JPH0355142Y2 - - Google Patents

Info

Publication number
JPH0355142Y2
JPH0355142Y2 JP1982072306U JP7230682U JPH0355142Y2 JP H0355142 Y2 JPH0355142 Y2 JP H0355142Y2 JP 1982072306 U JP1982072306 U JP 1982072306U JP 7230682 U JP7230682 U JP 7230682U JP H0355142 Y2 JPH0355142 Y2 JP H0355142Y2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
intermediate layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982072306U
Other languages
Japanese (ja)
Other versions
JPS5936027U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7230682U priority Critical patent/JPS5936027U/en
Publication of JPS5936027U publication Critical patent/JPS5936027U/en
Application granted granted Critical
Publication of JPH0355142Y2 publication Critical patent/JPH0355142Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は磁気記録媒体の構造の関するものであ
る。 非磁性基材上に斜方蒸着により設けられてなる
強磁性金属層が形成されている磁気記録媒体は知
られている。かかる磁気記録媒体は塗布型のもの
にくらべて保磁力が高く、磁性層が薄く、かつ、
磁束密度が高い利点を有している。斜方蒸着は例
えば合成樹脂基材を連続的に走行させ、合成樹脂
基材の法線と蒸発金属流のなす入射角とが通常
45゜〜90°になるようにして行なつたり、或いは合
成樹脂基材を冷却ドラムに沿わせて走行させつ
つ、冷却ドラムの下方に蒸着源を配して入射角が
大きい状態から小さい状態に変化するようにし
て、まず入射角の大きいときに核生成を行なわ
せ、45°以下の入射角で蒸着する成分を有しなが
らも所定の磁気特性を得るように行なうが、斜方
蒸着においてより高い保磁力を有する磁気記録媒
体を得るためには入射角を大きくする事が行われ
ている。しかし入射角を大きくすると(イ)蒸着の効
率が低下する、(ロ)入射エネルギー低下のため析出
粒子が粗となり機械的特性、例えば密着性や耐ヘ
ツド摩耗性が悪くなる等の欠点があり、又、蒸着
法であるがゆえに基材が薄いと基材のカール、基
材表面の平滑性の低下による諸特性の低下などの
欠点が避けられないものである。上記のカールの
解消のためには機械的に張力をかけたり、加熱処
理する手間を要している。また基材が金属である
場合は磁性金属との間で電池作用がおこり易く、
耐食性が著しく劣化する場合がある。 本考案は上記従来の欠点に鑑みてなされたもの
であり、非磁性基材と強磁性金属層との間に、カ
ルボキシル基を有する塩化ビニル−酢酸ビニル共
重合体樹脂を主体とする中間層を設けることによ
り、上記従来の欠点が解消しうることを見い出
し、かかる事実に基づいてなされたものである。
即ち、本考案の磁気記録媒体は非磁性基材上にカ
ルボキシル基を有する塩化ビニル−酢酸ビニル共
重合体樹脂を主体とする中間層及び斜方蒸着によ
り設けられてなる強磁性金属層とが順次形成され
ていることを特徴とするものである。 以下、本考案について詳細に説明する。 本考案の磁気記録媒体1は第1図に示すように
非磁性基材2上にカルボキシル基を有する塩化ビ
ニル−酢酸ビニル共重合体樹脂を主体とする中間
層3が形成されており、該中間層3上に斜方蒸着
により設けられてなる強磁性金属層4が形成され
ているものである。 上記において非磁性基材2としては通常の磁気
記録媒体の基材として使われるものであればいず
れでもよく、ポリエチレンテレフタレート、ポリ
イミド、ポリカーボネート、セルロースアセテー
ト等の耐熱性を有する合成樹脂フイルム、A、
非磁性Ni,Cu、ステンレス等の金属板及び金属
箔非磁性Ni,Cu、が例示でき、なかでも磁気テ
ープ形体にする場合、耐熱性、抗張力、寸法安定
性等の点でポリエチレンテレフタレートのフイル
ムが好ましく使用され、厚みとしては特に限定さ
れないが6μm〜25μmである。 次に合成樹脂基材2の上に設ける中間層3につ
いて述べると、中間層3を構成する樹脂としては
カルボキシル基を有する塩化ビニル−酢酸ビニル
共重合体樹脂を使用する。このような樹脂として
は塩化ビニル−酢酸ビニルの共重合体樹脂をカル
ボキシル基を含むマレイン酸により0.5〜5%程
度変性されたものが塗料適性上好ましい。 上記のカルボキシル基を含有する塩化ビニル−
酢酸ビニル共重合体樹脂としては具体的にはユニ
オンカーバイド社製VMCH、Goodrich社製ゼオ
ン400×100、高分子科学工業製ビニロール樹脂な
どの市販品を用いることができ、以上のような樹
脂5重量部に塗膜の平滑性、接着性向上のためシ
リコーン、レシチン、リン酸エステル等の界面活
性剤、DOP,DOA、その他各種のエラストマ
ー、アセトン、MEK、MIBK、トルエン、キシ
レン、酢酸ビニル等の溶媒20〜500重量を加えて
希釈し、ロールコート、グラビアコート、スピン
ナーコート等の公知の塗布方法により非磁性基材
2の表面に好ましくは乾燥時塗布量が0.1〜2g/
m2となるよう塗布し乾燥して中間層3を形成す
る。 本願考案においては、中間層である塩化ビニル
−酢酸ビニル共重合体樹脂がカルボキシル基を有
するので保磁力が向上する。そのメカニズムは明
らかではないが、恐らく斜方蒸着により強磁性金
属層を形成する際の核成長の初期段階において、
カルボキシル基の水酸基が中間層の表面に露出し
ており、核の移動度を制限することに起因すると
思われる。即ち、核成長の初期段階において中間
層上での核の移動度が大きければ隣接する核同士
が結合し、大きい核となり、その結果太い蒸着柱
が形成され保磁力に悪影響を及ぼすと考えられる
が、本願考案においては、中間層表面に露出した
水酸基が核の移動度を制限するため微細な核同士
の結合が生ぜず、細い蒸着柱が形成され、保磁力
が向上すると考えられる。 中間層3は更に熱硬化性樹脂若しくはイソシア
ネートを添加して架橋させると後記する表面潤滑
層を形成する際に用いる塗料中の溶剤が中間層に
浸透して中間層を溶解若しくは膨潤するのを防止
しうる点で好ましく、カルボキシル基を含有する
塩化ビニル酢酸ビニル共重合体樹脂に対しカルボ
キシル基とほぼ等モルのイソシアネートを添加す
るとよい。 次に中間層3の表面に斜方蒸着により強磁性金
属層4を形成する。磁気テープ形態のものについ
ては斜方蒸着は好ましくは中間層3を有する非磁
性基材2を中間層3が外側になるよう冷却ドラム
に沿わせつつ下方より蒸着源を用いて行なう。蒸
着物質としてはCO,Ni,Feの強磁性金属の単体
又は合金の他、これらにCr,V,Mn等の遷移金
属Sm,Dy等の希土類を添加したものを用いるこ
とができるが、保磁力、角形比、磁末密度の点か
らCoを主体とした合金が適当である。蒸着源と
しては抵抗加熱、電子銃加熱、誘導加熱等のもの
が用いられるが保磁力の向上やノイズの低減を目
的にO2ガスや有機ガス中で蒸着される場合もあ
る。蒸着により得られる強磁性金属の薄膜層の厚
みは通常250〜1500Åである。 本考案は以上の構成を基本とするが、更に第2
図中5で示すように表面の保護及びヘツドの滑り
を良くする目的で表面潤滑層6を設けるとよく、
例えばポリビニルブチラールをバインダーとしシ
リコーンワツクス等を含む塗料組成物を用いて表
面潤滑層を形成する。 本考案の磁気記録媒体は以上のように、カルボ
キシル基を有する塩化ビニル−酢酸ビニル共重合
体樹脂を中間層に使用するため、中間層としてエ
ポキシ硬化型アクリル樹脂を用いた場合と比較し
ても、磁気特性、特に保磁力が向上しており、更
に、カールの発生を防止することができるという
顕著な効果を有する。 以下に本考案の具体例を従来技術によつて成る
ものと比較するための実施例及び比較例を挙げ
る。 実施例 1 厚み6μmのポリエチレンテレフタレートフイ
ルム上に、カルボキシル基を含有する塩化ビニル
酢酸ビニル共重合体樹脂(高分子化学工業製、ビ
ニロールKZ)5%MEK:トルエン=1:1溶液
を用い版深20μmのグラビア版を有するグラビア
ロールコーターで塗布し、乾燥時厚み約0.5μmの
中間層を形成した。次に上記で得られた中間層の
表面にCo:Ni=80:20の合金を斜方蒸着し、厚
み1500Åの磁気層を形成した。蒸着は真空度5×
10-5torr、直径600mmの冷却ドラムにフイルムを
沿わせて行ない、入射角は90°(蒸着開始時)から
55°(蒸着終了時)まで連続的に変化させた。 実施例 2 実施例1で用いた樹脂溶液100重量部にイソシ
アネート(日本ポリウレタン製、デスモジユール
T−80)0.5重量部を添加し、中間層形成後60℃
で6時間加熱した以外は実施例1と同様にして行
なつた。 比較例 1 中間層を設けない以外は実施例1と同様に行な
つた。 比較例 2 中間層を形成するためのエポキシ硬化型アクリ
ル樹脂(東レ製、コータツクスKL761)2%
MEK:トルエン=1:1溶液を用いた以外は実
施例1と同様にして行なつた。 以上の各実施例及び各比較例で得られた磁気記
録媒体の表面にシリコーンワツクスを含むポリビ
ニルブチラール塗料を塗布して表面潤滑層とし、
磁気特性及びその他の性能を比較した結果次の表
−1及び表−2に示す。 但し表−2中カールの評価については、テープ
がねじれて使用不可能な状態をカール「大」と
し、テープが樋のように短手方向に弧を描いた状
態になり磁気ヘツドとの密着性が悪くテンシヨン
をかけても平らにならず使用に耐えない状態をカ
ール「中」とした。また、接着性は粘着テープ剥
離法にて行ない清浄な表面のものと指紋のついた
ものとについて行ない、磁気層が剥離するものを
X、指紋付着部のみ剥離するものを△、ごく僅か
剥離するものを○、及び全く剥離しないものを◎
とし、又、外観は、シリコーンワツクスを含むポ
リビニルブチラール塗料を磁気層の表面に塗布し
た後の変化を観察したものである。尚、表−2の
外観の項目における「磁気層にひび発生」の「ひ
び」とは、顕微鏡観察によつて認識できる程度
の、いわゆるマイクロクラツクと称される微細な
ものであつて、磁気特性上、問題のないものであ
る。
The present invention relates to the structure of a magnetic recording medium. 2. Description of the Related Art Magnetic recording media are known in which a ferromagnetic metal layer is formed on a nonmagnetic base material by oblique deposition. Such magnetic recording media have a higher coercive force than coating-type media, have a thinner magnetic layer, and
It has the advantage of high magnetic flux density. For example, in oblique evaporation, a synthetic resin base material is continuously moved, and the incident angle between the normal line of the synthetic resin base material and the evaporated metal flow is usually
Alternatively, the synthetic resin substrate can be run along the cooling drum and the deposition source placed below the cooling drum to change the angle of incidence from large to small. Nucleation is first performed at a large incident angle, and the desired magnetic properties are obtained even though the components are deposited at an incident angle of 45° or less. In order to obtain a magnetic recording medium with high coercive force, the incident angle is increased. However, when the incident angle is increased, there are disadvantages such as (a) the efficiency of vapor deposition decreases, and (b) the decrease in incident energy, which makes the deposited particles coarser and deteriorates mechanical properties such as adhesion and head wear resistance. Furthermore, since it is a vapor deposition method, if the base material is thin, disadvantages such as curling of the base material and deterioration of various properties due to a decrease in the smoothness of the base material surface are unavoidable. In order to eliminate the above-mentioned curl, it is necessary to apply mechanical tension or heat treatment. In addition, if the base material is metal, battery action is likely to occur between it and the magnetic metal.
Corrosion resistance may deteriorate significantly. The present invention was made in view of the above-mentioned conventional drawbacks, and includes an intermediate layer mainly made of vinyl chloride-vinyl acetate copolymer resin having a carboxyl group between the non-magnetic base material and the ferromagnetic metal layer. It has been found that the above-mentioned conventional drawbacks can be overcome by providing this, and this work was made based on this fact.
That is, the magnetic recording medium of the present invention has an intermediate layer mainly made of vinyl chloride-vinyl acetate copolymer resin having a carboxyl group and a ferromagnetic metal layer formed by oblique vapor deposition on a non-magnetic base material. It is characterized by the fact that it is formed. The present invention will be explained in detail below. As shown in FIG. 1, the magnetic recording medium 1 of the present invention has an intermediate layer 3 mainly made of vinyl chloride-vinyl acetate copolymer resin having a carboxyl group formed on a non-magnetic base material 2. A ferromagnetic metal layer 4 is formed on the layer 3 by oblique evaporation. In the above, the non-magnetic base material 2 may be any material used as a base material for ordinary magnetic recording media, such as a heat-resistant synthetic resin film such as polyethylene terephthalate, polyimide, polycarbonate, cellulose acetate, etc.
Non-magnetic Ni, Cu, and stainless steel metal plates and metal foils include non-magnetic Ni, Cu. Among these, polyethylene terephthalate films are preferred in terms of heat resistance, tensile strength, dimensional stability, etc. when forming magnetic tapes. It is preferably used, and the thickness is not particularly limited, but is 6 μm to 25 μm. Next, the intermediate layer 3 provided on the synthetic resin base material 2 will be described. As the resin constituting the intermediate layer 3, a vinyl chloride-vinyl acetate copolymer resin having a carboxyl group is used. As such a resin, a vinyl chloride-vinyl acetate copolymer resin modified by about 0.5 to 5% with carboxyl group-containing maleic acid is preferred from the viewpoint of suitability for coatings. Vinyl chloride containing the above carboxyl group
Specifically, commercially available vinyl acetate copolymer resins such as VMCH manufactured by Union Carbide, Zeon 400 x 100 manufactured by Goodrich, and vinylol resin manufactured by Kobunshi Kagaku Kogyo can be used. In order to improve the smoothness and adhesion of the coating, surfactants such as silicone, lecithin, and phosphate esters, DOP, DOA, and other various elastomers, and solvents such as acetone, MEK, MIBK, toluene, xylene, and vinyl acetate are used. It is diluted by adding 20 to 500 g/w and coated onto the surface of the non-magnetic substrate 2 by a known coating method such as roll coating, gravure coating, spinner coating, etc., preferably in a dry coating amount of 0.1 to 2 g/w.
m 2 and dried to form the intermediate layer 3. In the present invention, since the vinyl chloride-vinyl acetate copolymer resin serving as the intermediate layer has a carboxyl group, the coercive force is improved. Although the mechanism is not clear, it is probably during the initial stage of nucleus growth when forming a ferromagnetic metal layer by oblique deposition.
This seems to be due to the fact that the hydroxyl group of the carboxyl group is exposed on the surface of the intermediate layer, which limits the mobility of the nucleus. In other words, if the mobility of nuclei on the intermediate layer is large in the initial stage of nuclear growth, adjacent nuclei will combine and become large nuclei, which will result in the formation of thick columns of evaporation, which will have a negative effect on the coercive force. In the present invention, it is thought that the hydroxyl groups exposed on the surface of the intermediate layer limit the mobility of the nuclei, so that fine bonds between the nuclei do not occur, forming thin evaporation columns and improving the coercive force. The intermediate layer 3 is further crosslinked by adding a thermosetting resin or isocyanate to prevent the solvent in the paint used to form the surface lubricating layer described later from permeating into the intermediate layer and dissolving or swelling the intermediate layer. It is preferable to add isocyanate to the vinyl chloride-vinyl acetate copolymer resin containing carboxyl groups in an amount approximately equal in mole to the carboxyl groups. Next, a ferromagnetic metal layer 4 is formed on the surface of the intermediate layer 3 by oblique deposition. In the case of a magnetic tape, oblique deposition is preferably carried out using a deposition source from below while the non-magnetic substrate 2 having the intermediate layer 3 is placed along a cooling drum with the intermediate layer 3 on the outside. As the deposition material, in addition to ferromagnetic metals such as CO, Ni, and Fe, alone or alloys, those in which transition metals such as Cr, V, and Mn, and rare earth elements such as Sm and Dy can be used. Co-based alloys are suitable from the viewpoints of squareness, squareness ratio, and magnetic powder density. As a vapor deposition source, resistance heating, electron gun heating, induction heating, etc. are used, but vapor deposition is sometimes performed in O 2 gas or organic gas for the purpose of improving coercive force and reducing noise. The thickness of the thin film layer of ferromagnetic metal obtained by vapor deposition is usually between 250 and 1500 Å. The present invention is based on the above configuration, but there is also a second
As shown by 5 in the figure, a surface lubricating layer 6 may be provided for the purpose of protecting the surface and improving the slippage of the head.
For example, a surface lubricating layer is formed using a coating composition containing polyvinyl butyral as a binder and silicone wax. As described above, since the magnetic recording medium of the present invention uses a vinyl chloride-vinyl acetate copolymer resin having a carboxyl group as the intermediate layer, it is even better than a case where an epoxy-curing acrylic resin is used as the intermediate layer. , the magnetic properties, particularly the coercive force, are improved, and furthermore, it has the remarkable effect of being able to prevent the occurrence of curling. Examples and comparative examples for comparing specific examples of the present invention with those made by the prior art are listed below. Example 1 A 6 μm thick polyethylene terephthalate film was coated with a plate depth of 20 μm using a 5% MEK:toluene = 1:1 solution of vinyl chloride vinyl acetate copolymer resin containing carboxyl groups (Kobunshi Kagaku Kogyo Co., Ltd., Vinylol KZ). It was coated with a gravure roll coater having a gravure plate, to form an intermediate layer with a dry thickness of about 0.5 μm. Next, an alloy of Co:Ni=80:20 was obliquely deposited on the surface of the intermediate layer obtained above to form a magnetic layer with a thickness of 1500 Å. Evaporation is done at vacuum level 5x
The film was placed along a cooling drum with a diameter of 600 mm at 10 -5 torr, and the incident angle was from 90° (at the start of deposition).
The angle was changed continuously up to 55° (at the end of vapor deposition). Example 2 0.5 parts by weight of isocyanate (Desmodyur T-80, manufactured by Nippon Polyurethane) was added to 100 parts by weight of the resin solution used in Example 1, and after forming the intermediate layer, the mixture was heated at 60°C.
The same procedure as in Example 1 was carried out except that the mixture was heated for 6 hours. Comparative Example 1 The same procedure as in Example 1 was carried out except that the intermediate layer was not provided. Comparative Example 2 Epoxy-curing acrylic resin (Toray Co., Ltd., Kotax KL761) 2% for forming the intermediate layer
The same procedure as in Example 1 was carried out except that a MEK:toluene=1:1 solution was used. A polyvinyl butyral paint containing silicone wax is applied to the surface of the magnetic recording medium obtained in each of the above Examples and Comparative Examples to form a surface lubricating layer,
The results of comparing magnetic properties and other performances are shown in Tables 1 and 2 below. However, regarding the evaluation of curl in Table 2, a state in which the tape is twisted and unusable is considered a "large" curl, and the tape forms an arc in the transverse direction like a gutter, indicating poor adhesion to the magnetic head. A condition in which the curl is poor and does not become flat even when tension is applied and is unusable is defined as "medium" curl. In addition, adhesion was tested using the adhesive tape peeling method on clean surfaces and on surfaces with fingerprints. Items are ○, and items that do not peel at all are ◎
In addition, the appearance was observed by observing changes in the appearance after applying polyvinyl butyral paint containing silicone wax to the surface of the magnetic layer. In addition, the "cracks" in "Cracks generated in the magnetic layer" in the appearance section of Table 2 are so-called microcracks, which are so minute that they can be recognized by microscopic observation. There are no problems in terms of characteristics.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の磁気記録媒体の構造を示す断
面図、第2図は第1図の磁気記録媒体に表面潤滑
層を設けた状態の構造を示す断面図である。 1,5……磁気記録媒体、2……非磁性基材、
3……中間層、4……磁気層、6……表面潤滑
層。
FIG. 1 is a sectional view showing the structure of the magnetic recording medium of the present invention, and FIG. 2 is a sectional view showing the structure of the magnetic recording medium of FIG. 1 provided with a surface lubricating layer. 1, 5...Magnetic recording medium, 2...Nonmagnetic base material,
3... Intermediate layer, 4... Magnetic layer, 6... Surface lubricating layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 非磁性基材にカルボキシル基を有する塩化ビ
ニル−酢酸ビニル共重合体樹脂を主体とする中
間層及び斜方蒸着により設けられてなる強磁性
金属層とが順次形成されていることを特徴とす
る磁気記録媒体。 (2) 中間層はイソシアネートにより硬化してなる
ことを特徴とする実用新案登録請求の範囲第(1)
項記載の磁気記録媒体。 (3) 強磁性金属層の上に更に表面潤滑層を形成し
てあることを特徴とする実用新案登録請求の範
囲第(1)項又は第(2)項記載の磁気記録媒体。 (4) 非磁性基材が合成樹脂フイルムであることを
特徴とする実用新案登録請求の範囲第(1)項ない
し第(3)項いずれか記載の磁気記録媒体。 (5) 合成樹脂フイルムはポリエチレンテレフタレ
ートフイルムであることを特徴とする実用新案
登録請求の範囲第(4)項記載の磁気記録媒体。
[Claims for Utility Model Registration] (1) A non-magnetic base material with an intermediate layer mainly made of a vinyl chloride-vinyl acetate copolymer resin having a carboxyl group and a ferromagnetic metal layer provided by oblique vapor deposition. A magnetic recording medium characterized in that it is formed sequentially. (2) Utility model registration claim No. (1) characterized in that the intermediate layer is hardened with isocyanate.
Magnetic recording medium described in Section 1. (3) The magnetic recording medium according to claim 1 or 2, further comprising a surface lubricating layer formed on the ferromagnetic metal layer. (4) The magnetic recording medium according to any one of claims (1) to (3) for utility model registration, characterized in that the non-magnetic base material is a synthetic resin film. (5) The magnetic recording medium according to claim (4), wherein the synthetic resin film is a polyethylene terephthalate film.
JP7230682U 1982-05-18 1982-05-18 magnetic recording medium Granted JPS5936027U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230682U JPS5936027U (en) 1982-05-18 1982-05-18 magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230682U JPS5936027U (en) 1982-05-18 1982-05-18 magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5936027U JPS5936027U (en) 1984-03-06
JPH0355142Y2 true JPH0355142Y2 (en) 1991-12-06

Family

ID=30202450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230682U Granted JPS5936027U (en) 1982-05-18 1982-05-18 magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5936027U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834161A (en) * 1971-09-09 1973-05-16
JPS5379503A (en) * 1976-12-23 1978-07-14 Ulvac Corp Magnetic recording material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834161A (en) * 1971-09-09 1973-05-16
JPS5379503A (en) * 1976-12-23 1978-07-14 Ulvac Corp Magnetic recording material

Also Published As

Publication number Publication date
JPS5936027U (en) 1984-03-06

Similar Documents

Publication Publication Date Title
JPH0766528B2 (en) Magnetic recording medium
US4074016A (en) Magnetic record carrier
JPS6037970B2 (en) Manufacturing method for magnetic recording media
JPH0765347A (en) Magnetic recording medium
JPH0355142Y2 (en)
JPH0328735B2 (en)
JPH0481268B2 (en)
JPH0576703B2 (en)
JPH0441454Y2 (en)
JPH0216417Y2 (en)
JPH0475571B2 (en)
JPH01184624A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPH0451889B2 (en)
JPH117621A (en) Magnetic record medium
JPH0381202B2 (en)
JPH0746417B2 (en) Magnetic recording medium
JPS59178624A (en) Magnetic recording medium
JPS59178626A (en) Manufacture of magnetic recording medium
JPH0335726B2 (en)
JP2002352416A (en) Magnetic recording medium and method for manufacturing the same
JPS6174133A (en) Magnetic recording medium
JPS58222432A (en) Magnetically recording medium and its manufacture
JPH0526249B2 (en)
JPH10247312A (en) Magnetic recording medium