JPH0475571B2 - - Google Patents

Info

Publication number
JPH0475571B2
JPH0475571B2 JP58154516A JP15451683A JPH0475571B2 JP H0475571 B2 JPH0475571 B2 JP H0475571B2 JP 58154516 A JP58154516 A JP 58154516A JP 15451683 A JP15451683 A JP 15451683A JP H0475571 B2 JPH0475571 B2 JP H0475571B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
layer
resin
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58154516A
Other languages
Japanese (ja)
Other versions
JPS6047226A (en
Inventor
Takashi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP58154516A priority Critical patent/JPS6047226A/en
Publication of JPS6047226A publication Critical patent/JPS6047226A/en
Publication of JPH0475571B2 publication Critical patent/JPH0475571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • G11B5/678Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer having three or more magnetic layers

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は鉄系の磁性材料を用いつつも保磁力が
高く、耐腐食性が改善された薄膜型の磁気記録媒
体に関するものである。 (従来技術) 近年、高密度磁気記録の要求の高まりに対応し
て真空蒸着、スパツタリング、イオンプレーテイ
ング等の方法により非磁性基材上に強磁性金属か
らなる薄膜を形成した薄膜型の磁気記録媒体が開
発されており、中でもCo系磁性材料を斜方蒸着
法により形成した薄膜を有する磁気記録媒体は磁
気特性がすぐれており、例えばマイクロカセツト
テープに利用されているなど、高密度記録化の一
翼を担つている。 しかしながらCo系磁性材料を使用するときは
Co系金属の材料費が高い上に斜方蒸着法の蒸着
効率が低いことにより、磁気記録媒体の価格が高
くなり過ぎるため、他の磁性材料への変換が望ま
れている。 一方、Fe系磁性材料を使用して磁気記録媒体
を製造すると、価格的には大巾な低下が図れる可
能性はあるが、高い保磁力が得られず、又、Fe
系磁性材料は耐腐食性が不充分であるため、従
来、種々の試みがなされているにも拘らず未だ実
用化には到つていない。 本発明者はFe系磁性材料を使用する際の欠点
を克服するため研究の結果、次の〜の各点を
見い出した。即ち、 Fe系磁性材料を使用して形成した薄膜の保
磁力は膜厚1000Å付近を境とし、1000Å以下で
は比較的高い値を示すが、1000Åを越えると急
に低下すること、 Fe系磁性材料を使用して形成した薄膜を複
数積層した場合、多層膜としての保磁力は同じ
膜厚の単層膜の保磁力よりは高いものの未だ充
分ではないこと、 上記の欠点を解消するには積層する薄膜の
間に非磁性金属層を形成すればよいが、却つて
耐腐食性が低下すること、および 積層する薄膜の間に合成樹脂の層を設けると
保磁力が低下せず、かつ、耐腐食性も低下しな
いこと。 (発明の構成) 本発明は上記の見い出された事実に基づいてな
されたものであつて、本発明の磁気記録媒体は、
非磁性基材上に斜方蒸着法により形成された鉄も
しくは鉄の合金の薄膜層が複数積層されており、
各薄膜層間には合成樹脂の中間層を有しているこ
とを特徴とするものである。 以下、図面を用いながら本発明について詳細に
説明する。 第1図は本発明の磁気記録媒体の一実施例を示
す断面図であつて、非磁性基材1の表面に磁性薄
膜層2、中間層3、磁性薄膜層4、中間層5、磁
性薄膜層6の各層が順に積層された構造をとつて
おり、即ち、合計3つの磁性薄膜層が非磁性基材
上に積層されており、磁性薄膜層2と4の間、及
び4と6の間にそれぞれ挿入された中間層を有し
ている。 上記における各層の材料を説明すると、まず、
非磁性基材1としてはポリエチレンテレフタレー
ト樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリ
カーボネート樹脂等のプラスチツクフイルムが使
用できる。 磁性薄膜層2,4,6はFe系磁性材料を蒸着
源とした斜方蒸着法により形成されている。Fe
系磁性材料としてはFe単独の他、Fe−Ni,Fe−
Co,Fe−Ni−Co,Fe−Rh,Fe−Cu,Fe−Sm,
Fe−Cr,Fe−Si等のFeを主体とした強磁性合金
が使用できる。 磁性薄膜層を形成するには例えば第2図に示す
ごとく巻き出しリール7から繰り出された非磁性
基材1を冷却ドラム8に接触させて移動させつ
つ、ドラム8の下方に配置された蒸着源9を用い
て基材1の表面に蒸着する方法などの斜方蒸着に
よつて行なう。蒸着済の基材はリール10に巻き
取られる。なお、ここで遮蔽板11の位置を水平
に移動させることにより、基材1に対する最小入
射角θを調節することができる。 磁性薄膜層2,4、および6のおのおのの厚み
は1000Å以下とすることが望ましく、この理由は
第3図のグラフに示すごとく、厚みが1000Åを越
えると保磁力が急激に低下する上、角形比も低下
するからである。磁性薄膜層の厚みの下限として
は斜方蒸着の微結晶が十分成長し斜方蒸着の効果
が生じる点で200Å以上とすることが望ましい。
保磁力および角形比の望ましい値は、どのような
システムにおいて使用されるかにより異なるので
一概には言えないが、マイクロカセツトテープと
して使用する場合には市販のマイクロカセツトレ
コーダの設定バイアス電流から判断すると、保磁
力の値としては400〜700Oe程度であり、角形比
の値としては0.75以上であることが望ましい。 中間層4および5は合成樹脂の層からなつてい
る。中間層4および5は磁性薄膜層2,4、およ
び6を磁気的に遮断でき、かつ表面が良好な塗膜
状態を有するものであればいずれでもよく、例え
ば、次のような樹脂から選択して用いた塗料と公
知の塗布方法により、下層のFe系磁性薄膜層に
関するスペーシングロスが生じないよう0.5μm程
度あるいはそれ以下とするのがよい。中間層を構
成するための樹脂としてはポリビニルブチラール
樹脂、塩化ビニル/酢酸ビニル共重合樹脂、ニト
ロセルロース・エチルセルロース等のセルロース
系樹脂、ポリウレタン樹脂・エポキシ樹脂・アル
キツド樹脂等の架橋型樹脂、アクリル樹脂、ポリ
エステル樹脂、環化ゴム等が例示できる。 以上の説明では、磁性薄膜層を3層と中間層を
2層有する例について述べたが、本発明はこれに
限定されることなく、磁性薄膜層を2層と中間層
を1層有する場合や、磁性薄膜層を4層以上と各
磁性薄膜層間の中間層とからなるものでもよい。 又、本発明の磁気記録媒体には最表層に表面の
保護の意味で合成樹脂からなる保護層を設けても
よい。保護層を構成する合成樹脂としては、例え
ばポリビニルブチラール樹脂、ポリウレタン樹
脂、エポキシ樹脂、アルキツド樹脂等の架橋型樹
脂、アクリル樹脂、ポリエステル樹脂等、ほぼ中
間層を構成する樹脂と同様のものが使用できる。 以下、本発明をより具体的に説明するための実
施例を掲げる。 実施例 1 非磁性基材としては厚み6μmのポリエチレン
テレフタレートフイルムを用い、その表面にFe
を蒸着源として、第2図に示した斜方蒸着により
最小入射角60゜にて厚み800Åの蒸着膜を形成し
た。次にFe蒸着膜上にエポキシ硬化型アクリル
樹脂(東レ(株)製、コータツクスKL761)を
MEK/トルエン=1/1の溶剤を用いて溶解した2
%溶液を用い、グラビアコーテイングにより乾燥
時厚み0.05μmの中間層を設けた。以下、同様な
操作を繰り返すことにより、ポリエチレンテレフ
タレートフイルム/Fe蒸着膜/中間層/Fe蒸着
膜の積層体とし、更に最表層にポリビニルブチラ
ール樹脂をMEK/トルエン=1/1の溶剤に溶解し
た2.5%溶液を用い、グラビアコーテイングを行
なつて乾燥時厚み0.1μmの保護層とした磁気記録
媒体を得た。 比較例 1 実施例1で用いたのと同じ基材を用い、実施例
1で行なつたのと同様な方法によりFe蒸着膜を
2400Åの厚みになるよう形成し、その上に実施例
1で行なつたのと同様な方法により保護層を形成
した。 比較例 2 各中間層をアルミニウムを蒸着源とした平面蒸
着により形成した厚み400Åのアルミニウム薄膜
とした以外は実施例1と同様に行なつた。 以上の実施例及び比較例で得られた磁気記録媒
体の静磁気特性及び耐腐食性を次表にまとめて示
す。
(Technical Field) The present invention relates to a thin film magnetic recording medium that uses iron-based magnetic materials but has high coercive force and improved corrosion resistance. (Prior art) In response to the increasing demand for high-density magnetic recording in recent years, thin-film magnetic recording has been developed in which a thin film of ferromagnetic metal is formed on a non-magnetic substrate using methods such as vacuum evaporation, sputtering, and ion plating. Media have been developed, and among them, magnetic recording media with thin films formed by oblique evaporation of Co-based magnetic materials have excellent magnetic properties, and are used in microcassette tapes, for example, for high-density recording. It plays a part. However, when using Co-based magnetic materials,
Due to the high material cost of Co-based metals and the low deposition efficiency of the oblique evaporation method, the price of magnetic recording media becomes too high, so conversion to other magnetic materials is desired. On the other hand, if magnetic recording media are manufactured using Fe-based magnetic materials, the price may be significantly reduced, but high coercive force cannot be obtained, and
Because these magnetic materials have insufficient corrosion resistance, they have not yet been put into practical use despite various attempts. As a result of research to overcome the drawbacks of using Fe-based magnetic materials, the present inventor discovered the following points. In other words, the coercive force of a thin film formed using Fe-based magnetic materials reaches a boundary around the film thickness of 1000 Å, and shows a relatively high value below 1000 Å, but rapidly decreases when the thickness exceeds 1000 Å. When multiple thin films formed using a multilayer film are laminated, the coercive force as a multilayer film is higher than that of a single layer film of the same thickness, but it is still not sufficient. It is possible to form a non-magnetic metal layer between the thin films, but this will actually reduce the corrosion resistance, and if a synthetic resin layer is provided between the laminated thin films, the coercive force will not decrease and the corrosion resistance will decrease. Do not reduce your sex. (Structure of the Invention) The present invention has been made based on the above-mentioned discovered fact, and the magnetic recording medium of the present invention includes:
Multiple thin film layers of iron or iron alloy formed by oblique evaporation method are laminated on a non-magnetic base material.
It is characterized by having an intermediate layer of synthetic resin between each thin film layer. Hereinafter, the present invention will be explained in detail using the drawings. FIG. 1 is a sectional view showing an embodiment of the magnetic recording medium of the present invention, in which a magnetic thin film layer 2, an intermediate layer 3, a magnetic thin film layer 4, an intermediate layer 5, a magnetic thin film layer 2, an intermediate layer 3, a magnetic thin film layer 4, an intermediate layer 5, a magnetic thin film Each layer of layer 6 has a structure in which the layers are laminated in order, that is, a total of three magnetic thin film layers are laminated on a non-magnetic base material, and one between magnetic thin film layers 2 and 4, and between 4 and 6. each having an intermediate layer inserted therein. To explain the materials of each layer in the above, first,
As the non-magnetic base material 1, a plastic film made of polyethylene terephthalate resin, polyimide resin, polyamide resin, polycarbonate resin, etc. can be used. The magnetic thin film layers 2, 4, and 6 are formed by an oblique evaporation method using an Fe-based magnetic material as a evaporation source. Fe
In addition to Fe alone, Fe-Ni, Fe-
Co, Fe−Ni−Co, Fe−Rh, Fe−Cu, Fe−Sm,
Ferromagnetic alloys mainly composed of Fe such as Fe-Cr and Fe-Si can be used. To form a magnetic thin film layer, for example, as shown in FIG. 2, the non-magnetic base material 1 unwound from the unwinding reel 7 is moved in contact with the cooling drum 8, and a vapor deposition source placed below the drum 8 is moved. This is carried out by oblique vapor deposition such as a method of vapor depositing on the surface of the base material 1 using 9. The vapor-deposited base material is wound onto a reel 10. Note that by horizontally moving the position of the shielding plate 11, the minimum incident angle θ with respect to the base material 1 can be adjusted. It is desirable that the thickness of each of the magnetic thin film layers 2, 4, and 6 be 1000 Å or less.The reason for this is that, as shown in the graph in Figure 3, when the thickness exceeds 1000 Å, the coercive force decreases rapidly, and the rectangular shape This is because the ratio also decreases. The lower limit of the thickness of the magnetic thin film layer is desirably 200 Å or more in order to allow sufficient growth of obliquely deposited microcrystals and to produce the effect of obliquely deposited.
Desirable values for coercive force and squareness ratio cannot be generalized as they vary depending on the system used, but when used as a microcassette tape, judging from the bias current setting of a commercially available microcassette recorder, It is desirable that the coercive force value is about 400 to 700 Oe, and the squareness ratio value is 0.75 or more. Intermediate layers 4 and 5 consist of layers of synthetic resin. The intermediate layers 4 and 5 may be made of any material as long as it can magnetically block the magnetic thin film layers 2, 4, and 6 and have a good coating on the surface. For example, they may be selected from the following resins. Depending on the paint used and the known coating method, the thickness is preferably about 0.5 μm or less so as not to cause a spacing loss with respect to the underlying Fe-based magnetic thin film layer. Resins for forming the intermediate layer include polyvinyl butyral resin, vinyl chloride/vinyl acetate copolymer resin, cellulose resins such as nitrocellulose and ethyl cellulose, crosslinked resins such as polyurethane resin, epoxy resin, and alkyd resin, acrylic resin, Examples include polyester resin and cyclized rubber. In the above explanation, an example having three magnetic thin film layers and two intermediate layers has been described. Alternatively, the magnetic thin film layer may be composed of four or more magnetic thin film layers and an intermediate layer between the magnetic thin film layers. Further, the magnetic recording medium of the present invention may be provided with a protective layer made of synthetic resin on the outermost layer in order to protect the surface. As the synthetic resin constituting the protective layer, the same resin as that constituting the intermediate layer can be used, such as crosslinked resins such as polyvinyl butyral resin, polyurethane resin, epoxy resin, and alkyd resin, acrylic resin, and polyester resin. . Examples are given below to explain the present invention more specifically. Example 1 A polyethylene terephthalate film with a thickness of 6 μm was used as the nonmagnetic base material, and Fe was coated on the surface.
A evaporated film with a thickness of 800 Å was formed at a minimum incident angle of 60° by oblique evaporation as shown in FIG. 2 using as a evaporation source. Next, an epoxy-curing acrylic resin (Korutakus KL761, manufactured by Toray Industries, Inc.) was applied on the Fe vapor-deposited film.
2 dissolved using MEK/toluene = 1/1 solvent
% solution, an intermediate layer having a dry thickness of 0.05 μm was provided by gravure coating. Thereafter, the same operation was repeated to obtain a laminate of polyethylene terephthalate film/Fe vapor deposited film/intermediate layer/Fe vapor deposited film, and then polyvinyl butyral resin was dissolved in a solvent of MEK/toluene = 1/1 as the outermost layer. % solution and gravure coating to obtain a magnetic recording medium with a protective layer having a dry thickness of 0.1 μm. Comparative Example 1 Using the same base material as used in Example 1, a Fe vapor deposited film was formed by the same method as in Example 1.
The protective layer was formed to have a thickness of 2400 Å, and a protective layer was formed thereon in the same manner as in Example 1. Comparative Example 2 The same procedure as in Example 1 was carried out, except that each intermediate layer was a 400 Å thick aluminum thin film formed by planar evaporation using aluminum as the evaporation source. The magnetostatic properties and corrosion resistance of the magnetic recording media obtained in the above Examples and Comparative Examples are summarized in the following table.

【表】 以上の結果から明らかなように本発明によれば
安価なFeを使用しつつも保磁力及び角形比の静
磁気特性がすぐれており、なおかつ、耐腐食性も
すぐれている。
[Table] As is clear from the above results, according to the present invention, although inexpensive Fe is used, the magnetostatic properties such as coercive force and squareness ratio are excellent, and corrosion resistance is also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の実施例の断面
図、第2図は斜方蒸着法の説明図、第3図は蒸着
膜厚と静磁気特性の関係を示すグラフである。 1…非磁性基材、2,4,6…磁性薄膜層、
3,5…中間層、7…巻き出しリール、8…冷却
ドラム、9…蒸着源、10…リール、11…遮蔽
板、θ…最小入射角。
FIG. 1 is a sectional view of an embodiment of the magnetic recording medium of the present invention, FIG. 2 is an explanatory diagram of the oblique deposition method, and FIG. 3 is a graph showing the relationship between the deposited film thickness and magnetostatic characteristics. 1... Nonmagnetic base material, 2, 4, 6... Magnetic thin film layer,
3, 5... Intermediate layer, 7... Unwinding reel, 8... Cooling drum, 9... Evaporation source, 10... Reel, 11... Shielding plate, θ... Minimum incident angle.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基材上に、斜方蒸着法により形成され
た鉄もしくは鉄の合金の薄膜層が複数積層されて
おり、各薄膜層間には合成樹脂の中間層を有して
いることを特徴とする磁気記録媒体。
1 A plurality of thin film layers of iron or iron alloy formed by oblique evaporation are laminated on a non-magnetic base material, and an intermediate layer of synthetic resin is provided between each thin film layer. magnetic recording media.
JP58154516A 1983-08-24 1983-08-24 Magnetic recording medium Granted JPS6047226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154516A JPS6047226A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154516A JPS6047226A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6047226A JPS6047226A (en) 1985-03-14
JPH0475571B2 true JPH0475571B2 (en) 1992-12-01

Family

ID=15585953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154516A Granted JPS6047226A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6047226A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075370B2 (en) * 1987-02-24 1995-01-25 帝人株式会社 Silicon carbide molding manufacturing method

Also Published As

Publication number Publication date
JPS6047226A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
US4550062A (en) Magnetic recording medium
US4354908A (en) Process for the production of magnetic recording members
CA1315612C (en) Perpendicular magnetic storage medium
JPH0640361B2 (en) Perpendicular magnetic recording / reproducing method
JPH0572727B2 (en)
JPH0328735B2 (en)
JPH0475571B2 (en)
JPS62128019A (en) Magnetic recording medium
JPH0520807B2 (en)
JPH0576703B2 (en)
JPS61294635A (en) Magnetic recording medium
JPH0766511B2 (en) Magnetic recording medium
JPH03162710A (en) Magnetic recording medium
JPH1097924A (en) Magnetic recording medium
JPS6313256B2 (en)
JPS6333286B2 (en)
JPH0355142Y2 (en)
JPH0381202B2 (en)
JPH04335206A (en) Magnetic recording medium
JPS6126926A (en) Magnetic recording medium
JPH0216417Y2 (en)
JPS58171717A (en) Magnetic recording medium
JPS615421A (en) Magnetic recording medium
JP3491778B2 (en) Magnetic recording media
JPH0670852B2 (en) Perpendicular magnetic recording medium