JPH0520807B2 - - Google Patents

Info

Publication number
JPH0520807B2
JPH0520807B2 JP58154517A JP15451783A JPH0520807B2 JP H0520807 B2 JPH0520807 B2 JP H0520807B2 JP 58154517 A JP58154517 A JP 58154517A JP 15451783 A JP15451783 A JP 15451783A JP H0520807 B2 JPH0520807 B2 JP H0520807B2
Authority
JP
Japan
Prior art keywords
magnetic
thickness
thin film
base material
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58154517A
Other languages
Japanese (ja)
Other versions
JPS6047227A (en
Inventor
Takashi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP58154517A priority Critical patent/JPS6047227A/en
Publication of JPS6047227A publication Critical patent/JPS6047227A/en
Publication of JPH0520807B2 publication Critical patent/JPH0520807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は鉄系の磁性材料を用いつつも保磁力が
高い改良された薄膜型の磁気記録媒体に関するも
のである。 (従来技術) 近年、高密度磁気記録の要求の高まりに対応し
て真空蒸着、スパツタリング、イオンプレーテイ
ング等の方法により非磁性基材上に強磁性金属か
らなる薄膜を形成した薄膜型の磁気記録媒体が開
発されており、中でもCo系磁性材料を斜方蒸着
法により形成した薄膜を有する磁気記録媒体は磁
気特性がすぐれており、例えばマイクロカセツト
テープに利用されているなど、高密度記録化の一
翼を担つている。 しかしながらCo系磁性材料を使用するときは
Co系金属の材料費が高い上に斜方蒸着法の蒸着
効率が低いことにより、磁気記録媒体の価格が高
くなり過ぎるため、他の磁性材料への変換が望ま
れている。 一方、Fe系磁性材料を使用して磁気記録媒体
を製造すると、価格的には大巾な低下が図れる可
能性はあるが、高い保磁力が得られず、又、Fe
系磁性材料は耐腐食性が不十分であるため、従
来、種々の試みがなされているにも拘らず未だ実
用化には到つていない。 本発明者はFe系磁性材料を使用する際の欠点
を克服するため研究の結果、次の〜の各点を
見い出した。即ち、 Fe系磁性材料を使用して形成した薄膜の保
磁力は膜厚1000Å付近を境とし、1000Å以下で
は比較的高い値を示すが、1000Åを越えると急
に低下すること、 Fe系磁性材料を使用して形成した薄膜を複
数に分割して積層した場合、多層膜の厚みが
1000Å以上となつても保磁力は低下しないこ
と。 (発明の構成) 本発明は上記の見い出された事実に基づいてな
されたものであつて、本発明の磁気記録媒体は、
非磁性基材上に斜方蒸着法により形成された鉄若
しくは鉄の合金が複数層積層されており、該層の
膜厚はそれぞれ200〜1000Åであることを特徴と
するものである。 以下、図面を用いながら本発明について詳細に
説明する。 第1図は本発明の磁気記録媒体の一実施例を示
す断面図であつて、非磁性基材1の表面に磁性薄
膜層2,3および4の3つの磁性薄膜層が順に積
層された構造をとつている。 上記における各層の材料を説明すると、まず、
非磁性基材1としてはポリエチレンテレフタレー
ト樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリ
カーボネート樹脂等のプラスチツクフイムが使用
できる。 磁性薄膜層2,3,4はFe系磁性材料を蒸着
源とした斜方蒸着法により形成されている。Fe
系磁性材料としてはFe単独の他、Fe−Ni、Fe−
Co、Fe−Ni−Co、Fe−Rh、Fe−Cu、Fe−Sm、
Fe−Cr、Fe−Si等のFeを主体とした強磁性合金
が使用できる。 磁性薄膜層を形成するには例えば第2図に示す
ごとく巻き出しリール5から繰り出された非磁性
基材1を冷却ドラム6に接触させて移動させつ
つ、ドラム6の下方に配置された蒸着源7を用い
て基材1の表面に蒸着する方法などの斜方蒸着に
よつて行なう。蒸着済の基材はリール8に巻き取
られる。なお、ここで遮蔽板9の位置を水平に移
動させることにより、基材1に対する最小入射角
θを調節することができる。 磁性薄膜層2,3および4のおのおのの厚みは
1000Å以下であり、この理由は第3図のグラフに
示すごとく、厚みが1000Åを越えると保磁力が急
激に低下する上、角形比も低下するからである。
保磁力および角形比の望ましい値は、どのような
システムにおいて使用されるかにより異なるので
一概には言えないが、マイクロカセツトテープと
して使用する場合には市販のマイクロカセツトレ
コーダの設定バイアス電流から判断すると、保磁
力の値としては400〜700Oe程度であり、角形比
の値としては0.75以上であることが望ましい。な
お、磁性薄膜層の厚みの下限としては斜方蒸着の
微結晶が十分成長し斜方蒸着の効果が生じる点で
200Å以上とする。 本発明において、トータルの厚みは同じでも複
数に分けて積層した磁性薄膜層が単一層の同厚み
の磁性薄膜層にくらべて保磁力が向上するのは、
単一層で厚みを1000Å以上にするとそれ以下では
柱状に独立して成長していた隣接した結晶どうし
が互いに融合してしまい、斜方蒸着効果が失なわ
れるためと考えられ、従つて斜方蒸着効果が失な
られない1000Å以下の厚みで蒸着を中断して結晶
の成長を停め、再度その上に蒸着を行なうことに
よりトータル厚みが1000Å以上になつても保磁力
の低下が回避されるものであり、このような操作
を繰り返すことにより一層の保磁力の向上が図れ
る。 実施例 非磁性基材としては厚み6μmのポリエチレン
テレフタレートフイルムを用い、その表面に第2
図に示した斜方蒸着により最小入射角60°にて厚
み700ÅのFe蒸着膜を形成し、以上の工程を更に
2回繰り返すことにより、Fe蒸着膜を合計3層
積層し、合計膜厚を2100Åとした。 比較例 実施例1で用いたのと同じ基材を用い、実施例
1で行なつたのと同様な方法によりFe蒸着膜を
2100Åの厚みになるよう形成した。 以上の実施例及び比較例で得られた磁気記録媒
体の静磁気特性を次表にまとめて示す。
(Technical Field) The present invention relates to an improved thin film magnetic recording medium that uses iron-based magnetic materials but has a high coercive force. (Prior art) In response to the increasing demand for high-density magnetic recording in recent years, thin-film magnetic recording has been developed in which a thin film of ferromagnetic metal is formed on a non-magnetic substrate using methods such as vacuum evaporation, sputtering, and ion plating. Media have been developed, and among them, magnetic recording media with thin films formed by oblique evaporation of Co-based magnetic materials have excellent magnetic properties, and are used in microcassette tapes, for example, for high-density recording. It plays a part. However, when using Co-based magnetic materials,
Due to the high material cost of Co-based metals and the low deposition efficiency of the oblique evaporation method, the price of magnetic recording media becomes too high, so conversion to other magnetic materials is desired. On the other hand, if magnetic recording media are manufactured using Fe-based magnetic materials, the price may be significantly reduced, but high coercive force cannot be obtained, and
Since the corrosion resistance of magnetic materials is insufficient, they have not yet been put into practical use despite various attempts. As a result of research to overcome the drawbacks of using Fe-based magnetic materials, the present inventor discovered the following points. In other words, the coercive force of a thin film formed using Fe-based magnetic materials reaches a boundary around the film thickness of 1000 Å, and shows a relatively high value below 1000 Å, but rapidly decreases when the thickness exceeds 1000 Å. When a thin film formed using
The coercive force should not decrease even if the magnetic field exceeds 1000 Å. (Structure of the Invention) The present invention has been made based on the above-mentioned discovered fact, and the magnetic recording medium of the present invention includes:
It is characterized in that a plurality of layers of iron or iron alloys formed by oblique evaporation are laminated on a non-magnetic base material, and each layer has a thickness of 200 to 1000 Å. Hereinafter, the present invention will be explained in detail using the drawings. FIG. 1 is a sectional view showing an embodiment of the magnetic recording medium of the present invention, which has a structure in which three magnetic thin film layers 2, 3 and 4 are laminated in order on the surface of a non-magnetic base material 1. I'm taking it. To explain the materials of each layer in the above, first,
As the non-magnetic base material 1, a plastic film made of polyethylene terephthalate resin, polyimide resin, polyamide resin, polycarbonate resin, etc. can be used. The magnetic thin film layers 2, 3, and 4 are formed by an oblique evaporation method using an Fe-based magnetic material as a evaporation source. Fe
In addition to Fe alone, Fe−Ni, Fe−
Co, Fe-Ni-Co, Fe-Rh, Fe-Cu, Fe-Sm,
Fe-based ferromagnetic alloys such as Fe-Cr and Fe-Si can be used. To form a magnetic thin film layer, for example, as shown in FIG. 2, the non-magnetic base material 1 unwound from the unwinding reel 5 is moved in contact with the cooling drum 6, and a vapor deposition source placed below the drum 6 is moved. This is carried out by oblique vapor deposition such as a method of vapor depositing on the surface of the base material 1 using 7. The vapor-deposited base material is wound onto a reel 8. Note that by horizontally moving the position of the shielding plate 9, the minimum incident angle θ with respect to the base material 1 can be adjusted. The thickness of each of magnetic thin film layers 2, 3 and 4 is
The reason for this is that, as shown in the graph of FIG. 3, when the thickness exceeds 1000 Å, the coercive force decreases rapidly and the squareness ratio also decreases.
Desirable values for coercive force and squareness ratio cannot be generalized as they vary depending on the system used, but when used as a microcassette tape, judging from the bias current setting of a commercially available microcassette recorder, It is desirable that the coercive force value is about 400 to 700 Oe, and the squareness ratio value is 0.75 or more. The lower limit of the thickness of the magnetic thin film layer is set at the point where the microcrystals of the oblique evaporation grow sufficiently and the effect of the oblique evaporation occurs.
The thickness shall be 200Å or more. In the present invention, the coercive force of a magnetic thin film layer laminated into multiple layers with the same total thickness is improved compared to a single magnetic thin film layer of the same thickness.
It is thought that this is because if the thickness of a single layer is increased to 1000 Å or more, adjacent crystals that had grown independently in columnar shapes will fuse with each other, and the oblique evaporation effect will be lost. By stopping the deposition to stop the crystal growth at a thickness of 1000 Å or less where the effect is not lost, and then performing the deposition again on top of that, a decrease in coercive force can be avoided even if the total thickness becomes 1000 Å or more. By repeating such operations, the coercive force can be further improved. Example A polyethylene terephthalate film with a thickness of 6 μm was used as the non-magnetic base material, and a second
A Fe deposited film with a thickness of 700 Å was formed using the oblique deposition shown in the figure at a minimum incident angle of 60°, and by repeating the above steps two more times, a total of three Fe deposited films were stacked, and the total film thickness was It was set to 2100Å. Comparative Example Using the same base material as used in Example 1, a Fe vapor deposited film was formed by the same method as in Example 1.
It was formed to have a thickness of 2100 Å. The magnetostatic properties of the magnetic recording media obtained in the above Examples and Comparative Examples are summarized in the following table.

【表】 以上の本発明によれば安価なFeを使用しつつ
も保磁力及び角形比の静磁気特性がすぐれてい
る。
[Table] According to the present invention, although inexpensive Fe is used, the magnetostatic properties of coercive force and squareness ratio are excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の実施例の断面
図、第2図は斜方蒸着法の説明図、第3図は蒸着
膜厚と静磁気特性の関係を示すグラフである。 1……非磁性基材、2,3,4……磁性薄膜
層、5……巻き出しリール、6……冷却ドラム、
7……蒸着源、8……リール、9……遮蔽板、θ
……最小入射角。
FIG. 1 is a sectional view of an embodiment of the magnetic recording medium of the present invention, FIG. 2 is an explanatory diagram of the oblique deposition method, and FIG. 3 is a graph showing the relationship between the deposited film thickness and the magnetostatic characteristics. 1... Non-magnetic base material, 2, 3, 4... Magnetic thin film layer, 5... Unwinding reel, 6... Cooling drum,
7... Vapor deposition source, 8... Reel, 9... Shielding plate, θ
...minimum angle of incidence.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性基材上に斜方蒸着法により形成された
鉄若しくは鉄の合金が複数層積層された磁気記録
媒体であつて、該層の膜厚はそれぞれ200〜1000
Åであることを特徴とする磁気記録媒体。
1 A magnetic recording medium in which multiple layers of iron or iron alloys are laminated on a non-magnetic base material by oblique evaporation, each layer having a thickness of 200 to 1000 mm.
A magnetic recording medium characterized by being .
JP58154517A 1983-08-24 1983-08-24 Magnetic recording medium Granted JPS6047227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154517A JPS6047227A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154517A JPS6047227A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6047227A JPS6047227A (en) 1985-03-14
JPH0520807B2 true JPH0520807B2 (en) 1993-03-22

Family

ID=15585975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154517A Granted JPS6047227A (en) 1983-08-24 1983-08-24 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6047227A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143730A (en) * 1981-03-02 1982-09-06 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143730A (en) * 1981-03-02 1982-09-06 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6047227A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
CA1315612C (en) Perpendicular magnetic storage medium
EP0304927B1 (en) Perpendicular magnetic recording medium
JPH0328735B2 (en)
JPH0546013B2 (en)
JPH0520807B2 (en)
JPH0517608B2 (en)
JPH0475571B2 (en)
JPS6313256B2 (en)
JPH0576703B2 (en)
JPH0315245B2 (en)
JPH0311531B2 (en)
JPS60113318A (en) Magnetic recording medium
JPH0381202B2 (en)
JPS58171717A (en) Magnetic recording medium
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPH01143312A (en) Amorphous soft magnetic laminated film
JPS61294635A (en) Magnetic recording medium
JPH0328733B2 (en)
JPS6126926A (en) Magnetic recording medium
SUGITA et al. Magnetic Properties and Recording Performance of Co-Cr Films Deposited Directly on Polymer Substrates
JPH0550054B2 (en)
JPS6171418A (en) Manufacture of magnetic recording medium
JPH0799570B2 (en) Magnetic recording medium
JPS60202524A (en) Magnetic recording medium