JPH0551615B2 - - Google Patents

Info

Publication number
JPH0551615B2
JPH0551615B2 JP1307779A JP30777989A JPH0551615B2 JP H0551615 B2 JPH0551615 B2 JP H0551615B2 JP 1307779 A JP1307779 A JP 1307779A JP 30777989 A JP30777989 A JP 30777989A JP H0551615 B2 JPH0551615 B2 JP H0551615B2
Authority
JP
Japan
Prior art keywords
ratio
isophthalamide
bis
aminophenyl
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1307779A
Other languages
Japanese (ja)
Other versions
JPH02263829A (en
Inventor
Kanshoku In
Washo Ri
Taien Son
Tetsuchika Ri
Heikichi Bin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korea Institute of Science and Technology KIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH02263829A publication Critical patent/JPH02263829A/en
Publication of JPH0551615B2 publication Critical patent/JPH0551615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、N,N′−ビス(4−アミノフエニ
ル)イソフタルアミドを原料とした芳香族コポリ
アミドに関する。 更に芳香族ジアミン化合物としてパラフエニレ
ンジアミンとN,N′−ビス(4−アミノフエニ
ル)イソフタルアミドとの混合物に、テレフタル
酸クロライドを縮合させる前記芳香族コポリアミ
ドの製造方法、更にこの重合体溶液から製造され
た高強度及び高弾性率の耐熱性繊維及びフイルム
に関するものである。 (従来の技術) 芳香族ポリアミドは、溶融温度とガラス転移温
度が極めて高く(事実、溶融点から熱分解が起る
場合が多い)、優れた熱安定性と耐薬品性等優れ
た物理化学的性質を有している。このような芳香
族ポリアミドから製造された繊維は、優れた熱安
定性を利用して耐熱性繊維又は高引張強度と弾性
率等の優れた機械的特性を利用してタイヤコード
のようなゴム補強材料、複合材料等として利用さ
れている。 とくに高強度、高弾性率、高耐熱性等を兼備し
た超高性能芳香族ポリアミド繊維は、液晶紡糸を
経て製造され、紡糸原液が溶液液晶を形成する
と、これを気隔湿式紡糸法と呼ばれる液晶紡糸を
経て超高性能繊維を製造することができるが、こ
の代表的な例は、ポリ(パラフエニレンテレフタ
ルアミド)繊維であつて、一般にデユーポン社の
“ケブラ(kevlar)”が広く知られている。 しかしながら、ポリ(パラフエニレンテレフタ
ルアミド)のように分子鎖が芳香族環の両端から
分子鎖の平行方向に直線状に伸びた芳香族ポリア
ミドやコポリアミドは、超高強度、高弾性率の優
れた特性を保有しているにもかかわらず、溶媒に
対する溶解度が極めて低いため製造し難い、事
実、ポリ(パラフエニレンテレフタルアミド)は
極めて限定された溶媒にのみ溶解するが、そのよ
うな溶媒としては、濃硫酸のような強無機酸又は
リチウムクロライドのような無機塩を添加したヘ
キサメチルホスホリルアミドとN−メチルピロリ
ドンとの混合溶液に限定され、そのうちでも繊維
やフイルム製造等の成形用溶媒として使用し得る
ものは無機強酸だけである。このようなポリアミ
ド等は工業化に際し、強酸を使用することによる
装置の腐食、取扱上の危険、廃液処理の難点等多
くの問題点が誘発され、重合体を溶媒に溶解させ
る際複雑な操作を経なければならない難点を有す
る。 そればかりでなく、凝固溶液において凝固の際
硫酸が急激に分子鎖の間から離脱し、直線性強直
鎖ポリアミドの短所である“フイブリル
(fibril)”化を誘発させる。繊維内において、繊
維がフイブリル化されて割れるということは、補
強材として多様な用途をもつ芳香族ポリアミド繊
維の致命的な欠点となり、繊維内の残存硫酸とフ
イブリル化の影響によつて、この繊維は耐薬品性
に欠け、ゴムの補強、セメント等の補強材として
の役割にも欠点となるため、用途の拡大を妨げる
要因となつている。 芳香族環の両端において直線状に伸びた直線性
分子鎖の強直なポリアミドやコポリアミドの溶解
性を増加させるために、分子鎖が芳香族環の両端
において屈折され得るように“メタ”連結された
単位を導入するか、芳香族環間に回転可能な結合
を導入させる方法は、既に広く知られている。 例えば直線性強直鎖コポリアミドのアミド結合
間に、メタフエニレン単位を導入すると、コポリ
アミドの溶解性を増加させることができる。しか
しながら、このようなコポリアミドから製造され
た繊維は、分子鎖内にメタフエニレン単位の比率
が増加するに従い、機械的特性特に弾性率が大幅
に低下する。 変性単位を直線性強直鎖ポリアミド分子鎖に導
入し溶解性を増加させようとする努力は汎世界的
なものであり、その多様な試みは多くの文献と特
許において既に記述されているものの、その多く
は物性の低下を克服し得なかつた。例えば米国特
許第4075922号には、次式 [ただし、Yは−O−、 等の結合] の変性単位を導入したコポリアミドの発明が発表
されており、該コポリアミドは繊維製造後に高温
熱延伸して物性の低下を克服した。しかしなが
ら、該コポリアミドの製造に用いられる次式 の3,4′−ジアミノジフエニルエーテル単量体の
製造原価が高いため、経済的に困難を有する。 (発明が解決しようとする課題) 本発明は、経済性を有し、かつ熱的安定性と高
強度及び高弾性率の繊維やフイルム製造をでき
る、流動性と安定性を有する高分子の重合体溶液
の製造が可能なように、溶解性を向上させること
のできる新たなジアミノ単量体と、それから製造
された芳香族コポリアミド重合体並びにその製造
方法を提供することにある。 また、本発明は、基本的にはこの新たな芳香族
コポリアミドの重合体溶液から直に製造される高
強度、高弾性率、高耐熱性を有する繊維とフイル
ムを提供することにある。 (課題を解決するための手段) 本発明においては、後記式(1)のN,N′−ビス
(4−アミノフエニレン)イソフタルアミドを用
いて、既存のパラ系単量体のパラフエニレンジア
ミンと一定比率で混合し、パラ連結単位とメタ連
結単位との比率を調節するとともに、メタ連結単
位の相互の距離を調節し、高重合度を保持しつ
つ、上述の芳香族ポリアミド繊維の製造方法を用
いてフイルムや繊維の製造を可能にする。 本発明の芳香族コポリアミドは、下記式(1)で表
わされる構造単位からなる固有粘度1.0〜6.0の芳
香族コポリアミドである。 上記式において、x及びyは縮重合された全体
ジアミン単量体のモル数に対するN,N′−ビス
(4−アミノフエニル)イソフタルアミドとパラ
フエニレンジアミンのモル比であつて、その値は
xが0.12〜0.9、yは0.88〜0.1である。 上記式(1)のコポリアミドは、第3級アミド類溶
媒にアルカリ金属塩を溶解し、これに第3級アミ
ンを酸捕捉剤として添加した重合溶媒内におい
て、N,N′−ビス(4−アミノフエニル)イソ
フタルアミドとパラフエニレンジアミンとを、そ
の混合比率がモル比で12:88乃至90:10である混
合物にテレフタル酸クロライドを低温重縮合させ
ることにより製造される。 この重合体溶液を熱延伸させて高強度及び高弾
性率の芳香族コポリアミド繊維又はフイルムが得
られる。 このフイルムキヤスチングを行つて製造された
フイルムは、この上無く極めて透明な高強度、高
耐熱性フイルムである。共重合させて製造された
重合体溶液の濃度及び粘度を調節し、これを直に
紡糸製造された繊維は、優れた機械的、熱的特性
を保有する。このフイルムと繊維の引張強度は
夫々、100〜150Kg/mm2と、10〜15g/denの範囲
である。 本発明において、重合単量体として用いられる
次式(2)、 のN,N′−ビス(4−アミノフエニル)イソフ
タルアミドの製造方法は、大韓民国特許第11475
号に提示されている次式(3) のN,N′−ビス(4−アミノフエニル)テレフ
タルアミドの製造方法と基本的には同様である。
すなわち、イソフタル酸ハライド(4)と2倍当量の
パラニトロアニリン(5)を下記反応式(A)のように、
低温で縮合させ、N,N′−ビス(4−ニトロフ
エニル)イソフタルアミドを合成した後、これを
ラネニツケルを触媒として水素還元を行つてN,
N′−ビス(4−アミノフエニル)イソフタルア
ミド(2)を製造することができる。 本発明のコポリアミドは、式(2)のジアミン単量
体と式(6)のパラフエニレンジアミンとの一定比率
の混合物に、式(7)のテレフタル酸クロライドを反
応させる下記反応式(B)の経路に従い製造すること
ができる。 コポリアミドを得るために、N,N′−ビス
(4−アミノフエニル)イソフタルアミド単量体
(2)を用いずに、イソフタル酸クロライド(4)とテレ
フタル酸クロライド(7)との一定比率の混合物に、
パラフエニレンジアミン(6)を、下記反応式(C)に従
つて同様に反応させてもある程度目的を達する。 しかしながら、本発明の反応式(B)のようにN,
N′−ビス(4−アミノフエニル)イソフタルア
ミド(2)を重合出発物質として用いた場合は、反応
式(C)のようにイソフタル酸クロライド(4)を用いた
重合反応に比して塩化水素の発生が少ない(最高
1/2)ため、高重合度のコポリアミドを製造する
ことができる。また本発明の単量体(2)を利用すれ
ば、反応式(B)において発生する塩化水素を容易に
除くことができ、高重合度のコポリアミドを製造
することができる。 従つて、本発明において重合中間体である単量
体(2)を用いたことは、基本的に同一の分子構造を
有する高重合度のコポリアミドを容易の製造する
ことができ、かつ、生成された重合体分子鎖内の
メタ連結環の相対的距離を大きくして結晶性損失
を最大限に防止し、溶解度を増加させながら機械
的特性の低下を防ぐことができる。 本発明のコポリアミド(1)は、基本的に(1a)
構造単位と、(1b)構造単位の組成からなる。優
れた溶解性と機械的強度とを共に維持させるため
には、本発明のコポリアミドの中に(1a)構造
単位が全体反復単位に対し12〜90%導入されるべ
きであり、特に12〜30%が効果的である。 上述の通り、本発明のコポリアミド(1)は、N,
N′−ビス(4−アミノフエニル)イソフタルア
ミド(2)とパラフエニレンジアミン(6)とを、全体分
子鎖中で(1a)構造単位の比率が発明の目的に
適合するよう混合し、これをテレフタル酸クロラ
イド(7)と縮重合させて製造し、その重合方法は原
則的に従来ポリアミドの重合に用いられている方
法、すなわち、界面重合、溶融重合、固状重合又
は溶液重合法を用いることができるが、目的に適
合する高重合度のコポリアミドを製造するために
は、溶液重合法を行うのがよい。 溶液重合法でコポリアミドを製造するには、−
20℃ないし100℃の温度範囲で、前記単量体及び
生成される高分子量の重合体が最小限一部分だけ
でも溶解可能な有機溶媒を使用すべきであり、必
要な場合は酸捕捉剤を使用することもできる。重
合体の溶解性を増加させ、生成された重合溶液の
安定性を高めるために、重合溶媒に周期率表族
又は族のハロゲン化金属塩を添加することもで
きる。 重合に用いられる有機溶媒としては、アミド類
の溶媒が適当であるが、これらの溶媒としては
N,N′−ジメチルアセトアミド、N−メチルピ
ロリドン、ヘキサメチルホスホリルアミド、N−
メチルピペリドン。N,N,N′,N′−テトラメ
チルウレア、N−メチルカプロラクタム、N,
N′−ジエチルアセトアミド、N−エチルピロリ
ドン、N−アセチルピロリドン等があり、特にN
−メチルピロリドン、ヘキサメチルホスホリルア
ミド、N,N′−ジメチルアセトアミド又はこれ
らの混合液が有用である。 最適の重合方法を具体的に述べると、N,
N′−ビス(4−アミノフエニル)イソフタルア
ミドは、モル比で12−90%内において、パラフエ
ニレンジアミンはモル比で88〜10%内において、
両ジアミンのモル比の和が100%になるようにし
て、アミン類溶媒に溶解後、モル比100%のテレ
フタル酸クロライドを添加しつつ攪拌する。ジア
ミン単量体の比率に従い反応速度が変化し、これ
により反応物の粘度が急激或は徐々に増加する。
しかし、実際には、重合反応は24時間内で終結す
る。アミド類の溶媒は一方において塩化水素の酸
捕捉剤の役割をする。 反応温度は−20℃乃至100℃が適当であり、特
に−5℃乃至50℃が有用である。 溶液重合反応において加入される単量体の濃度
は、生成された重合体溶液の濃度と重合体の重合
度を決定する、繊維やフイルム等生成物の製造に
最適条件の重合度と、製造された重合体溶液の粘
度を決定する投入単量体濃度は、両ジアミン単量
体の比率、溶媒の選択及び反応温度により少しづ
つ変化する。一般に、溶液の重合時の単量体の濃
度は4〜20重量%が適し、特に6〜15重量%が有
用である。前記の重合操作時において上述の溶解
度増進剤を反応前、中途又は後に加えると更に有
用であり、塩化リチウム、塩化カルシウム等が特
に有用であり、1〜5重量%を加える。また、上
述の酸捕捉剤や中和剤を反応前、中途又は後に加
えると効果的であり、ピリジン、ピコリン、キノ
リン等が有用であり、1〜50重量%を加える。 このような溶液重合法によつて製造されたコポ
リアミド重合体溶液は、直に成形物の製造原液
(例えば、紡糸原液)として使用される。一方、
この重合体溶液に過量の水を添加し、ミキサーに
て粉砕して重合体沈澱物を回収した後、水洗、乾
燥工程を経て適当な溶媒に再溶解させて紡糸原液
として使用することがもできるが、本発明の要点
は溶液重合により得た重合体溶液の直接成形法で
ある。 本発明の製造方法により製造された芳香族コポ
リアミドは、優れた溶解性を有しており、それよ
り製造された繊維、フイルム等は優れた機械的特
性を現わす。 本発明により製造されたコポリアミド重合体の
重合度を評価するには、乾燥させた重合体を97%
硫酸に濃度(c)0.5g/dlに溶解させ、30℃で相対
粘度(ηrel)を測定して、これを次式、 ηinh=1n(ηrel)/C により固有粘度に換算して評価する。 本発明の目的に適う重合度は、製造された重合
体の固有粘度が1.0〜6.0の重合体であり、特に2.0
〜5.0の固有粘度を有する重合体が適当温度の重
合体溶液の製造に効果的であり、これより製造さ
れた繊維、フイルム等は優れた機械的特性と耐熱
性を保持する。 前記重合体溶液を直に紡糸原液として利用し、
乾式紡糸、湿式紡糸、気隔湿式紡糸等の方法によ
つて紡糸して繊維を製造する。特に、米国特許第
3671542号に記載されているような気隔湿式紡糸
法(dyrwet spinning)が有用である。更に詳し
く述べれば、前記紡糸原液を15〜90℃、特に室温
乃至70℃で保持し、これを紡糸ノズル(例えば、
紡糸口の径:0.1mm、紡糸口数:12口)を通して
射出させる。射出された溶液は、紡糸ノズルと凝
固液間の空気間隔(例えば、1〜2cm)を通過す
る間にこれを引張り、即時凝固液中に入り込ませ
て凝固させた後、製造された繊維を捲取る。 この気隔湿式紡糸法は、通常の湿式紡糸法と異
り、紡糸ノズルと凝固液間に空気間隔をおくのが
特徴であり、この空気間隔から紡糸口を通つて射
出された紡糸溶液が、射出速度と捲取速度の差に
より繊維が引張られる。 製造された繊維の特性は、N,N′−ビス(4
−アミノフエニル)イソフタルアミドがモル比で
12〜88%導入された繊維の場合、強度が10〜15
g/den及び弾性率が100〜400g/denであつて
優れている。これ以外の混合比率においては、強
度及び弾性率の範囲が夫々4〜13g/den及び70
〜210g/denである。 前記の製造方法によつて製造されたコポリアミ
ド繊維やキヤスチングされたフイルムは、高倍率
で延伸可能であり、延伸結果優れた機械的特性と
耐熱性を有する繊維、フイルム等が製造される。
本発明の高性能繊維、フイルム等の製造に有用な
延伸比は1:1.3から切断される前までであり、
特に1:4乃至1:9の延伸比範囲において優れ
た機械的、熱的特性を現わす。 延伸は、熱板(hoto plate)、熱棒
(clyindrical heating rod)上でガラス転移温度
以上から熱による脆化が急激でない温度範囲内で
行われる。熱延伸は250〜500℃において行うのが
適し、特に300〜450℃において行うのが効果的で
ある。 本発明の製造方法により製造されたコポリアミ
ド及び繊維、フイルム等は熱的に極めて安定であ
つて、微分熱分析法及び重量熱分析法によれば、
450℃以上から分解が急激に起り、短時間の使用
には400℃まで、長時間の使用には250℃まで有用
である。 (発明の効果) 本発明の製造方法によつて高重合度のコポリア
ミドを製造することができ、製造されたコポリア
ミドは流動性と安定性を有し、これより製造され
る繊維、フイルム等は、高強度及び高弾性率の優
れた機械的特性と熱的安定性を有するため、タイ
ヤコード、その他ゴムと樹脂等の強化材料、耐熱
性絶縁材、耐熱性透明フイルム等の産業用素材と
して多用途を有している。 (実施例) 以下、本発明を下記の実施例により更に詳細に
説明することにする。しかし、これらの実施例
は、本発明の例示にすぎなく、本発明の範囲がこ
れらの実施だけに限定されるものではないと理解
すべきである。 実施例 1 N,N′−ビス(4−アミノフエニル)イソフ
タルアミドとパラフエニレンジアミンとを、
12.5:87.5の比率で混合してテレフタル酸クロラ
イドと反応させた重合体の製造。 攪拌機、温度計及び窒素流入口が装着された容
量1の蛇口矩形フラスコに、240ml(2.58モル)
のN,N′−ジメチルアセトアミド、7.2g(0.17
モル)の塩化リチウム、2.595g(0.0075モル)
のN,N′−ビス(4−アミノフエニル)イソフ
タルアミド及び5.67g(0.00525モル)のパラフ
エニレンジアミンを入れて、攪拌し溶液を得た。
この溶液の温度を30℃に維持し、これに15.2ml
(0.19モル)のピリジンを添加した後、12.26g
(0.06モル)のテレフタル酸クロライドを加え、
激しく攪拌した。添加後、10分が経過すると粘度
が徐々に増加した。この混合液を3時間続けて攪
拌した後、常温で1日放置した。製造された重合
体溶液は極めて安定であり、30日が経過しても状
態の分離が起らなかつた。これを直にフイルムキ
ヤスチングを行いフイルムを製造することもでき
るし、紡糸して繊維を製造することもできる。固
体状の重合体粉末を得るために、製造された重合
体溶液に過量の水を加え、ミキサーにて粉砕して
重合体を粉末状態で沈澱させ、これを過して重
合体を回収した。回収された重合体を水で数回洗
浄して溶媒を完全に除去した後、80℃の真空乾燥
機において6時間以上乾燥した。得られた重合体
は軟黄色粉末であり、その固有粘度は3.93であつ
た。 実施例 2 N,N′−ビス(4−アミノフエニル)イソフ
タルアミドと、パラフエニレンジアミンとを
12.5:87.5の比率で混合し、テレフタル酸クロラ
イドと反応させた重合体の製造。 本実施例では、重合体溶媒としてN−メチルピ
ロリドンを用いた。攪拌機、温度計及び窒素流入
口が装着された容量1の蛇口矩形フラスコに、
240ml(2.49モル)のN−メチルピロリドン9.6g
(0.23モル)の塩化リチウム及び2.595g(0.0075
モル)のN,N′−ビス(4−アミノフエニル)
イソフタルアミドと、5.67g(0.0525モル)のパ
ラフエニレンジアミンを入れて、攪拌して溶液を
得た。この溶液の温度を25℃に維持し、これに
13.7mlのピリジンを添加した後、12.26g(0.06モ
ル)のテレフタル酸クロライドを一時に加えて激
しく攪拌した。添加後10分が経過した後、粘度が
徐々に増加した。この混合液を3時間続けて攪拌
した後、常温で1日間放置した。この重合体溶液
も極めて安定であつた。これを直に利用して繊
維、フイルム等を製造することができる。固体状
の重合体粉末を得るために、製造された重合体溶
液に過量の水を加え、ミキサーにて粉砕して重合
体を粉末状態で沈澱させ、これを過して重合体
を回収した。回収した重合体を水で数回洗浄して
溶媒を完全に除去した後、80℃の真空乾燥機にお
いて6時間乾燥した。得られた重合体は軟黄色粉
末であり、その固有粘度は3.44であつた。 実施例 3 N,N′−ビス(4−アミノフエニル)イソフ
タルアミドと、パラフエニレンジアミンとを、
12.5:87.5の比率で混合してテレフタル酸クロラ
イドと反応させた重合体の製造。 本実施例では、アルカリ金属塩として塩化カル
シウムを用いた。攪拌機、温度計及び窒素流入口
が装着された容量1の蛇口矩形フラスコに、
240ml(2.58モル)のN,N′−ジメチルアセトア
ミド、6.2g(0.06モル)の塩化カルシウム、2.59
g(0.0075モル)のN,N′−ビス(4−アミノフ
エニル)イソフタルアミド及び5.67g(0.00525
モル)のパラフエニレンジアミンを入れて、攪拌
して溶液を得た。この溶液の温度を30℃に維持
し、これに10.4ml(0.13モル)のピリジンを添加
した後、12.26g(0.06モル)のテレフタル酸ク
ロライドを一時に加えて激しく攪拌した。添加
後、10分が経過した後、粘度が徐々に増加したが
1時間後には変化がなかつた。この重合体溶液を
3時間攪拌した後、常温において1日放置した。
この重合体溶液は極めて安定であつた。これを直
に利用して繊維、フイルム等を製造した。固体状
の重合体粉末を得るために、製造された重合体溶
液に過量の水を加え、ミキサーにて粉砕して重合
体を粉末状態で沈澱させ、これを過して重合体
を回収した。回収した重合体を水で数回洗浄して
溶媒を完全に除去した後、80℃の真空乾燥機にお
いて6時間以上乾燥した。得られた重合体は軟黄
色粉末であり、その固有粘度は3.60であつた。 実施例 4 N,N′−ビス(4−アミノフエニル)イソフ
タルアミドと、パラフエニレンジアミンとを、
12.5:87.5の比率で混合し、テレフタル酸クロラ
イドと反応させた重合体の製造。 本実施例では、重合体溶媒としてヘキサメチル
ホスホリルアミドとN−メチルピロリドンとの
1:2(容積)混合物を用いた。攪拌機、温度計
及び窒素流入口が装着した蛇口矩形フラスコに、
86ml(0.46モル)のヘキサメチルホスホリルアミ
ドと160ml(0.17モル)のN−メチルピロリドン、
6.9g(0.14モル)の塩化リチウム、2.595g
(0.0075モル)のN,N′−ビス(4−アミノフエ
ニル)イソフタルアミド及び5.67g(0.0525モ
ル)のパラフエニレンジアミンを入れ、攪拌して
溶液を得た。この溶液の温度を20℃に維持し、こ
れに22.8ml(0.28モル)のピリジンを添加した
後、12.26g(0.06モル)のテレフタル酸クロラ
イドを一時に加えて激しく攪拌した。添加後、10
分が経過した後、粘度が徐々に増加したが、1時
間が経過すると粘度は上昇しなかつた。この重合
体溶液を続けて3時間攪拌した後、常温において
1時間放置した。この重合体溶液は極めて安定で
あつた。これを直に利用して繊維、フイルム等を
製造することができる。固体状の重合体粉末を得
るために、製造された重合体溶液に過量の水を加
え、ミキサーにて粉砕して重合体を粉末状態で沈
澱させ、これを過して重合体を回収した。回収
した重合体を水で数回洗浄して溶媒を完全に除去
した後、80℃の真空乾燥機において6時間以上乾
燥した。得られた重合体は軟黄色粉末であり、そ
の固有粘度は3.08であつた。 実施例 5 N,N′−ビス(4−アミノフエニル)イソフ
タルアミド(12.5)/パラフエニレンジアミン
(87.5)/テレフタル酸クロライド(100)のコポ
リアミド繊維の製造。 実施例1の方法により製造された重合体溶液
(I.V.=3.93)10gを500mlの1口矩形フラスコに
入れた後、減圧蒸留して重合体溶液の濃度が18%
になるように溶媒を除去した。濃度を調節した重
合体溶液(紡糸原液)を紡糸機内に移して30分間
減圧して空気を除去した。温度を30℃に保持した
後、400メツシユフイルターを介して過した。
過した紡糸溶液は紡糸口径0.1mm、紡糸口数12
口の紡糸ノズルを通して射出液の線速度を15m/
minとして射出させ、射出された紡糸溶液を空気
間隔(2cm)において引張比4倍に引張した後、
凝固液中で凝固させ、繊維として形成して捲取ロ
ーラに捲取速度60m/minで捲取つた。製造され
た繊維は、残留溶媒とアルカリ金属塩を除去する
ために、水に1日以上浸漬させた後、乾燥した。
乾燥した繊維は表面温度300℃の熱板において延
伸比1:6で10秒以内に熱延伸した。製造された
繊維は3.3denであり、強度13.2g/den、伸度7
%、弾性率275g/denであつた。 実施例 6 N,N′−ビス(4−アミノフエニル)イソフ
タルアミドと、パラフエニレンジアミンとを、異
る比率で混合してテレフタル酸クロライドと反応
させた重合体の製造。 実施例1と同様に、重合体溶媒として240ml
(2.58モル)のN,N′−ジメチルアセトアミド、
アルカリ金属塩として7.2g(0.17モル)の塩化
リチウム、酸捕捉剤として15.2ml(0.19モル)の
ピリジンを使用し、N,N′−ビス(4−アミノ
フエニル)イソフタルアミドとパラフエニレンジ
アミンとを、両ジアミンのモル数の和が0.66モル
になるように多様の比率で混合し、12.26g
(0.06モル)のテレフタル酸クロライドを反応さ
せた。ジアミン単量体の比率を変化させて製造さ
れたコポリアミドは表1のとおりである。
(Industrial Application Field) The present invention relates to an aromatic copolyamide made from N,N'-bis(4-aminophenyl)isophthalamide. Furthermore, a method for producing the aromatic copolyamide, which comprises condensing terephthalic acid chloride to a mixture of paraphenylenediamine and N,N'-bis(4-aminophenyl)isophthalamide as an aromatic diamine compound, and further from this polymer solution. The present invention relates to manufactured high strength and high modulus heat resistant fibers and films. (Prior technology) Aromatic polyamides have extremely high melting temperatures and glass transition temperatures (in fact, thermal decomposition often occurs from the melting point), and have excellent physicochemical properties such as excellent thermal stability and chemical resistance. It has properties. Fibers made from such aromatic polyamides can be used to make heat-resistant fibers by taking advantage of their excellent thermal stability or rubber reinforcements such as tire cords by taking advantage of their excellent mechanical properties such as high tensile strength and elastic modulus. It is used as materials, composite materials, etc. In particular, ultra-high performance aromatic polyamide fibers that have high strength, high elastic modulus, and high heat resistance are manufactured through liquid crystal spinning.When the spinning stock solution forms a solution liquid crystal, it is processed into a liquid crystal spinning process called a gas-gap wet spinning method. Ultra-high performance fibers can be produced through spinning, and a typical example of this is poly(paraphenylene terephthalamide) fiber, which is generally known as Dupont's Kevlar. There is. However, aromatic polyamides and copolyamides, such as poly(paraphenylene terephthalamide), in which the molecular chains extend linearly from both ends of the aromatic ring in a direction parallel to the molecular chains, have ultra-high strength and high elastic modulus. Despite possessing such properties, poly(paraphenylene terephthalamide) is difficult to manufacture due to extremely low solubility in solvents.In fact, poly(paraphenylene terephthalamide) dissolves only in extremely limited solvents; is limited to a mixed solution of hexamethylphosphorylamide and N-methylpyrrolidone to which a strong inorganic acid such as concentrated sulfuric acid or an inorganic salt such as lithium chloride is added. Only strong inorganic acids can be used. When such polyamides are industrialized, many problems arise, such as corrosion of equipment due to the use of strong acids, dangers in handling, and difficulties in waste liquid treatment, and complicated operations are required to dissolve the polymer in a solvent. It has certain drawbacks. In addition, sulfuric acid rapidly separates from between the molecular chains in the coagulation solution during coagulation, inducing "fibril" formation, which is a disadvantage of linear strongly linear polyamides. Fiber fibrillation and cracking within the fiber is a fatal drawback of aromatic polyamide fibers, which have a variety of uses as reinforcing materials. It lacks chemical resistance and is a drawback in its role as a reinforcing material for rubber, cement, etc., which is a factor that hinders the expansion of its uses. To increase the solubility of rigid polyamides and copolyamides with straight molecular chains extending straight at both ends of the aromatic ring, "meta" linkages such that the molecular chains can be bent at both ends of the aromatic ring are used. Methods of introducing a unit or a rotatable bond between aromatic rings are already widely known. For example, when metaphenylene units are introduced between the amide bonds of a highly linear copolyamide, the solubility of the copolyamide can be increased. However, as the proportion of metaphenylene units in the molecular chain increases, the mechanical properties, particularly the elastic modulus, of fibers made from such copolyamides are significantly reduced. Efforts to increase solubility by introducing modification units into linear strongly linear polyamide molecular chains have been worldwide, and although various attempts have already been described in many literatures and patents, Many could not overcome the decline in physical properties. For example, U.S. Patent No. 4,075,922 states that the following formula [However, Y is -O-, The invention of a copolyamide into which modification units such as the following are introduced has been announced, and the copolyamide was thermally stretched at a high temperature after fiber production to overcome the deterioration in physical properties. However, the following formula used to prepare the copolyamide: Since the manufacturing cost of the 3,4'-diaminodiphenyl ether monomer is high, it is economically difficult. (Problems to be Solved by the Invention) The present invention is directed to a polymeric polymer with fluidity and stability that is economical and capable of producing fibers and films with thermal stability, high strength, and high modulus of elasticity. The object of the present invention is to provide a new diamino monomer whose solubility can be improved so that a combined solution can be produced, an aromatic copolyamide polymer produced therefrom, and a method for producing the same. Another object of the present invention is to provide fibers and films having high strength, high modulus, and high heat resistance that are basically produced directly from the polymer solution of this new aromatic copolyamide. (Means for Solving the Problems) In the present invention, N,N'-bis(4-aminophenylene)isophthalamide of the formula (1) shown below is used to combine with paraphenylene diamine, an existing para monomer. The method for producing aromatic polyamide fibers described above is carried out by mixing at a constant ratio, adjusting the ratio of para-linking units and meta-linking units, and adjusting the mutual distance of meta-linking units to maintain a high degree of polymerization. It enables the production of films and fibers. The aromatic copolyamide of the present invention is an aromatic copolyamide having an intrinsic viscosity of 1.0 to 6.0 and consisting of a structural unit represented by the following formula (1). In the above formula, x and y are the molar ratios of N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine to the number of moles of the entire condensed diamine monomer, and the value is x is 0.12 to 0.9, and y is 0.88 to 0.1. The copolyamide of the above formula (1) is prepared by dissolving an alkali metal salt in a tertiary amide solvent and adding a tertiary amine as an acid scavenger to the polymerization solvent. -Aminophenyl) isophthalamide and paraphenylenediamine in a molar ratio of 12:88 to 90:10, and are produced by subjecting terephthalic acid chloride to low-temperature polycondensation. This polymer solution is hot stretched to obtain aromatic copolyamide fibers or films with high strength and high modulus. The film produced by this film casting is an extremely transparent, high-strength, and highly heat-resistant film. The concentration and viscosity of a polymer solution produced by copolymerization are adjusted, and fibers produced by directly spinning the same have excellent mechanical and thermal properties. The tensile strengths of the film and fibers range from 100 to 150 Kg/mm 2 and from 10 to 15 g/den, respectively. In the present invention, the following formula (2) used as a polymerization monomer, The method for producing N,N'-bis(4-aminophenyl)isophthalamide is disclosed in Korean Patent No. 11475.
The following equation (3) presented in No. This method is basically the same as the method for producing N,N'-bis(4-aminophenyl)terephthalamide.
That is, isophthalic acid halide (4) and two equivalents of paranitroaniline (5) are reacted as shown in the following reaction formula (A).
After condensation at low temperature to synthesize N,N'-bis(4-nitrophenyl)isophthalamide, this was hydrogen-reduced using Ranene nickel as a catalyst to form N,N'-bis(4-nitrophenyl)isophthalamide.
N'-bis(4-aminophenyl)isophthalamide (2) can be produced. The copolyamide of the present invention is produced by the following reaction formula (B) in which terephthalic acid chloride of formula (7) is reacted with a mixture of diamine monomer of formula (2) and paraphenylene diamine of formula (6) at a fixed ratio. ) can be produced according to the route. To obtain the copolyamide, N,N'-bis(4-aminophenyl)isophthalamide monomer
Without using (2), to a mixture of isophthaloyl chloride (4) and terephthaloyl chloride (7) at a certain ratio,
Even if paraphenylenediamine (6) is similarly reacted according to the following reaction formula (C), the objective can be achieved to some extent. However, as shown in reaction formula (B) of the present invention, N,
When N'-bis(4-aminophenyl)isophthalamide (2) is used as a polymerization starting material, hydrogen chloride Since the generation is small (up to 1/2), copolyamides with a high degree of polymerization can be produced. Further, by using the monomer (2) of the present invention, hydrogen chloride generated in reaction formula (B) can be easily removed, and a copolyamide with a high degree of polymerization can be produced. Therefore, the use of monomer (2), which is a polymerization intermediate, in the present invention makes it possible to easily produce a copolyamide with a high degree of polymerization having basically the same molecular structure, and By increasing the relative distance of the meta-linking rings in the polymer molecular chain, loss of crystallinity can be prevented to the maximum extent, so that deterioration of mechanical properties can be prevented while increasing solubility. The copolyamide (1) of the present invention basically comprises (1a)
It consists of a structural unit and (1b) a composition of structural units. In order to maintain both good solubility and mechanical strength, (1a) structural units should be incorporated in the copolyamide of the present invention in an amount of 12 to 90% based on the total repeating units, especially 12 to 90%. 30% effective. As mentioned above, the copolyamide (1) of the present invention comprises N,
N'-bis(4-aminophenyl)isophthalamide (2) and paraphenylenediamine (6) are mixed so that the ratio of structural units (1a) in the entire molecular chain is compatible with the purpose of the invention. It is produced by condensation polymerization with terephthalic acid chloride (7), and the polymerization method is basically the method conventionally used for polyamide polymerization, that is, interfacial polymerization, melt polymerization, solid polymerization, or solution polymerization method. However, in order to produce a copolyamide with a high degree of polymerization that is suitable for the purpose, it is preferable to carry out a solution polymerization method. To produce copolyamide by solution polymerization method, −
An organic solvent should be used in which the monomers and the resulting high molecular weight polymer can be dissolved at least partially in the temperature range of 20°C to 100°C, and an acid scavenger may be used if necessary. You can also. Metal halide salts of groups or groups of the periodic table can also be added to the polymerization solvent to increase the solubility of the polymer and the stability of the resulting polymerization solution. Amide solvents are suitable as organic solvents used in polymerization, and these solvents include N,N'-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphorylamide, N-
Methylpiperidone. N,N,N',N'-tetramethylurea, N-methylcaprolactam, N,
N'-diethylacetamide, N-ethylpyrrolidone, N-acetylpyrrolidone, etc., especially N
-Methylpyrrolidone, hexamethylphosphorylamide, N,N'-dimethylacetamide or mixtures thereof are useful. To specifically describe the optimal polymerization method, N,
N'-bis(4-aminophenyl)isophthalamide in a molar ratio of 12-90%, paraphenylenediamine in a molar ratio of 88-10%,
After dissolving in the amine solvent so that the sum of the molar ratios of both diamines becomes 100%, the mixture is stirred while adding terephthalic acid chloride at a molar ratio of 100%. The reaction rate changes according to the ratio of diamine monomers, and the viscosity of the reactant increases sharply or gradually.
However, in reality, the polymerization reaction is completed within 24 hours. The amide solvent acts on the one hand as an acid scavenger for hydrogen chloride. The reaction temperature is suitably -20°C to 100°C, and particularly useful is -5°C to 50°C. The concentration of monomers added in the solution polymerization reaction determines the concentration of the polymer solution produced and the degree of polymerization of the polymer, and the degree of polymerization that is optimal for the production of products such as fibers and films. The input monomer concentration, which determines the viscosity of the polymer solution, varies slightly depending on the ratio of both diamine monomers, the choice of solvent, and the reaction temperature. Generally, the monomer concentration during solution polymerization is suitably between 4 and 20% by weight, particularly between 6 and 15% by weight. It is further useful to add the above-mentioned solubility enhancer before, during or after the reaction during the polymerization operation, and lithium chloride, calcium chloride, etc. are particularly useful, and are added in an amount of 1 to 5% by weight. Furthermore, it is effective to add the above-mentioned acid scavenger or neutralizing agent before, during or after the reaction, and pyridine, picoline, quinoline, etc. are useful, and they are added in an amount of 1 to 50% by weight. A copolyamide polymer solution produced by such a solution polymerization method is directly used as a stock solution for producing a molded article (for example, a spinning stock solution). on the other hand,
It is also possible to add an excess amount of water to this polymer solution, collect the polymer precipitate by crushing it with a mixer, wash it with water, dry it, redissolve it in an appropriate solvent, and use it as a spinning stock solution. However, the key point of the present invention is a method for directly molding a polymer solution obtained by solution polymerization. The aromatic copolyamide produced by the production method of the present invention has excellent solubility, and fibers, films, etc. produced therefrom exhibit excellent mechanical properties. To evaluate the degree of polymerization of the copolyamide polymers produced according to the present invention, the dried polymer was 97%
Dissolve it in sulfuric acid to a concentration (c) of 0.5 g/dl, measure the relative viscosity (ηrel) at 30°C, and convert it to the intrinsic viscosity using the following formula: ηinh=1n(ηrel)/C for evaluation. The degree of polymerization suitable for the purposes of the present invention is one in which the produced polymer has an intrinsic viscosity of 1.0 to 6.0, particularly 2.0.
Polymers with an intrinsic viscosity of ~5.0 are effective for producing polymer solutions at appropriate temperatures, and fibers, films, etc. produced therefrom retain excellent mechanical properties and heat resistance. Utilizing the polymer solution directly as a spinning stock solution,
Fibers are produced by spinning using methods such as dry spinning, wet spinning, and septum wet spinning. In particular, U.S. Pat.
Dyrwet spinning, such as that described in US Pat. No. 3,671,542, is useful. More specifically, the spinning stock solution is maintained at a temperature of 15 to 90°C, particularly room temperature to 70°C, and passed through a spinning nozzle (e.g.
It is injected through a spinneret diameter: 0.1 mm, number of spinnerets: 12). The injected solution is pulled while passing through an air gap (for example, 1 to 2 cm) between the spinning nozzle and the coagulating liquid, and is instantly coagulated into the coagulating liquid, after which the produced fiber is wound. take. This gas-gap wet spinning method is different from the normal wet spinning method in that an air gap is provided between the spinning nozzle and the coagulating liquid, and the spinning solution is injected from this air gap through the spinning nozzle. The fiber is pulled due to the difference between the injection speed and winding speed. The properties of the produced fibers are N,N'-bis(4
-aminophenyl)isophthalamide in molar ratio
For fibers loaded with 12-88%, the strength is 10-15
The g/den and elastic modulus are excellent, ranging from 100 to 400 g/den. At other mixing ratios, the strength and elastic modulus ranges from 4 to 13 g/den and 70 g/den, respectively.
~210g/den. Copolyamide fibers and casted films produced by the above-mentioned production method can be stretched at high magnification, and as a result of stretching, fibers, films, etc., having excellent mechanical properties and heat resistance are produced.
The stretching ratio useful for producing the high-performance fibers, films, etc. of the present invention is from 1:1.3 to before cutting,
In particular, it exhibits excellent mechanical and thermal properties in the drawing ratio range of 1:4 to 1:9. Stretching is carried out on a hot plate or a clyindrical heating rod within a temperature range from above the glass transition temperature to a temperature range at which thermal embrittlement does not occur rapidly. The hot stretching is suitably carried out at a temperature of 250 to 500°C, particularly effectively carried out at a temperature of 300 to 450°C. The copolyamides, fibers, films, etc. produced by the production method of the present invention are extremely stable thermally, and according to differential thermal analysis and gravimetric thermal analysis,
Decomposition occurs rapidly above 450℃, and it is useful up to 400℃ for short-term use and 250℃ for long-term use. (Effect of the invention) A copolyamide with a high degree of polymerization can be produced by the production method of the present invention, and the produced copolyamide has fluidity and stability, and fibers, films, etc. produced therefrom can be produced. Because it has excellent mechanical properties such as high strength and high modulus and thermal stability, it is used as an industrial material for tire cords, other reinforcing materials such as rubber and resin, heat-resistant insulation materials, heat-resistant transparent films, etc. It has many uses. (Examples) Hereinafter, the present invention will be explained in more detail with reference to the following examples. However, it should be understood that these examples are merely illustrative of the present invention, and the scope of the present invention is not limited to these implementations. Example 1 N,N′-bis(4-aminophenyl)isophthalamide and paraphenylenediamine,
Production of polymers reacted with terephthalic acid chloride by mixing in a ratio of 12.5:87.5. 240 ml (2.58 mol) in a volume 1 taped rectangular flask equipped with a stirrer, thermometer and nitrogen inlet.
of N,N'-dimethylacetamide, 7.2 g (0.17
mol) of lithium chloride, 2.595 g (0.0075 mol)
N,N'-bis(4-aminophenyl)isophthalamide and 5.67 g (0.00525 mol) of paraphenylenediamine were added and stirred to obtain a solution.
Maintain the temperature of this solution at 30°C and add 15.2 ml
After adding (0.19 mol) of pyridine, 12.26 g
(0.06 mol) of terephthalic acid chloride was added,
Stir vigorously. After 10 minutes of addition, the viscosity gradually increased. This mixed solution was continuously stirred for 3 hours and then left at room temperature for 1 day. The produced polymer solution was extremely stable and no separation of states occurred even after 30 days. This can be directly film casted to produce a film, or it can be spun to produce fibers. In order to obtain a solid polymer powder, an excess amount of water was added to the produced polymer solution, and the mixture was pulverized in a mixer to precipitate the polymer in a powder state. The recovered polymer was washed several times with water to completely remove the solvent, and then dried in a vacuum dryer at 80° C. for 6 hours or more. The obtained polymer was a soft yellow powder, and its intrinsic viscosity was 3.93. Example 2 N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine
Production of polymers mixed in a ratio of 12.5:87.5 and reacted with terephthalic acid chloride. In this example, N-methylpyrrolidone was used as the polymer solvent. In a 1 capacity faucet rectangular flask equipped with a stirrer, thermometer and nitrogen inlet,
9.6 g of N-methylpyrrolidone in 240 ml (2.49 moles)
(0.23 mol) of lithium chloride and 2.595 g (0.0075
mole) of N,N'-bis(4-aminophenyl)
Isophthalamide and 5.67 g (0.0525 mol) of paraphenylenediamine were added and stirred to obtain a solution. Maintain the temperature of this solution at 25°C and
After adding 13.7 ml of pyridine, 12.26 g (0.06 mol) of terephthalic acid chloride was added all at once and stirred vigorously. After 10 minutes of addition, the viscosity gradually increased. This mixed solution was continuously stirred for 3 hours and then left at room temperature for 1 day. This polymer solution was also extremely stable. This can be used directly to produce fibers, films, etc. In order to obtain a solid polymer powder, an excess amount of water was added to the produced polymer solution, and the mixture was pulverized in a mixer to precipitate the polymer in a powder state. The recovered polymer was washed several times with water to completely remove the solvent, and then dried in a vacuum dryer at 80° C. for 6 hours. The obtained polymer was a soft yellow powder, and its intrinsic viscosity was 3.44. Example 3 N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine,
Production of polymers reacted with terephthalic acid chloride by mixing in a ratio of 12.5:87.5. In this example, calcium chloride was used as the alkali metal salt. In a 1 capacity faucet rectangular flask equipped with a stirrer, thermometer and nitrogen inlet,
240 ml (2.58 mol) N,N'-dimethylacetamide, 6.2 g (0.06 mol) calcium chloride, 2.59
g (0.0075 mol) of N,N'-bis(4-aminophenyl)isophthalamide and 5.67 g (0.00525
mol) of paraphenylenediamine was added and stirred to obtain a solution. The temperature of this solution was maintained at 30° C., and 10.4 ml (0.13 mol) of pyridine was added thereto, and then 12.26 g (0.06 mol) of terephthalic acid chloride was added all at once and stirred vigorously. The viscosity gradually increased 10 minutes after addition, but remained unchanged after 1 hour. After stirring this polymer solution for 3 hours, it was left to stand at room temperature for 1 day.
This polymer solution was extremely stable. This was used directly to produce fibers, films, etc. In order to obtain a solid polymer powder, an excess amount of water was added to the produced polymer solution, and the mixture was pulverized in a mixer to precipitate the polymer in a powder state. The recovered polymer was washed several times with water to completely remove the solvent, and then dried in a vacuum dryer at 80° C. for 6 hours or more. The obtained polymer was a soft yellow powder, and its intrinsic viscosity was 3.60. Example 4 N,N′-bis(4-aminophenyl)isophthalamide and paraphenylenediamine,
Production of polymers mixed in a ratio of 12.5:87.5 and reacted with terephthalic acid chloride. In this example, a 1:2 (by volume) mixture of hexamethylphosphorylamide and N-methylpyrrolidone was used as the polymer solvent. A taped rectangular flask equipped with a stirrer, thermometer and nitrogen inlet was
86 ml (0.46 mol) hexamethylphosphorylamide and 160 ml (0.17 mol) N-methylpyrrolidone,
6.9 g (0.14 mole) lithium chloride, 2.595 g
(0.0075 mol) of N,N'-bis(4-aminophenyl)isophthalamide and 5.67 g (0.0525 mol) of paraphenylenediamine were added and stirred to obtain a solution. The temperature of this solution was maintained at 20° C., and 22.8 ml (0.28 mol) of pyridine was added thereto, followed by 12.26 g (0.06 mol) of terephthalic acid chloride at once and stirred vigorously. After addition, 10
After minutes, the viscosity gradually increased, but after 1 hour, the viscosity did not increase. This polymer solution was continuously stirred for 3 hours and then left at room temperature for 1 hour. This polymer solution was extremely stable. This can be used directly to produce fibers, films, etc. In order to obtain a solid polymer powder, an excess amount of water was added to the produced polymer solution, and the mixture was pulverized in a mixer to precipitate the polymer in a powder state. The recovered polymer was washed several times with water to completely remove the solvent, and then dried in a vacuum dryer at 80° C. for 6 hours or more. The obtained polymer was a soft yellow powder, and its intrinsic viscosity was 3.08. Example 5 Preparation of copolyamide fibers of N,N'-bis(4-aminophenyl)isophthalamide (12.5)/paraphenylenediamine (87.5)/terephthalic acid chloride (100). 10 g of the polymer solution (IV = 3.93) prepared by the method of Example 1 was placed in a 500 ml one-necked rectangular flask, and then distilled under reduced pressure until the concentration of the polymer solution was 18%.
The solvent was removed so that The polymer solution (spinning stock solution) whose concentration had been adjusted was transferred into a spinning machine and the pressure was reduced for 30 minutes to remove air. After maintaining the temperature at 30°C, it was passed through a 400 mesh filter.
The passed spinning solution has a spinneret diameter of 0.1 mm and a spinneret number of 12.
The linear velocity of the injection liquid through the spinning nozzle at the mouth was set at 15 m/
After injecting the spinning solution as min.
The fibers were coagulated in a coagulating liquid, formed into fibers, and wound around a winding roller at a winding speed of 60 m/min. The manufactured fibers were soaked in water for at least one day to remove residual solvents and alkali metal salts, and then dried.
The dried fibers were hot drawn within 10 seconds at a drawing ratio of 1:6 on a hot plate with a surface temperature of 300°C. The manufactured fiber has a density of 3.3 den, a strength of 13.2 g/den, and an elongation of 7.
%, and the elastic modulus was 275 g/den. Example 6 Preparation of a polymer in which N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine were mixed in different ratios and reacted with terephthalic acid chloride. Same as Example 1, 240 ml as polymer solvent
(2.58 mol) of N,N'-dimethylacetamide,
Using 7.2 g (0.17 mol) of lithium chloride as the alkali metal salt and 15.2 ml (0.19 mol) of pyridine as the acid scavenger, N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine were combined. , mixed in various ratios so that the sum of the moles of both diamines is 0.66 moles, and 12.26 g
(0.06 mol) of terephthalic acid chloride was reacted. Table 1 shows copolyamides produced by varying the ratio of diamine monomers.

【表】【table】

【表】 実施例 7 コポリアミド繊維の製造 実施例5と同様にして、N,N′−ビス(4−
アミノフエニル)イソフタルアミドとパラフエニ
レンジアミンの比率が20/80から90/10のコポリ
アミドから繊維を製造した。製造条件は、下記の
表2のとおりである。
[Table] Example 7 Production of copolyamide fiber In the same manner as in Example 5, N,N'-bis(4-
Fibers were produced from copolyamides having a ratio of 20/80 to 90/10 of aminophenyl)isophthalamide and paraphenylenediamine. The manufacturing conditions are as shown in Table 2 below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記式(1)で表わされる構造単位からなる固有
粘度1.0〜6.0の芳香族コポリアミド。 上記式において、x及びyは縮重合された全体
ジアミン単量体のモル数に対するN,N′−ビス
(4−アミノフエニル)イソフタルアミドとパラ
フエニレンジアミンのモル比であつて、その値は
xが0.12〜0.9、yは0.88〜0.1である。 2 固有粘度が2.0〜5.0であり、xが0.12〜0.7、
yが0.88〜0.3である請求項1記載の芳香族コポ
リアミド。 3 第3級アミド類溶媒にアルカリ金属塩を溶解
し、これに第3級アミンを酸捕捉剤として添加し
た重合溶媒内において、N,N′−ビス(4−ア
ミノフエニル)イソフタルアミドとパラフエニレ
ンジアミンとを、その混合比率がモル比で12:88
乃至90:10である混合物にテレフタル酸クロライ
ドを低温重縮合させることを特徴とする請求項1
記載の芳香族コポリアミドの製造方法。 4 N,N′−ビス(4−アミノフエニル)イソ
フタルアミドとパラフエニレンジアミンとの混合
比率が、モル比で12:88乃至70:30である請求項
3記載の製造方法。 5 第3級アミド類溶媒が、N,N′−ジメチル
アセトアミド、N−メチルピロリドン、ヘキサメ
チルホスホリルアミド;N,N′,N′−テトラメ
チルウレア;N,N′−ジエチルアセトアミド、
N−エチルピロリドン、N−メチルカプロラクタ
ム及びN−アセチルピロリドンより選ばれた1種
又は2種以上の混合物である請求項3又は4記載
の製造方法。 6 アルカリ金属塩が、塩化リチウム又は塩化カ
ルシウムである請求項3〜5のいずれか1項に記
載の製造方法。 7 アルカリ金属塩の使用量が、1〜5重量%で
ある請求項3〜6のいずれか1項に記載の製造方
法。 8 第3級アミンが、ピリジン、ピコリン又はキ
ノリンである請求項3〜7のいずれか1項に記載
の製造方法。 9 第3級アミンの使用量が、1〜50重量%であ
る請求項3〜8のいずれか1項に記載の製造方
法。 10 請求項1記載の芳香族コポリアミド重合体
溶液を熱延伸させて得られた高強度及び高弾性率
の芳香族コポリアミド繊維又はフイルム。 11 延伸温度が250〜500℃であり、延伸比が
1.3〜9倍で得られた請求項10記載の繊維又は
フイルム。 12 延伸温度が300〜450℃であり、延伸比が
1.3〜9倍で得られた請求項10又は11記載の
繊維又はフイルム。
[Scope of Claims] 1. An aromatic copolyamide having an intrinsic viscosity of 1.0 to 6.0 and comprising a structural unit represented by the following formula (1). In the above formula, x and y are the molar ratios of N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine to the number of moles of the entire condensed diamine monomer, and the value is x is 0.12 to 0.9, and y is 0.88 to 0.1. 2 Intrinsic viscosity is 2.0 to 5.0, x is 0.12 to 0.7,
The aromatic copolyamide according to claim 1, wherein y is from 0.88 to 0.3. 3 In a polymerization solvent in which an alkali metal salt is dissolved in a tertiary amide solvent and a tertiary amine is added as an acid scavenger, N,N'-bis(4-aminophenyl)isophthalamide and paraphenylene diamide are dissolved. and amine, the mixing ratio of which is 12:88 in molar ratio.
Claim 1, characterized in that terephthalic acid chloride is subjected to low-temperature polycondensation to a mixture having a ratio of 90:10 to 90:10.
A method for producing the aromatic copolyamide described. 4. The manufacturing method according to claim 3, wherein the mixing ratio of 4N,N'-bis(4-aminophenyl)isophthalamide and paraphenylenediamine is 12:88 to 70:30 in molar ratio. 5 The tertiary amide solvent is N,N'-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphorylamide; N,N',N'-tetramethylurea;N,N'-diethylacetamide,
The method according to claim 3 or 4, wherein the method is one or a mixture of two or more selected from N-ethylpyrrolidone, N-methylcaprolactam and N-acetylpyrrolidone. 6. The manufacturing method according to any one of claims 3 to 5, wherein the alkali metal salt is lithium chloride or calcium chloride. 7. The manufacturing method according to any one of claims 3 to 6, wherein the amount of the alkali metal salt used is 1 to 5% by weight. 8. The manufacturing method according to any one of claims 3 to 7, wherein the tertiary amine is pyridine, picoline, or quinoline. 9. The manufacturing method according to any one of claims 3 to 8, wherein the amount of tertiary amine used is 1 to 50% by weight. 10. An aromatic copolyamide fiber or film having high strength and high elastic modulus obtained by hot stretching the aromatic copolyamide polymer solution according to claim 1. 11 The stretching temperature is 250 to 500℃, and the stretching ratio is
The fiber or film according to claim 10, obtained at 1.3 to 9 times. 12 The stretching temperature is 300 to 450℃, and the stretching ratio is
The fiber or film according to claim 10 or 11, obtained at a ratio of 1.3 to 9 times.
JP1307779A 1988-12-01 1989-11-29 New aromatic copolyamide and its preparation Granted JPH02263829A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR16001/1988 1988-12-01
KR1019880016001A KR920011027B1 (en) 1988-12-01 1988-12-01 Aromatic copolyamide

Publications (2)

Publication Number Publication Date
JPH02263829A JPH02263829A (en) 1990-10-26
JPH0551615B2 true JPH0551615B2 (en) 1993-08-03

Family

ID=19279825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307779A Granted JPH02263829A (en) 1988-12-01 1989-11-29 New aromatic copolyamide and its preparation

Country Status (6)

Country Link
JP (1) JPH02263829A (en)
KR (1) KR920011027B1 (en)
DE (1) DE3939656A1 (en)
FR (1) FR2639643B1 (en)
GB (1) GB2225588B (en)
NL (1) NL190162C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411755A1 (en) * 1994-04-06 1995-10-12 Hoechst Ag Prodn. of fibres and film based on aromatic polyamide
US7537830B2 (en) * 2007-08-22 2009-05-26 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antistatic fibers and fabrics and garments made therefrom and methods for making same
CN103030804B (en) * 2012-12-31 2015-05-13 东华大学 Preparation method of p-phenylene terephthamide resin through low-temperature solution polycondensation
CN107033344B (en) * 2017-05-15 2018-02-13 方圆化工有限公司 A kind of aramid fiber polymerization for using carbon dioxide as solvent
KR20230065340A (en) * 2021-02-24 2023-05-11 데이진 가부시키가이샤 Heat-resistant high-toughness fiber, its manufacturing method, and heat-resistant high-toughness film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049518A (en) * 1960-03-31 1962-08-14 Du Pont Polyamides from n, n'-bis (3-aminophenyl)-isophthalamide
JPS52141B1 (en) * 1971-07-21 1977-01-05
JPS5611763B2 (en) * 1973-06-06 1981-03-17
US4511709A (en) * 1981-10-20 1985-04-16 Korea Advanced Institute Of Science And Technology Wholly aromatic or aliphatic aromatic block copolyamides and process therefor

Also Published As

Publication number Publication date
FR2639643A1 (en) 1990-06-01
NL190162C (en) 1993-11-16
NL8902961A (en) 1990-07-02
KR900009777A (en) 1990-07-05
GB2225588A (en) 1990-06-06
GB8926744D0 (en) 1990-01-17
FR2639643B1 (en) 1993-06-11
NL190162B (en) 1993-06-16
JPH02263829A (en) 1990-10-26
KR920011027B1 (en) 1992-12-26
DE3939656A1 (en) 1990-06-07
GB2225588B (en) 1992-08-12

Similar Documents

Publication Publication Date Title
US4075172A (en) Novel aromatic copolyamides prepared from 3,4' diphenylene type diamines, and shaped articles therefrom
AU597279B2 (en) A process for the production of a liquid crystalline extendedchain polymer composition
US3600350A (en) Poly(p-benzamide) composition,process and product
JPH07278303A (en) Aromatic copolyamide, its preparation, molded structure and its preparation
JPS6139976B2 (en)
KR0151718B1 (en) Wholly aromatic polyamides, process for producing the same and shaped articles
JPH07300534A (en) Production of fiber or film from specific molding solution, and fiber or film obtainable thereby
US5093464A (en) Wholly aromatic polyamide from N,N'-bis (4-amino phenyl)-isophthalamide
KR0151719B1 (en) Wholly aromatic polyamides, process for producing the same and shaped articles
CN108794740B (en) Modified multi-element polyaramide and preparation method and application thereof
JPH0551615B2 (en)
CA1051594A (en) Aromatic polyamides and their production
CN109134848B (en) Multicomponent polyaramide and its preparation method and use
EP1988114A1 (en) Polyamide
KR930002419B1 (en) Process for preparation of copolyamid
CN109134847B (en) Side group-containing multicomponent polyaramide and preparation method and application thereof
JPH04220428A (en) Aromatic copolyamide and its manufacture
IE910515A1 (en) Wholly aromatic polyamides, preparation thereof and shaped structures therefrom
KR920011024B1 (en) Process for preparing aromatic polyamide with n-n'-bis (4-aminobenzoil)-4,3'-diaminodiphenyl ether monomer unit
JPH0449571B2 (en)
KR860000729B1 (en) Process for preparing aromatic-aliphatic ordered copolyamide fibers
JPS62209135A (en) Polyamide
JPH05339370A (en) Aromatic copolymide, preparation thereof, and structure formed therefrom
JPH03143923A (en) Wholly aromatic polyamide and its molding
JPH02194022A (en) Wholly aromatic copolyamide and its molding