end groups is determined by performing the entire process in an inert gas atmosphere to avoid absorption of carbon dioxide gas from the atmosphere. Let's do it.

本発明のポリマーを用いて実際に成形を行なうに当って
は、公知のPPTAの成形方法、即ちPPTAと濃硫酸
等とからなる光学異方性ドープから成形する方法を利用
することができる。
When actually molding the polymer of the present invention, a known method for molding PPTA, that is, a method for molding an optically anisotropic dope made of PPTA and concentrated sulfuric acid or the like can be used.

ドープを調製するのに用いる溶媒は、硫酸以外にクロル
硫酸、フルオル硫酸またはこれらと硫酸の混合物を用い
ることができるが、溶解性の点で96重量%以上の濃硫
酸が好ましい、ポリマー濃度は室温またはそれ以上の温
度で光学異方性を示す濃度以上である。具体的には、約
10重量%以上、好ましくは15重量%以上である。こ
れは光学等方性ドープから成形した成形物は一般に密度
が小さく、強度も小さくなり、PPTAが本来有する高
い機械的物性を示し難くなるためである。このようなポ
リマー濃度のドープは、流動、成形できるよう少し加温
する必要のあることが多いが、温度が高くなると、劣化
速度が大きくなるので、通常は室温〜100℃の範囲の
ドープが使用される。
As the solvent used to prepare the dope, in addition to sulfuric acid, chlorosulfuric acid, fluorosulfuric acid, or a mixture of these and sulfuric acid can be used, but from the viewpoint of solubility, concentrated sulfuric acid of 96% by weight or more is preferable, and the polymer concentration is at room temperature. or a concentration that exhibits optical anisotropy at higher temperatures. Specifically, it is about 10% by weight or more, preferably 15% by weight or more. This is because a molded article made from an optically isotropic dope generally has a low density and low strength, making it difficult to exhibit the high mechanical properties inherent to PPTA. Dopes with such polymer concentrations often need to be slightly warmed to allow them to flow and be molded, but as the temperature increases, the rate of deterioration increases, so dopes with temperatures ranging from room temperature to 100°C are usually used. be done.

またドープには、通常の添加剤、例えば、抗酸化剤、紫
外線安定化剤等が配合されていてもよい。
The dope may also contain conventional additives such as antioxidants and ultraviolet stabilizers.

このようなドープからPPTA繊維を製造するに当って
は、例えば、特開昭47−39458号公報に記載され
ている方法等を用いることができる。またPPTAフィ
ルムの製造については、例えば、特公昭57−1788
6号公報の方法等を用いることができるが、これらに限
定されるものではない。
In producing PPTA fibers from such dope, for example, the method described in Japanese Patent Application Laid-Open No. 47-39458 can be used. Regarding the production of PPTA film, for example, Japanese Patent Publication No. 57-1788
The method disclosed in Japanese Patent No. 6 can be used, but the method is not limited thereto.

〔実施例〕〔Example〕

本発明を下記実施例によって更に説明する。言うまでも
ないが、これらの実施例は本発明を説明するものであり
、本発明を限定するものではない。
The invention will be further illustrated by the following examples. It goes without saying that these examples are illustrative of the invention and are not intended to limit it.

実施例1 高速回転する攪拌翼と乾燥窒素の出入口と原料の投入口
を有する重合槽中でN−メチルピロリドン1000部に
塩化カルシウム70部を溶解し、次いでPDAを44.
22部(溶媒IJ当り0.4モルに相当)及びアニリン
0.4部(PDAに対し1モル%相当)を溶解した。−
2℃に冷却した後TPC85,1部(PDAに対して1
01モル%相当)を溶融状態で一気に加えた。3分後に
重合物はチーズ状に固化したのでこの重合反応物を直ち
に2軸の密閉型ニーダ−に移し、同ニーグー中で粉砕、
せん断力付与を20分間行った0次に、粉砕した重合物
をヘンシェルミキサー中に移し、はぼ等量の水を加えて
さらに粉砕した後、濾過し数回温水で洗浄して110℃
の熱風中で乾燥した。その結果、ηinh 4.3、み
かけ密度1.35g/cdの淡黄色のPPTA95部を
得た。
Example 1 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone in a polymerization tank having a stirring blade rotating at high speed, an inlet and an inlet for dry nitrogen, and an inlet for raw materials, and then 44.5 parts of PDA was dissolved.
22 parts (equivalent to 0.4 mol per IJ of solvent) and 0.4 part of aniline (equivalent to 1 mol % relative to PDA) were dissolved. −
After cooling to 2°C, add 1 part of TPC85 (1 part to PDA).
(equivalent to 0.01 mol%) was added all at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a two-screw closed kneader, and ground in the same Nigu.
After applying shearing force for 20 minutes, the pulverized polymer was transferred to a Henschel mixer, an approximately equal amount of water was added thereto, further pulverized, filtered, washed several times with warm water, and heated to 110°C.
dried in hot air. As a result, 95 parts of pale yellow PPTA with an ηinh of 4.3 and an apparent density of 1.35 g/cd was obtained.

前述の方法で末端基量を測定した結果は以下の通りであ
った。
The results of measuring the amount of terminal groups using the method described above were as follows.

アミン末端基量31.3ミリ当量/kg、カルボン酸末
端基125.9ミリ当量/kg 次に、このポリマーを用いて、以下の方法で製膜を行っ
た。
Amount of amine end groups: 31.3 meq/kg, carboxylic acid end groups: 125.9 meq/kg Next, using this polymer, film formation was performed in the following manner.

500meのセパラブルフラスコに99.6%硫酸88
部を入れ、これに12部の上記ポリマーを2回に分け、
全体で40分間をかけてドープを攪拌しつつ投入しく室
温)10分間更に攪拌をつづけた後温度を60℃に上げ
て5時間脱泡を行い、光学異方性ドープを調製した。
99.6% sulfuric acid 88% in a 500me separable flask
1 part, and 12 parts of the above polymer was divided into two parts.
The dope was added while stirring for a total of 40 minutes (at room temperature), and stirring was continued for another 10 minutes, the temperature was raised to 60° C., and defoaming was performed for 5 hours to prepare an optically anisotropic dope.

このドープをあらかじめ120℃に加熱したガラス板上
に取り、0.1 mmのスリットを有するアプリケータ
を用い、手動で製膜した。直ちにこれを120℃に保っ
た熱風中に入れ、10分間放置し、光学異方性から等力
比処理を行った。その後、フィルムをガラス板ごと純水
中に浸して脱酸せしめ、フィルムを剥離させた。この湿
潤フィルムを金枠にはさみ、250℃で時間熱風中で乾
燥し、厚さ25μmの黄色透明なフィルムを得た。
This dope was placed on a glass plate preheated to 120° C., and a film was formed manually using an applicator with a 0.1 mm slit. Immediately, this was placed in hot air kept at 120°C, left to stand for 10 minutes, and subjected to constant force ratio processing based on optical anisotropy. Thereafter, the film was immersed together with the glass plate in pure water to be deoxidized, and the film was peeled off. This wet film was sandwiched between metal frames and dried in hot air at 250° C. for an hour to obtain a yellow transparent film with a thickness of 25 μm.

得られたフィルムの吸湿寸法変化率を以下の方法で測定
した。
The moisture absorption dimensional change rate of the obtained film was measured by the following method.

試料を窒素気流下100℃で絶乾し、室温まで冷却後、
相対湿度85%の雰囲気下でTMA (熱機械測定装置
、島津製作所製律^−30)を用いて、試料の伸びを測
定し、以下の式で算出した。
After drying the sample at 100°C under a nitrogen stream and cooling it to room temperature,
The elongation of the sample was measured in an atmosphere of 85% relative humidity using TMA (Thermomechanical Measuring Instrument, Shimadzu Corporation Standard ^-30), and calculated using the following formula.

吸湿寸法変化率(m/酊・%RH) 試料の伸び(ms) 試料の元の長さくm)X85(%RH)尚、測定時の試
料の大きさは、幅2mm、有効つかみ間8uであった。
Moisture absorption dimensional change rate (m/drunk, %RH) Elongation of sample (ms) Original length of sample (m) x 85 (%RH) The size of the sample at the time of measurement was 2 mm in width and 8 u in effective grip distance. there were.

その結果、上記フィルムの吸湿寸法変化率は、長平方向
  3.9X10−’鶴/1m・%RH幅 方向  6
.5X10−’鶴/ 1kl・%RHであった。
As a result, the moisture absorption dimensional change rate of the above film was as follows: Long plane direction 3.9X10-'Tsuru/1m・%RH Width direction 6
.. It was 5×10-'Tsuru/1kl・%RH.

実施例2 実施例1と同じポリマーを99.7%の硫酸88部に対
して12部の割合で投入し、65℃で光学異方性のドー
プを調製した。ドープタンクからギアポンプを経てダイ
に至る1、5mの曲管を65℃に保ち、Q、l wX3
00 wmのスリットを有するグイから、鏡面に磨いた
タンタル類のベルトに、引き取り速度2m/分の速度で
キャストし、相対湿度73%、温度36℃の空気中に6
0秒間曝露し、ドープが透明になった後、10℃の水中
に凝固ぎせた。この凝固フィルムを室温の水で一晩洗浄
した後250℃の熱風にて1時間定長乾燥し、厚さ20
μmの黄色透明のフィルムを得た。得られたフィルムの
物性を第1表に示す。
Example 2 The same polymer as in Example 1 was added at a ratio of 12 parts to 88 parts of 99.7% sulfuric acid to prepare an optically anisotropic dope at 65°C. A 1.5m curved pipe from the dope tank to the die via the gear pump is maintained at 65℃, and Q, l wX3
It was cast from a goo with a slit of 0.00 wm onto a mirror-polished tantalum belt at a take-up speed of 2 m/min.
After exposure for 0 seconds and the dope became transparent, it was coagulated in water at 10°C. This coagulated film was washed with water at room temperature overnight and then dried with hot air at 250°C for 1 hour to a thickness of 20°C.
A yellow transparent film of μm size was obtained. Table 1 shows the physical properties of the obtained film.

比較例1 重合槽中で、N−メチルピロリドン1000部に塩化カ
ルシウム70部を溶解し、次いでPDAを44.2部(
溶媒ll当り0.4モル相当)を溶解した。
Comparative Example 1 In a polymerization tank, 70 parts of calcium chloride was dissolved in 1000 parts of N-methylpyrrolidone, and then 44.2 parts of PDA (
(equivalent to 0.4 mol per liter of solvent) was dissolved.

−2℃に冷却した後T P O85,1部(溶媒12当
り0、4モル相当)を−気に添加し、その後は実施例1
に示した方法と同じ条件で重合を行い、Winhが4.
6、みかけ密度1.35g/cdの淡黄色のPPTAを
得た。
After cooling to -2°C, 85.1 part of TPO (equivalent to 0.4 mol per 12 solvent) was added to -1, followed by Example 1.
Polymerization was carried out under the same conditions as in the method shown in , and Winh was 4.
6. A pale yellow PPTA with an apparent density of 1.35 g/cd was obtained.

得られたポリマーの末端基量は以下の通りであった。The amount of terminal groups of the obtained polymer was as follows.

アミン末端基量   47.3ミリ当量/ kgカルボ
ン酸末端基量 35.9ミリ当量/ kgこのポリマー
を用い、実施例1と同様の方法でフィルムを調製し、吸
湿寸法変化率を測定した結果は次の通りで、実施例1に
比べ寸法安定性が劣るものであった。
Amine terminal group amount: 47.3 milliequivalents/kg Carboxylic acid terminal group amount: 35.9 milliequivalents/kg Using this polymer, a film was prepared in the same manner as in Example 1, and the dimensional change rate upon moisture absorption was measured. As shown below, the dimensional stability was inferior to that of Example 1.

長平方向 9. OX 10−Stm/ 龍・%RH幅
 方向 10.8X 10−Sw/ 鶴・%RH比較例
2 比較例1に示した重合方法と同じ方法でηinhが5.
78、みかけ密度1.37g/cdの淡黄色のPPTA
を得た。このポリマーの末端基量はそれぞれ、アミン末
端基1    40.5ミリ当量/ k+rカルボン酸
末端基量  32.1ミリ当量 / kgであった。
Long horizontal direction 9. OX 10-Stm/ Dragon・%RH Width direction 10.8
78, pale yellow PPTA with apparent density 1.37 g/cd
I got it. The amount of end groups of this polymer was 140.5 meq. of amine end group/32.1 meq. of k+r carboxylic acid end group/kg, respectively.

このポリマーを99.4重量%の硫酸100部に対して
12部の割合で投入し、65℃で光学異方性のドープを
得た。
This polymer was added at a ratio of 12 parts to 100 parts of 99.4% by weight sulfuric acid to obtain an optically anisotropic dope at 65°C.

このドープから実施例2と同じ条件で製膜を行い、厚さ
15μmの黄色透明フィルムを得た。
A film was formed from this dope under the same conditions as in Example 2 to obtain a yellow transparent film with a thickness of 15 μm.

得られたフィルムの物性を第1表に示す。Table 1 shows the physical properties of the obtained film.

実施例3 実施例1と同じポリマーを99.7重畳%の硫酸80.
1部に対して19.3部を徐々に溶解し、70℃で光学
異方性を示すドープを調製した。ドープタンクからギヤ
ポンプを経て、5μmのSOS 316製焼結フイルタ
ーを装着した紡糸口金(孔径0.07mΦ−50ホール
)に至る配管を70℃に加温し、吐出圧50kg/cd
で口金からドープを押出した。
Example 3 The same polymer as in Example 1 was mixed with 99.7% sulfuric acid at 80% by volume.
A dope exhibiting optical anisotropy at 70° C. was prepared by gradually dissolving 1 part to 19.3 parts. The piping from the dope tank through the gear pump to the spinneret (hole diameter 0.07 mΦ - 50 holes) equipped with a 5 μm SOS 316 sintered filter was heated to 70°C, and the discharge pressure was 50 kg/cd.
I pushed the dope out of the nozzle.

押出されたドープは511の空気層を通過した後、0℃
の水中に導入され、この凝固浴から、動水の流下するガ
ラス管を通過する間に凝固が進行し、周速200m/分
で回転するボビンに捲き取った。
After the extruded dope passes through 511 air layers, it is heated to 0°C.
From this coagulation bath, coagulation proceeded while passing through a glass tube in which moving water was flowing, and was wound up onto a bobbin rotating at a circumferential speed of 200 m/min.

得られた糸条は流水で一晩洗浄した後、100℃の熱風
で乾燥し、単糸が1.5デニールの黄色の糸条を得た。
The obtained yarn was washed with running water overnight and then dried with hot air at 100° C. to obtain a yellow yarn having a single yarn of 1.5 denier.

得られた糸条の物性を第2表に示した。The physical properties of the obtained yarn are shown in Table 2.

この紡糸の際、紡目詰まり、紡口正異常上昇等の紡糸ト
ラブルは全くなく、非常に安定した紡糸性を示した。
During this spinning, there were no spinning troubles such as clogging of the spindle or abnormal increase in spindle normality, and very stable spinning performance was exhibited.

比較例3 比較例2と同じポリマーを用い、実施例3と同じ方法で
光学異方性ドープを調製し、更に同じ条件下で紡糸を行
なった。
Comparative Example 3 Using the same polymer as in Comparative Example 2, an optically anisotropic dope was prepared in the same manner as in Example 3, and spinning was performed under the same conditions.

これによって得られた糸条の物性を第2表に示す、実施
例3の糸条に比べ、強伸度がやや劣るのに加えて、吸湿
率が大きかった。
The physical properties of the yarn thus obtained are shown in Table 2.Compared to the yarn of Example 3, the yarn was slightly inferior in strength and elongation and had a high moisture absorption rate.

この紡糸においても殆んどトラブルは発生しなかったが
、紡口圧の上昇がかなり大きかった。
Almost no trouble occurred during this spinning, but the spinneret pressure increased considerably.

実施例4 実施例1と同じ重合槽中でN−メチルピロリドン100
0部に塩化カルシウム70部を溶解し、次いでPDAを
44.6部(後で加えるTPOに対して1モル%過剰)
を溶解した。−2℃に冷却した後T P C:84.3
部(溶媒11に対して0.4モル相当)を溶融状態で添
加し、引き続いてベンゾイルクロライド0.6部(TP
Cに対して1モル%相当)を粉末状で一度に添加した。
Example 4 In the same polymerization tank as Example 1, 100 N-methylpyrrolidone
Dissolve 70 parts of calcium chloride in 0 parts, then 44.6 parts of PDA (1 mol% excess with respect to TPO added later)
was dissolved. TPC after cooling to -2℃: 84.3
(equivalent to 0.4 mol based on solvent 11) was added in the melt, followed by 0.6 part of benzoyl chloride (TP
(equivalent to 1 mol % based on C) was added at once in powder form.

2〜3分で重合物が固化したので、その後は実施例1と
同じ方法で重合を行ない、ηinh5.1の淡黄色のP
PTへ96部を得た。
The polymer solidified in 2 to 3 minutes, so polymerization was carried out in the same manner as in Example 1 to obtain pale yellow P with ηinh5.1.
Received 96 copies to PT.

このポリマーの末端基量及びみかけ密度はアミン末端基
it     25.1ミリ当量/kgカルボン酸末端
基ff122.7ミリ当ffi / kgみかけ密度 
     1.36g/ajであった。
The amount of end groups and apparent density of this polymer are as follows: amine end group it 25.1 meq/kg carboxylic acid end group ff 122.7 meqffi/kg apparent density
It was 1.36g/aj.

このポリマーを用いて実施例1と同様に製膜し23μm
の厚みの黄色透明フィルムを得た。
Using this polymer, a film of 23 μm was formed in the same manner as in Example 1.
A yellow transparent film with a thickness of .

このフィルムの吸湿寸法変化率は、 長手方向 3.7 X 10−’mm/+n・%RH幅
 方向 5.5 X I Q−’m/m・%RHであっ
た。
The moisture absorption dimensional change rate of this film was: 3.7 x 10-'mm/+n.%RH in the longitudinal direction and 5.5 x IQ-'m/m.%RH in the width direction.

実施例5 実施例1で用いた重合槽中で、N−メチルピロリドン1
000部に対し塩化カルシウム70部を溶解し、次いで
P D A44.6部を溶解した。−2℃まで冷却した
後85.1部のTPOを溶融状態で一気に加え、その後
は実施例1の方法と同じ条件下で重合を行なった。得ら
れた黄色ポリマーはηinhが4.9、みかけ密度1.
36 g /−で、アミン末端基    45.1ミリ
当量/kgカルボン酸末端基  31.8ミリ当量 /
 kgであった。
Example 5 In the polymerization tank used in Example 1, N-methylpyrrolidone 1
000 parts, 70 parts of calcium chloride was dissolved therein, and then 44.6 parts of PDA was dissolved therein. After cooling to -2° C., 85.1 parts of TPO in a molten state was added all at once, and then polymerization was carried out under the same conditions as in Example 1. The obtained yellow polymer had an ηinh of 4.9 and an apparent density of 1.
36 g/-, amine end groups 45.1 meq/kg carboxylic acid end groups 31.8 meq/kg
It was kg.

乾燥したこのポリマー100部をテトラヒドロフラ中に
分散させ、フェニルイソシアナート0.8部を加え、2
5℃の水浴上でマグネチフクスターラーを用いて2時間
攪拌した。
100 parts of this dried polymer was dispersed in tetrahydrofura, 0.8 part of phenyl isocyanate was added, and 2
The mixture was stirred for 2 hours using a magnetic stirrer on a 5°C water bath.

ポリマーを濾別乾燥し、末端基量を定量した結果、ηi
nh及び密度は変化なく、 アミン末端基    27.8ミリ当量/ kgカルボ
ン酸末端基  29.8ミリ当量/kgという値を有す
るPPTAを得た。
As a result of filtering and drying the polymer and quantifying the amount of terminal groups, ηi
PPTA was obtained with values of: amine end group 27.8 meq/kg carboxylic acid end group 29.8 meq/kg with no change in nh and density.

このポリマーを用い、実施例1と同じ方法で光学異方性
ドープを調製し、製膜を行い、厚さ24μmの黄色透明
のフィルムを得た。このフィルムの吸湿寸法変化率は 長手方向 6.1 X 10−’mm/m ・%RH幅
 方向 7.3 X I Q”’mm/ w ・%RH
であった。
Using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and a film was formed to obtain a yellow transparent film with a thickness of 24 μm. The moisture absorption dimensional change rate of this film is: Longitudinal direction: 6.1 x 10-'mm/m ・%RH Width direction: 7.3
Met.

実施例6 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.2部(溶媒11当り0.4モルに相当)を溶
解した。この溶液を一2℃に冷却した後、T P C8
5,1部(PDAに対し101モル%に相当)を溶融状
態で一気に加えた。3分後、チーズ状に固化した重合反
応物を2軸の密閉型ニーグーに移し、その直後にN−メ
チルピロリドン100部に、アニリン2部(PDAに対
して5モル%)を溶解した溶液を添加して、同じニーグ
ー中で30分間粉砕及びせん断力付与を行った。粉砕さ
れた重合物をヘンシェルミキサー中に移し、はぼ等量の
水を加えて更に粉砕し、次いで温水で数回洗浄後110
℃で乾燥した、これにより、ηinh4.1、見かけ密
度1.36g/cjのPPTA95部を得た。このポリ
マーの末端基量は アミン末端基量    28.3ミリ当! / kgカ
ルボン酸末端基3jl   25.6ミリ当fi/kg
であった。
Example 6 In the same polymerization tank as Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.2 parts of A (equivalent to 0.4 mol per 11 solvent) was dissolved. After cooling this solution to -2°C, T P C8
5.1 parts (corresponding to 101 mol % based on PDA) was added at once in a molten state. After 3 minutes, the polymerization reaction product that had solidified into a cheese-like shape was transferred to a twin-screw closed type Nigu, and immediately after that, a solution of 2 parts of aniline (5 mol % based on PDA) dissolved in 100 parts of N-methylpyrrolidone was added. The mixture was then crushed and subjected to shearing force for 30 minutes in the same Ni-Goo. The pulverized polymer was transferred to a Henschel mixer, and an equal amount of water was added thereto for further pulverization. After washing several times with warm water,
This gave 95 parts of PPTA with an ηinh of 4.1 and an apparent density of 1.36 g/cj. The amount of terminal groups in this polymer is 28.3 mm equivalent to the amount of amine terminal groups! / kg carboxylic acid terminal group 3jl 25.6 mm/kg
Met.

次に、このポリマーを用い、実施例1と同じ方法で、光
学異方性ドープを調製し、製膜を行い、厚さ20μmの
黄色透明なフィルムを得た。得られたフィルムの吸湿寸
法変化率は 長手方向  4.8 X 10−”tm/ m ・%R
H幅 方向  6.6X10−’鶴/fl・%RHであ
った。
Next, using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and a film was formed to obtain a yellow transparent film with a thickness of 20 μm. The moisture absorption dimensional change rate of the obtained film in the longitudinal direction was 4.8 x 10-”tm/m %R
H width direction was 6.6X10-'Tsuru/fl・%RH.

実施例7 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.6部(TPOに対して101モル%に相当)
を溶解した。この溶液を一2℃に冷却した後、T P 
C84,3部(溶媒11当り0.4モル%に相当)を溶
融状態で一気に添加した。2.5分後、チーズ状に固化
した重合反応物を実施例6と同様に、2軸の密閉型ニー
グーに移し、その直後にN−メチルピロリドン100部
にベンゾイルクロライド3部(TPOに対して5モル%
に相当)を溶解した溶液を添加して、30分間粉砕及び
せん断力付与を行った。粉砕された重合物をヘンシェル
ミキサ−中に移し、はぼ等量の水を加えて更に粉砕し、
次いで温水で数回洗浄後110℃で乾燥した。これによ
り、ηinh4.8、見かけ密度1.35g/aJのP
PTA93部を得た。また、このPPTAの末端基量は
、アミン末端基量    22.8ミリ当量/kgカル
ボン酸末端基量  26.1ミリ当量/ kgであった
Example 7 In the same polymerization tank as Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
A44.6 parts (equivalent to 101 mol% based on TPO)
was dissolved. After cooling this solution to -2°C, T P
3 parts of C84 (corresponding to 0.4 mol % based on 11 solvents) was added in a molten state all at once. After 2.5 minutes, the polymerization reaction product solidified into a cheese-like shape was transferred to a two-screw closed Nigu in the same manner as in Example 6, and immediately after that, 3 parts of benzoyl chloride (based on TPO) was added to 100 parts of N-methylpyrrolidone. 5 mol%
) was added thereto, and pulverization and shearing force were applied for 30 minutes. Transfer the pulverized polymer into a Henschel mixer, add approximately the same amount of water, and further pulverize.
Then, it was washed several times with warm water and then dried at 110°C. As a result, P with ηinh4.8 and apparent density 1.35g/aJ
93 parts of PTA were obtained. Further, the amount of terminal groups of this PPTA was as follows: amine terminal group amount: 22.8 milliequivalents/kg; carboxylic acid terminal group amount: 26.1 milliequivalents/kg.

実施例1と同様の方法で、光学異方性ドープを調製し、
更に手動製膜して得られたフィルムは、黄色透明、厚さ
21μmで、吸湿寸法変化率は長手方向 4.2X10
−%van / 鰭・%RH幅 方向 5.1 X I
 Q −’m / tm−%RHであった。
An optically anisotropic dope was prepared in the same manner as in Example 1,
Furthermore, the film obtained by manual film production was yellow transparent, 21 μm thick, and had a dimensional change rate of 4.2×10 in the longitudinal direction after moisture absorption.
-%van/Fin/%RH width direction 5.1 X I
Q-'m/tm-%RH.

実施例8 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.2部(溶媒11当り0.4モルに相当)及び
オクチルアミン0.4部(PDAに対し1モル%相当)
を溶解した。−2℃に冷却した後、TPO81,6部(
PDAに対して101モル%相当)を溶融状態で一気に
加えた。3分後に重合物はチーズ状に固化したので、こ
の重合反応物を直ちに2軸の密閉型ニーグーに移し、同
ニーダ−中で粉砕及びセん断力付与を20分間行った。
Example 8 In the same polymerization tank as in Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.2 parts of A (equivalent to 0.4 mol per 11 solvent) and 0.4 part of octylamine (equivalent to 1 mol% relative to PDA)
was dissolved. After cooling to -2°C, 81.6 parts of TPO (
(equivalent to 101 mol % based on PDA) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so the polymerization reaction product was immediately transferred to a twin-screw closed kneader, and pulverized and sheared in the same kneader for 20 minutes.

次に、粉砕した重合物をヘンシェルミキサー中に移し、
はぼ等量の水を加えてさらに粉砕した後、濾過し、数回
温水で洗浄して、110℃の熱風中で乾燥した。その結
果、ηinh4.3、みかけ密度1.36g/cdの淡
黄色のPPTA95部を得た。
Next, transfer the crushed polymer into a Henschel mixer,
After adding approximately the same amount of water and further pulverizing, the mixture was filtered, washed several times with warm water, and dried in hot air at 110°C. As a result, 95 parts of pale yellow PPTA with an ηinh of 4.3 and an apparent density of 1.36 g/cd was obtained.

末端基量を測定した結果は、以下の通りであった。The results of measuring the amount of terminal groups were as follows.

アミン末端基量    30.4ミリ当ffi/kgカ
ルボン酸末端基it   23.1ミリ当量/ kg更
に、このポリマーを用い、実施例1の方法で、光学異方
性ドープを調製し、製膜を行った結果、厚さ25μmの
黄色透明のフィルムを得た。得られたフィルムの吸湿寸
法変化率は以下の通りであった。
Amine end group amount: 30.4 meqffi/kg Carboxylic acid end group it: 23.1 meq/kg Furthermore, using this polymer, an optically anisotropic dope was prepared by the method of Example 1, and film formation was performed. As a result, a yellow transparent film with a thickness of 25 μm was obtained. The moisture absorption dimensional change rate of the obtained film was as follows.

長手方向 6. I X 10−’vm / w ・%
RH幅 方向 6.9 X 10−’m / w−%R
H実施例9 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.2部(溶媒11当り0.4モルに相当)及び
シクロヘキシルアミン0.4部(PDAに対し1モル%
相当)を溶解した。−2℃に冷却した後、T P C8
1,6部(PDAに対して101モル%相当)を溶融状
態で一気に加えた。3分後に重合物はチーズ状に固化し
たので、この重合反応物を直ちに2軸の密閉型ニーグー
に移し、同ニーダ−中で粉砕及びせん断力付与を20分
間行った0次に、粉砕した重合物をヘンシェルミキサー
中に移し、はぼ等量の水を加えてさらに粉砕した後、濾
過し、数回温水で洗浄して、110℃の熱風中で乾燥し
た。
Longitudinal direction 6. I X 10-'vm/w %
RH width direction 6.9 x 10-'m/w-%R
H Example 9 In the same polymerization tank as Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.2 parts of A (equivalent to 0.4 mol per 11 solvent) and 0.4 part of cyclohexylamine (1 mol % relative to PDA)
equivalent) was dissolved. After cooling to -2°C, TPC8
1.6 parts (equivalent to 101 mol % based on PDA) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a twin-screw closed type kneader, and pulverized and subjected to shearing force for 20 minutes in the same kneader. The material was transferred to a Henschel mixer and further ground by adding an equal amount of water, filtered, washed several times with hot water, and dried in hot air at 110°C.

これにより、ηinh 4.23、みかけ密度1.36
g/ajのPPTA94部を得た。末端基量はそれぞれ
、アミノ末端基量    32.1ミリ当量/kgカル
ボン酸末端基1  26.7ミリ当量/ kgこのPP
TAを用い、実施例1と同じ方法を用いて光学異方性ド
ープを調製し、製膜した結果、長手方向  ?、OX 
10−’w/sx%・RH幅 方向  ?、8X10−
’鶴/1璽%・RHの吸湿寸法変化率を有する、厚さ2
3μmのフィルムを得た。
As a result, ηinh 4.23, apparent density 1.36
94 parts of PPTA of g/aj were obtained. The amount of terminal groups is 32.1 milliequivalents/kg of amino terminal groups, 26.7 milliequivalents/kg of carboxylic acid terminal groups, respectively.
Using TA, an optically anisotropic dope was prepared using the same method as in Example 1, and as a result of forming a film, the longitudinal direction ? ,OX
10-'w/sx%・RH width direction? , 8X10-
'Tsuru/Has a moisture absorption dimensional change rate of 1% RH, thickness 2
A 3 μm film was obtained.

実施例10 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.2部(溶媒11当り0.4モルに相当)及び
p−フルオロアニリン0.5部(PDAに対し1モル%
相当)を溶解した。−2℃に冷却した後、T P C8
1,6部(PDAに対して101モル%相当)を溶融状
態で一気に加えた。3分後に重合物はチーズ状に固化し
たので、この重合反応物を直ちに2軸の密閉型ニーグー
に移し、同ニーグー中で粉砕及びせん断力付与を20分
間行った。次に、粉砕した重合物をヘンシェルミキサー
中に移し、はぼ等量の水を加えてさらに粉砕した後、濾
過し、数回温水で洗浄して、110℃の熱風中で乾燥し
た。
Example 10 In the same polymerization tank as in Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.2 parts of A (equivalent to 0.4 mol per 11 solvent) and 0.5 part of p-fluoroaniline (1 mol% relative to PDA)
equivalent) was dissolved. After cooling to -2°C, TPC8
1.6 parts (equivalent to 101 mol % based on PDA) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a closed twin-screw Niegoo, and pulverization and shearing force were applied in the same Niegoo for 20 minutes. Next, the pulverized polymer was transferred to a Henschel mixer, an approximately equal amount of water was added thereto, and the mixture was further pulverized, filtered, washed several times with hot water, and dried in hot air at 110°C.

その結果、ηinh4.7、みかけ密度1.36g/c
atのPPTA95部を得た。末端基量を測定した結果
はアミノ末端基量   23.1ミリ当量/ kgカル
ボン酸末端基1 18.3ミリ当量/ kgであった。
As a result, ηinh4.7, apparent density 1.36g/c
95 parts of PPTA of at was obtained. As a result of measuring the amount of terminal groups, the amount of amino terminal groups was 23.1 milliequivalents/kg, and the amount of carboxylic acid terminal groups was 18.3 milliequivalents/kg.

このポリマーを用い、実施例1と同じ方法で、光学異方
性ドープを調製し、手動製膜した結果、厚さ25μmの
黄色透明のフィルムを得た。
Using this polymer, an optically anisotropic dope was prepared in the same manner as in Example 1, and as a result of manual film formation, a yellow transparent film with a thickness of 25 μm was obtained.

このフィルムの吸湿寸法変化率は、以下の通りであった
The moisture absorption dimensional change rate of this film was as follows.

長手方向  3.3 X 10−sxx/*m ・%R
H幅 方向  4.3X10−’鶴/11・%RH実施
例11 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.6部(後で加えるTPCに対して1モル%過
剰)を溶解した。−2℃に冷却した後T P C84,
3部(溶媒11に対して0.4モル相当)を溶融状態で
添加し、引き続いてp−フルオロベンゾイルクロライド
0.6部(TPCに対して1モル%相当)を粉末状で一
度に添加した。2〜3分で重合物が固化したので、その
後は実施例1と同じ方法で重合を行ない、ηinh4.
5のPPTA95部を得た。
Longitudinal direction 3.3 X 10-sxx/*m ・%R
H Width Direction 4.3X10-'Tsuru/11%RHExample 11 In the same polymerization tank as Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.6 parts of A (1 mol % excess with respect to TPC to be added later) was dissolved. After cooling to -2℃ TPC84,
3 parts (equivalent to 0.4 mol relative to solvent 11) were added in a molten state, and subsequently 0.6 parts of p-fluorobenzoyl chloride (equivalent to 1 mol % relative to TPC) was added at once in powder form. . Since the polymer solidified in 2 to 3 minutes, the polymerization was carried out in the same manner as in Example 1, and ηinh4.
95 parts of PPTA of No. 5 were obtained.

このポリマーの末端基量及びみかけ密度はアミン末端基
量    24.0ミリ当量/kgカルボン酸末端基f
fi   24.2ミリ当量/kgみかけ密度    
  1.35g/cjであった。
The amount of end groups and apparent density of this polymer are: amount of amine end groups: 24.0 milliequivalents/kg carboxylic acid end groups f
fi 24.2 milliequivalent/kg apparent density
It was 1.35g/cj.

このポリマーを用いて実施例1と同様に製膜し、23μ
mの厚みの黄色透明フィルムを得た。
Using this polymer, a film was formed in the same manner as in Example 1, and 23μ
A yellow transparent film with a thickness of m was obtained.

このフィルムの吸湿寸法変化率は、 長手方向  5.7 X I Q−’m/璽l・%RH
幅 方向  6.6 X 10−’m/fl・%RHで
あった。
The moisture absorption dimensional change rate of this film is: 5.7 X I Q-'m/1.%RH in the longitudinal direction
The width direction was 6.6 x 10-'m/fl/%RH.

実施例12 実施例10と同じポリマーを用い、実施例3の方法で紡
糸を行い、単糸デニールが1.5の黄色のフィラメント
を得た。紡糸の際、紡口詰まり、紡口正異常上昇等のト
ラブルは全くなく非常に安定した紡糸性であった。
Example 12 Using the same polymer as in Example 10, spinning was performed by the method of Example 3 to obtain a yellow filament with a single yarn denier of 1.5. During spinning, there were no problems such as spindle clogging or abnormal increase in spindle normality, and the spinning performance was very stable.

この糸条と、この糸条を更に300℃で150秒熱処理
したものの物性を第3表に示す。
Table 3 shows the physical properties of this yarn and the yarn that was further heat-treated at 300° C. for 150 seconds.

実施例13 実施例1と同じ重合槽中で、N−メチルピロリドン10
00部に塩化カルシウム70部を溶解し、次いでP D
 A44.2部(溶媒12当り0.4モルに相当)及び
2,4.6−)リフルオロアニリン0.6部(PDAに
対し1モル%相当)を溶解した。−2℃に冷却した後、
T P C81,6部(PDAに対して101モル%相
当)を溶融状態で一気に加えた。3分後に重合物はチー
ズ状に固化したので、この重合反応物を直ちに2軸の密
閉型ニーグーに移し、同ニーグー中で粉砕及びせん断力
付与を20分間行った。次に、粉砕した重合物をヘンシ
ェルミキサー中に移し、はぼ等量の水を加えてさらに粉
砕した後、濾過し、数回温水で洗浄して、110℃の熱
風中で乾燥した。その結果、ηinh4.1、みかけ密
度1.35g/cdのPPTA95部を得た。末端基量
を′測定した結果は アミノ末端基fi     32.5ミリ当量/kgカ
ルボン酸末端基量  24.6ミリ当量/kgであった
− このポリマーを用い、実施例1と同じ方法で光学異方性
ドープを調製し、製膜した結果、厚さ23μmの黄色透
明のフィルムを得た。このフィルムの吸湿寸法変化率は
以下の通りであった。
Example 13 In the same polymerization tank as in Example 1, N-methylpyrrolidone 10
Dissolve 70 parts of calcium chloride in 00 parts of P D
44.2 parts of A (equivalent to 0.4 mol per 12 solvent) and 0.6 part of 2,4.6-)lifluoroaniline (equivalent to 1 mol % relative to PDA) were dissolved. After cooling to -2℃,
81.6 parts of TPC (equivalent to 101 mol % based on PDA) was added at once in a molten state. After 3 minutes, the polymer solidified into a cheese-like shape, so this polymerization reaction product was immediately transferred to a closed twin-screw Niegoo, and pulverization and shearing force were applied in the same Niegoo for 20 minutes. Next, the pulverized polymer was transferred to a Henschel mixer, an approximately equal amount of water was added thereto, and the mixture was further pulverized, filtered, washed several times with hot water, and dried in hot air at 110°C. As a result, 95 parts of PPTA with an ηinh of 4.1 and an apparent density of 1.35 g/cd was obtained. The results of measuring the amount of terminal groups were 32.5 milliequivalents/kg of amino terminal groups and 24.6 milliequivalents/kg of carboxylic acid terminal groups.Using this polymer, the optical difference was determined in the same manner as in Example 1. As a result of preparing an orthotropic dope and forming a film, a transparent yellow film with a thickness of 23 μm was obtained. The moisture absorption dimensional change rate of this film was as follows.

長手方向   3.2 X 10−’1111 / t
m ・%RH幅 方向   4.OX 10−Smu/
m璽・%RH第1表 第2表 第3表 〔発明の効果〕 本発明のPPTAの特徴は、アミンあるいはカルボン酸
クロライドと反応性を有する、疎水性の置換基によって
アミンまたは/およびカルボン酸末端が封止されている
ことであり、本発明のPPTAを用いることにより、得
られる成形物の吸湿性が低下し、吸湿(または吸水)寸
法変化率が低下するところにある。これは、分子鎖末端
を疎水性のZ?A基で封止することにより、分子鎖末端
に起因する。
Longitudinal direction 3.2 x 10-'1111/t
m ・%RH width direction 4. OX 10-Smu/
%RH Table 1 Table 2 Table 3 [Effects of the Invention] A feature of the PPTA of the present invention is that the PPTA of the present invention has a hydrophobic substituent that is reactive with amines or carboxylic acid chlorides. The ends are sealed, and by using the PPTA of the present invention, the hygroscopicity of the resulting molded product is reduced, and the dimensional change rate due to moisture absorption (or water absorption) is reduced. This is because the end of the molecular chain is a hydrophobic Z? It originates from the end of the molecular chain by blocking with the A group.

成形物の非晶部位が疎水化されることに依るものと考え
られる。ηinhが3以上のPPTAポリマーにおいて
、その末端基量は、全体のアミド結合に対しておよそ1
%以下であり、その一部を疎水化しただけで著しく吸湿
性が低下するという現象は、これまで多くの研究者がP
PTAについて研究を′1ablして来たにも拘らず、
到達し得なかったものである。
This is thought to be due to the fact that the amorphous parts of the molded product are made hydrophobic. In a PPTA polymer with ηinh of 3 or more, the amount of terminal groups is approximately 1 for the total amide bond.
% or less, and the phenomenon in which the hygroscopicity significantly decreases just by making a part of it hydrophobic has been studied by many researchers until now.
Despite having conducted research on PTA,
It was something that could not be achieved.

更には、実施例から明らかなように、本発明のPPTA
によって得られる成形物は、優れた吸湿寸法安定性を示
すばかりか、吸湿率の低下に伴い、高い機械的物性が安
定して達成でき、紡口圧の上昇が少ないことからもわか
るように成形性も改良され、またPPTA本来の耐熱性
、耐化学薬品性あるいは電気絶縁性も向上する。
Furthermore, as is clear from the examples, the PPTA of the present invention
The molded product obtained by this method not only shows excellent moisture absorption dimensional stability, but also can stably achieve high mechanical properties as the moisture absorption rate decreases, as evidenced by the small increase in spinneret pressure. Furthermore, the inherent heat resistance, chemical resistance, and electrical insulation properties of PPTA are also improved.

これらの大きな改良により、本発明のPPTAを用いて
得られる成形物は、高い寸法精度や耐熱性、機械的特性
を要求される分野、例えば、フレキシブルプリント配線
基板用フィルム、磁気テープ用ベースフィルム、あるい
は光フアイバーケーブル補強用繊維等の用途に好ましく
使用できる。また、PPTA繊維で補強したプラスチッ
クスにおいて、これを例えば航空機部品として使用した
とき、その使用環境の温湿度が大幅に変動し、かつそれ
が繰り返されることから、PPTA繊維が次第に吸湿し
、その結果寸法変化を引き起こして、やがてプラスチッ
クスにクラックの入ることが報告されているが、このよ
うな用途に対しても、本発明のポリマーから得られる繊
維は、上記の如き欠点のない繊維として非常に有用であ
る。
Due to these major improvements, molded products obtained using the PPTA of the present invention can be used in fields that require high dimensional accuracy, heat resistance, and mechanical properties, such as films for flexible printed wiring boards, base films for magnetic tapes, Alternatively, it can be preferably used for applications such as fibers for reinforcing optical fiber cables. In addition, when plastics reinforced with PPTA fibers are used, for example, in aircraft parts, the temperature and humidity of the environment in which they are used fluctuates significantly and this is repeated, so the PPTA fibers gradually absorb moisture, resulting in It has been reported that plastics may eventually crack due to dimensional changes, but even for such uses, the fibers obtained from the polymer of the present invention are very suitable as fibers without the above-mentioned defects. Useful.

Claims (1)

【特許請求の範囲】[Claims] 1、ηinhが3.0以上であり、見掛け密度が1.3
8g/cm^3以下であり、アミン末端基が80−10
×(ηinh)ミリ当量/kg以下であり、且つ、カル
ボン酸末端基が80−10×(ηinh)ミリ当量/k
g以下であることを特徴とする、ポリパラフェニレンテ
レフタルアミド。
1, ηinh is 3.0 or more, and the apparent density is 1.3
8g/cm^3 or less, and the amine end group is 80-10
× (ηinh) milliequivalents/kg or less, and the carboxylic acid terminal group is 80-10 × (ηinh) milliequivalents/k
Polyparaphenylene terephthalamide, characterized in that it has a molecular weight of not more than g.
JP24405786A 1986-04-18 1986-10-16 Poly-p-phenylene terephthalamide Granted JPS6346222A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8822686 1986-04-18
JP61-88226 1986-04-18

Publications (2)

Publication Number Publication Date
JPS6346222A true JPS6346222A (en) 1988-02-27
JPH0355493B2 JPH0355493B2 (en) 1991-08-23

Family

ID=13936954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24405786A Granted JPS6346222A (en) 1986-04-18 1986-10-16 Poly-p-phenylene terephthalamide

Country Status (1)

Country Link
JP (1) JPS6346222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery
WO2022127148A1 (en) * 2020-12-16 2022-06-23 烟台泰和新材料股份有限公司 Modified para-aramid polymerization liquid, coating slurry, lithium battery separator and preparation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery
WO2022127148A1 (en) * 2020-12-16 2022-06-23 烟台泰和新材料股份有限公司 Modified para-aramid polymerization liquid, coating slurry, lithium battery separator and preparation method therefor

Also Published As

Publication number Publication date
JPH0355493B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
US3600350A (en) Poly(p-benzamide) composition,process and product
US4876040A (en) Two-stage process for preparing aromatic polyamide fiber
JP5280889B2 (en) Method for producing aromatic polyamide
JP2002265603A (en) Method for producing polyaryrene sulfide
JPS5914567B2 (en) Polyamide fiber and film
EP0198326B1 (en) Poly-p-phenylene-terephthalamide film and process for producing the same
US4857255A (en) Poly-p-phenylene-terephthalamide film and process for producing the same
JPS6346222A (en) Poly-p-phenylene terephthalamide
US5369191A (en) Aromatic thioether ketone/thioether sulfone copolymer and production process thereof
JPS62162013A (en) Production of pulp-like short fiber of poly(p-phenylene terephthalamide)
JPH0355494B2 (en)
JPH01245030A (en) Biaxially oriented poly-p-phenylene sulfide film
JPH0376810B2 (en)
WO2002008123A1 (en) Liquid raw material for producing formed polyurethane or aromatic polyamide and use of hydrotalcite compound particles therefor
US5084497A (en) Preparation of articles of manufacture from isotropic and anisotropic polyamide anion solutions
JPS61108511A (en) Degassing method of aromatic polyamide solution
US4966955A (en) Aromatic copolyether amide which can be processed as a thermoplastic, process for its preparation, and its use for the production of molding
JP2981146B2 (en) Process for producing molded products of soluble wholly aromatic polyamide.
EP0309229A2 (en) Preparation of articles of manufacture from isotropic and anisotropic polyamide anion solutions
EP0295017B1 (en) Aromatic polyamides
JPH0551615B2 (en)
CN117203382A (en) Process for producing aromatic polyamide solution
JPS63182352A (en) Production of film
JPS6034572B2 (en) Method for producing polyparaphenylene terephthalamide
JPS6247179A (en) Piezoelectric film and manufacture thereof