JPH0354895B2 - - Google Patents

Info

Publication number
JPH0354895B2
JPH0354895B2 JP59051032A JP5103284A JPH0354895B2 JP H0354895 B2 JPH0354895 B2 JP H0354895B2 JP 59051032 A JP59051032 A JP 59051032A JP 5103284 A JP5103284 A JP 5103284A JP H0354895 B2 JPH0354895 B2 JP H0354895B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrodes
bending
vibration
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59051032A
Other languages
Japanese (ja)
Other versions
JPS60196005A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5103284A priority Critical patent/JPS60196005A/en
Publication of JPS60196005A publication Critical patent/JPS60196005A/en
Publication of JPH0354895B2 publication Critical patent/JPH0354895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、圧電単体の屈曲振動を利用した振動
子及び圧電フイルタに関するもので、特に一枚の
正方形圧電板に一辺と平行に交差指電極を形成
し、支持の容易な鞍形の屈曲振動を利用するもの
に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibrator and a piezoelectric filter that utilize bending vibration of a single piezoelectric element. In particular, interdigitated electrodes are formed parallel to one side on a single square piezoelectric plate, making it easy to support. It relates to something that uses saddle-shaped bending vibration.

圧電体の屈曲振動を利用した振動子は、従来、
受話器、スピーカ、ブザー、マイクロフオン、ピ
ツクアツプ等の可聴周波用音響、振動センサ、空
中超音波用変換器、あるいは数100KHz以下の周
波数帯における共振子やフイルタ素子に用いられ
ている。
Conventionally, vibrators that utilize the bending vibration of piezoelectric materials
It is used in audio frequency acoustics such as telephone receivers, speakers, buzzers, microphones, and pickups, vibration sensors, transducers for airborne ultrasound, and resonators and filter elements in frequency bands of several hundred kilohertz or less.

屈曲振動子の代表的な例としては、2枚の圧電
板あるいは圧電板と金属板を接着剤により貼り合
わせたバイモルフ構造のものが知られている。し
かし、このバイモルフ構造のものでは接着層の存
在の為、共振周波数のばらつきやQ(品質係数)
の低下がおこり好ましくない。
As a typical example of a bending vibrator, one having a bimorph structure in which two piezoelectric plates or a piezoelectric plate and a metal plate are bonded together with an adhesive is known. However, due to the presence of an adhesive layer in this bimorph structure, variations in resonance frequency and Q (quality factor)
This is undesirable as it causes a decrease in

一方、接着なしの圧電単体屈曲振動子として、
圧電磁器表面に設けた複数個の帯状電極間を交互
に分極し、交流駆動する構成が、例えば、田中
(「チタン酸バリウムとその応用」昭和40年オーム
社発行117頁)や、近野ら(日本音響学会講演論
文集昭和45年10月、論文No.3−4−17、405頁)
によつて述べられている。これらの構成は圧電縦
効果を主に利用するようにしたものであるが、容
量比を小さくすることが出来ない為、これまで殆
ど利用されなかつた。
On the other hand, as a piezoelectric single bending vibrator without adhesive,
A configuration in which multiple strip electrodes provided on the surface of a piezoelectric ceramic are alternately polarized and driven with alternating current has been proposed, for example, by Tanaka (``Barium titanate and its applications'', published by Ohmsha, 1965, p. 117) and Konno et al. Proceedings of the Acoustical Society of Japan, October 1970, Paper No. 3-4-17, p. 405)
It is stated by. Although these configurations mainly utilize the piezoelectric longitudinal effect, they have rarely been used until now because the capacitance ratio cannot be reduced.

これに対し、発明者のうち清水らは、圧電磁器
板の表面に交差指電極(くし形電極)を伸縮歪の
方向と平行に設けて圧電横効果を利用するように
した通常のバイモルフ振動子に匹敵する小さな容
量比を持つ圧電単体屈曲振動子、及び単一モード
屈曲振動圧電フイルタについて特願昭57−56313
号(特開昭58−173912号)に提案している。
In contrast, Shimizu et al., among the inventors, proposed a normal bimorph resonator that utilizes the piezoelectric transverse effect by providing interdigital electrodes (comb-shaped electrodes) on the surface of a piezoelectric ceramic plate in parallel to the direction of expansion/contraction strain. Patent application No. 57-56313 concerning a single piezoelectric bending vibrator with a small capacitance ratio comparable to , and a single mode bending vibration piezoelectric filter
(Japanese Patent Application Laid-Open No. 173912/1982).

本発明者らは更に研究を重ねた結果、貼り合せ
構造によらない圧電単体屈曲振動子および圧電フ
イルタで、前記特願昭57−56313号のものより支
持を容易にし且つスプリアス応答を一段と小さく
した圧電単体屈曲振動子及び3端子あるいは4端
子の屈曲振動圧電フイルタを提供することを目的
とする。
As a result of further research, the inventors of the present invention have developed a single piezoelectric bending vibrator and a piezoelectric filter that do not rely on a bonded structure, which are easier to support than those of the patent application No. 57-56313, and have a much smaller spurious response. It is an object of the present invention to provide a single piezoelectric bending vibrator and a three-terminal or four-terminal bending vibration piezoelectric filter.

本発明は、正方形の圧電板の少なくとも一方の
面に複数の電極が一辺と平行に設けられ、該複数
の電極は1つおきに接続して交差指電極を形成
し、該交差指電極に直流電圧を印加して圧電板に
分極処理を施し、前記正方形圧電板の辺に平行な
2つの中心線上で互に逆相の面垂直屈曲振動をな
し、2つの対角線が振動節線となる鞍形の振動モ
ードを該交差指電極により励振・検出するように
したことを特徴とする圧電単体屈曲振動子であ
る。
In the present invention, a plurality of electrodes are provided on at least one side of a square piezoelectric plate in parallel with a side, the plurality of electrodes are connected every other to form an interdigital electrode, and a direct current is applied to the interdigital electrode. A saddle shape in which a voltage is applied to polarize the piezoelectric plate, and plane-perpendicular bending vibrations of opposite phases occur on two center lines parallel to the sides of the square piezoelectric plate, and the two diagonal lines are vibration nodal lines. This is a single piezoelectric bending vibrator characterized in that the vibration mode is excited and detected by the interdigital electrodes.

本発明は、更にこのような圧電振動子を利用し
たフイルタを提供する。
The present invention further provides a filter using such a piezoelectric vibrator.

本発明によれば、正方形の圧電板を用い、圧電
横効果だけでなく、圧電縦効果をも相加的に利用
することによつて、通常のバイモルフ振動子では
駆動が不可能であつた鞍形の屈曲振動の励振を可
能とし、支持の容易なスプリアス共振応答の極め
て少ない特長ある屈曲振動子及びフイルタが得ら
れる。
According to the present invention, by using a square piezoelectric plate and making use of not only the piezoelectric transverse effect but also the piezoelectric longitudinal effect, it is possible to generate a saddle that cannot be driven with a normal bimorph vibrator. A unique bending vibrator and filter that can excite shaped bending vibrations, are easy to support, and have extremely low spurious resonance responses are obtained.

本発明について、その動作原理を説明する。 The operating principle of the present invention will be explained.

第1図は本発明による屈曲振動子の基本構造を
示すもので、交差指電極2及び3が正方形の圧電
板1の一辺に平行となるように構成され、これら
電極は1つおきに周辺部で引出し電極に接続され
ている。そして交差指電極2,3との間に電圧を
印加し、電極の長さ方向とは直角な方向に分極を
施しておく。
FIG. 1 shows the basic structure of a bending vibrator according to the present invention, in which interdigital electrodes 2 and 3 are configured to be parallel to one side of a square piezoelectric plate 1, and these electrodes are arranged on the periphery of every other electrode. is connected to the extraction electrode. Then, a voltage is applied between the interdigital electrodes 2 and 3 to polarize the electrodes in a direction perpendicular to the length direction of the electrodes.

このような構造にして、2及び3に交流電圧を
加えて駆動すれば圧電横効果と圧電縦効果の駆動
力が相加的に加わることとなり、第2図に示すよ
うな、2つの中心線A−B及びC−Dの上で互に
逆相の面垂直屈曲振動をし、2つの対角線M−
M′、N−N′を振動節線とする鞍形の振動モード
が励振される。即ち、一方の中心線A−Bの端が
面上方に変位した場合、他方の中心線C−Dでは
端が面下方に変位する。このような振動モード
は、通常のバイモルフ構造によつては励振が困難
なものである。
If this structure is driven by applying an AC voltage to 2 and 3, the driving force of the piezoelectric transverse effect and the piezoelectric longitudinal effect will be added, and the two center lines as shown in Fig. 2 will be applied. Surface perpendicular bending vibrations with opposite phases occur on A-B and CD, and two diagonal lines M-
A saddle-shaped vibration mode with vibration node lines M' and N-N' is excited. That is, when the end of one center line AB is displaced upward in the plane, the end of the other center line CD is displaced downward in the plane. Such a vibration mode is difficult to excite using a normal bimorph structure.

本発明による圧電振動子について、共振周波数
及び振動モードを有限要素法により計算した。
The resonance frequency and vibration mode of the piezoelectric vibrator according to the present invention were calculated using the finite element method.

第3図aは、圧電板の1/4区域(例えば第2図
において、0AMDで囲まれた区域)における面
垂直方向(Z方向)の変位μzの分布を平面的に表
現したものである。斜線の長さがuzの大きさを表
わしている。この図より、節線0−Mより辺に沿
つて中心線0−A(または0−D)に近づく程変
位が大きくなり、また、中心線上では中心より辺
に近づく程変位は大きくなつており、△0AMと
△0MDの区域内の変位は互に逆相になつている
ことを示している。
Figure 3 a is a two-dimensional representation of the distribution of displacement μ z in the surface-perpendicular direction (Z direction) in the 1/4 area of the piezoelectric plate (for example, the area surrounded by 0AMD in Figure 2). . The length of the diagonal line represents the size of u z . From this figure, we can see that the displacement becomes larger as you get closer to the center line 0-A (or 0-D) along the side from the nodal line 0-M, and on the center line, the closer you get to the side from the center, the larger the displacement becomes. , △0AM and △0MD indicate that the displacements in the area are in opposite phases.

同図bは同様に1/4区域について板の表面にお
けるxおよびy方向の変位ux、uyの変位量を示す
もので、便宜上輪郭の変化だけを示し、a図に比
べ変位を10倍に拡大して図示している。ux、uy
板の上面と下面では大きさが等しく互に逆位相で
ある。
Figure b similarly shows the displacements u x and u y in the x and y directions on the surface of the plate for the 1/4 area.For convenience, only the changes in the contour are shown, and the displacement is 10 times larger than in figure a. The figure is enlarged to . u x and u y are equal in size and in opposite phase on the top and bottom surfaces of the plate.

第3図a,bから明らかなように、本発明によ
る圧電屈曲振動子は、x、y方向の振動の変位は
極めて小さく、主として圧電板の厚さ方向に振動
する屈曲振動であることが明らかである。
As is clear from FIGS. 3a and 3b, in the piezoelectric bending vibrator according to the present invention, the vibration displacement in the x and y directions is extremely small, and it is clear that the bending vibration mainly vibrates in the thickness direction of the piezoelectric plate. It is.

前述したように、本発明による鞍形の屈曲振動
の振動モードを効果的に励振するための電極形状
を求めるために、正方形圧電板の表面の歪分布を
計算した。第4図は1/4区域における歪主値の分
布を示したもので、矢印の大きさと方向の歪の大
きさと方向を示す。x、y方向の各伸縮歪Sxx
Syyが大きく、xy面内のすべり歪Sxyは小さいこと
を示している。第4図の歪分布から交差指電極を
一辺と平行に配置すれば良いことがわかる。即
ち、圧電横効果に基づく電極指と平行の方向の伸
縮歪と、圧電縦効果に基づく電極指との直角の方
向の伸縮歪とが逆位相で生じ、両者が上記鞍形の
振動モードの励振に対し相加的に働くことにな
る。
As described above, the strain distribution on the surface of the square piezoelectric plate was calculated in order to find the electrode shape for effectively exciting the vibration mode of the saddle-shaped bending vibration according to the present invention. Figure 4 shows the distribution of principal distortion values in the 1/4 area, and the arrows indicate the magnitude and direction of distortion. Each stretching strain S xx in the x and y directions,
This shows that S yy is large and the shear strain S xy in the xy plane is small. From the strain distribution in FIG. 4, it can be seen that the interdigital electrodes should be arranged parallel to one side. That is, the stretching strain in the direction parallel to the electrode finger due to the piezoelectric transverse effect and the stretching strain in the direction perpendicular to the electrode finger due to the piezoelectric longitudinal effect occur in opposite phases, and both of them cause the excitation of the saddle-shaped vibration mode. It will work additively with respect to

第3図aおよび第4図から、振動子の4隅M、
M′、N、N′点では変位uzと歪Sxx、Syyが共に零
となるため、この4隅をおさえてもこのモードに
対する影響は小さく、支持する場合好都合とな
る。
From FIG. 3a and FIG. 4, the four corners M of the vibrator,
At points M', N, and N', the displacement u z and strains S xx and S yy are both zero, so even if these four corners are held down, the influence on this mode is small, and it is convenient to support them.

本発明における鞍形屈曲振動モードを効率良く
励振するための交差指電極の活性領域の形と大き
さを決めるため次の計算を行つた。
In order to determine the shape and size of the active region of the interdigital electrodes for efficiently exciting the saddle-shaped bending vibration mode in the present invention, the following calculations were performed.

前述の特願昭57−56313号で明らかにしている
ように、圧電横効果利用の場合には、電極幅aと
電極周期pの比a/pが0.5の時容量比は最小で
あり、圧電縦効果利用の場合にはa/pは小さい
程容量比が小さくなり、a/pを0.3にすると、
横効果利用の場合の容量比は縦効果利用の場合の
ほぼ1/2である。そこで、圧電横効果と圧電縦効
果に直接結びつく対称鞍形モードの実効的な歪|
Sxx|+|Syy/√2|の分布を計算した。その結
果を第5図に示した。図では、中心0での最大値
を10として基準化した等値線で表わした。(但し、
交差指電極の電極指の方向はx方向と平行とす
る。) 以上のような結果をもとに屈曲振動子を作製し
た。1辺が10mmで厚さが0.5mmの正方形の圧電磁
器板(東北金属工業(株)製ジルコン酸チタン酸鉛
N6材)を用い、p=0.5mm、a/pを0.2、0.3、
0.5とし、活性領域がなるべく広くなるように活
性領域の輪郭を第5図の4の等値線にほぼ合せた
交差指電極を両面に成し、その容量比γとアドミ
タンス特性を測定した。その結果を第6図に示
す。主振動の共振周波数は14.9KHzで、容量比γ
が11〜12.5とかなり小さい振動子が得られること
を示している。また、a/pが0.2のときはスプ
リアス応答は非常に小さいが、a/pが0.3、0.5
と大きくなる程スプリアス応答が大きく現われて
いる。特に、第7図に示すような、主振動の節線
と同じく2つの対角線を節線とするモードのスプ
リアス応答が大きい。そこで、これらのスプリア
スを抑圧するため次の計算を行なつた。
As clarified in the above-mentioned Japanese Patent Application No. 57-56313, in the case of utilizing the piezoelectric transverse effect, when the ratio a/p of the electrode width a and the electrode period p is 0.5, the capacitance ratio is the minimum, and the piezoelectric When using the longitudinal effect, the smaller a/p is, the smaller the capacity ratio becomes.If a/p is set to 0.3,
The capacity ratio in the case of using the horizontal effect is approximately 1/2 of that in the case of using the vertical effect. Therefore, the effective distortion of the symmetric saddle mode, which is directly linked to the piezoelectric transverse effect and the piezoelectric longitudinal effect |
The distribution of S xx |+|S yy /√2| was calculated. The results are shown in FIG. In the figure, the maximum value at the center 0 is set as 10, and is expressed as an isovalue line. (however,
The direction of the electrode fingers of the interdigital electrodes is parallel to the x direction. ) Based on the above results, we fabricated a bending vibrator. A square piezoelectric ceramic plate with a side of 10 mm and a thickness of 0.5 mm (lead zirconate titanate manufactured by Tohoku Metal Industry Co., Ltd.)
N6 material), p=0.5mm, a/p 0.2, 0.3,
0.5, and the capacitance ratio γ and admittance characteristics were measured by forming interdigital electrodes on both sides with the outline of the active region approximately aligned with the contour line 4 in FIG. 5 so that the active region was as wide as possible. The results are shown in FIG. The resonance frequency of the main vibration is 14.9KHz, and the capacitance ratio γ
This shows that a fairly small oscillator with a value of 11 to 12.5 can be obtained. Also, when a/p is 0.2, the spurious response is very small, but when a/p is 0.3 and 0.5
The larger the value, the more the spurious response appears. In particular, the spurious response of a mode whose nodal lines are two diagonal lines, similar to the nodal line of the main vibration, as shown in FIG. 7, is large. Therefore, the following calculations were performed to suppress these spurious signals.

容量比γは、電極面積(活性領域の面積)Aに
比例し、そのモードの歪Sを活性領域内で積分し
たものの2乗に反比例する、すなわち、γ=k
A/(∫ASdA)2(k:定数)と表わされるから、全面 電極時(板の全面積A0を活性領域とする)の容
量比γ0に対する活性領域(面積をAとする)を変
えたときの容量比γの比γ/γ0は次式で表わすこ
とができる。
The capacitance ratio γ is proportional to the electrode area (area of the active region) A, and inversely proportional to the square of the integration of the mode strain S within the active region, that is, γ=k
Since it is expressed as A/(∫ A SdA) 2 (k: constant), the active area (area is A) for the capacitance ratio γ 0 when the entire surface is electroded (the total area A 0 of the plate is the active area) is The ratio γ/γ 0 of the capacitance ratio γ when changed can be expressed by the following equation.

γ/γ0=A(∫A0SdA)2/A0(∫ASdA)2
……(1) 交差指電極の活性領域を対称に変化させるよう
に第8図に示すlを変えたときの主振動およびス
プリアス応答のモード(第7図に示すモード)に
おける式(1)の値を計算した。その結果を第9図に
示してあるが、第7図に示したモードのスプリア
ス応答を同時に抑圧するためにはl/l0=0.42と
すればよいことがわかる。第10図a,bはこれ
を実証するための実験結果である。同図aは出来
るだけ全面電極に近くなるよう交差指電極を設け
た場合(l/l0≒0.8となる)、また同図bはl/
l0=0.42となるように電極を形成した場合、の各
入力アドミタンス特性を示したものである。l/
l0=0.42の場合、スプリアス応答が大幅に抑圧さ
れることが実験的に確認された。なお、主振動の
容量比γは約17となり、全面電極時(γ=11.5)
の1.5倍で第9図の計算結果とも良く一致してい
る。
γ/γ 0 = A (∫ A0 SdA) 2 /A 0 (∫ A SdA) 2
...(1) Equation (1) in the mode of main vibration and spurious response (mode shown in Fig. 7) when l shown in Fig. 8 is changed so as to symmetrically change the active area of the interdigital electrode. The value was calculated. The results are shown in FIG. 9, and it can be seen that in order to simultaneously suppress the spurious response of the mode shown in FIG. 7, it is sufficient to set l/l 0 =0.42. Figures 10a and 10b show experimental results to prove this. Figure a shows the case where interdigital electrodes are provided as close to the full surface electrode as possible (l/l 0 ≒ 0.8), and figure b shows l/l.
This figure shows the input admittance characteristics when the electrodes are formed so that l 0 =0.42. l/
It was experimentally confirmed that when l 0 =0.42, spurious responses are significantly suppressed. The capacitance ratio γ of the main vibration is approximately 17, which is when the entire surface is electroded (γ = 11.5).
It is 1.5 times that of , which agrees well with the calculation results shown in Figure 9.

以上、本発明による振動子の実施例を用いて説
明したが、正方形の圧電板に一辺と平行に交差指
電極を形成することにより、圧電横効果及び圧電
縦効果を相加的に利用し、従来のバイモルフ振動
子に匹敵する小さな容量比を持ち、しかも接着層
のない、支持が容易な、スプリアス応答の少ない
圧電単体屈曲振動子が得られることを明らかにし
た。
The above has been explained using the embodiment of the vibrator according to the present invention, but by forming interdigital electrodes parallel to one side on a square piezoelectric plate, the piezoelectric transverse effect and the piezoelectric longitudinal effect are additively utilized. We have demonstrated that it is possible to obtain a single piezoelectric bending vibrator that has a small capacitance ratio comparable to that of conventional bimorph vibrators, has no adhesive layer, is easy to support, and has low spurious responses.

次に、本発明の他の一つである圧電フイルタに
ついて説明する。
Next, a piezoelectric filter, which is another aspect of the present invention, will be explained.

上記の屈曲振動子を応用し、三端子あるいは四
端子の単一モードフイルタを構成するものであ
る。
By applying the above bending vibrator, a three-terminal or four-terminal single mode filter is constructed.

本発明による圧電フイルタは一枚の正方形圧電
板の一辺と平行に交差指電極を二種類形成し、一
方の電極から信号を入れて屈曲振動を励振し、こ
れを他の一方の電極で電気信号に変換して取出す
ものである。
The piezoelectric filter according to the present invention has two types of interdigital electrodes formed parallel to one side of a square piezoelectric plate, and a signal is input from one electrode to excite bending vibration, which is then transmitted to the other electrode as an electric signal. It is converted into and extracted.

その具体例を第11図以降に示す。 A specific example thereof is shown in FIG. 11 and subsequent figures.

第11図は、圧電板1の片面に交差指電極を形
成するもので、一方の電極を中央で4と6の二つ
の電極に分割し、一方を入力用、他方を出力用の
電極とし、電極5を共通電極とした三端子(ある
いは四端子)フイルタである。同図bはa図の
ABで断面を示したもので、記号7,8は電極
4,6と接続された入力及び出力用端子である。
記号9は共通電極をアース電極に接続するための
取出し電極である。
In Fig. 11, interdigital electrodes are formed on one side of the piezoelectric plate 1, one electrode is divided into two electrodes 4 and 6 at the center, one for input and the other for output. This is a three-terminal (or four-terminal) filter with electrode 5 as a common electrode. Figure b is the same as figure a.
The cross section is shown at AB, and symbols 7 and 8 are input and output terminals connected to the electrodes 4 and 6.
Symbol 9 is a lead-out electrode for connecting the common electrode to the ground electrode.

第12図は、圧電板1の両面に第11図と同様
の電極を表裏が対向するように形成したもので、
7,8は夫々表裏の対向する電極4及び6と夫夫
接続された入力及び出力用の端子で、9は表裏の
電極5に接続した共通端子である。
In FIG. 12, electrodes similar to those in FIG. 11 are formed on both sides of a piezoelectric plate 1 so that the front and back sides face each other.
Reference numerals 7 and 8 are input and output terminals connected to the opposing electrodes 4 and 6 on the front and back sides, respectively, and 9 is a common terminal connected to the electrodes 5 on the front and back sides.

第11図、第12図では、交差指電極を中央で
2つに分割し、入力用と出力用の電極としたが、
第13図、第14図はその電極の分け方を変え
て、入力用電極と出力用電極が交互に入り組んだ
形に配置されるようにした例を示したものであ
る。第13図は3分割にした場合で、電極4,
4′が入力用、6,6′及び7,7′が出力用の各
端子で(6と7は接続される)、5,5′は共通端
子である。第14図では、共通電極5,5′をミ
アンダライン(ジグザグ線路)状とし、その両側
に入力用電極4,4′と出力用電極6,6′を配置
したものである。このような電極配置にすると、
第11図、第12図の電極を2分割にしたことに
よつて生ずるスプリアス応答が抑圧され、特性が
改善される。
In FIGS. 11 and 12, the interdigital electrodes are divided into two at the center to serve as input and output electrodes.
FIGS. 13 and 14 show an example in which the way the electrodes are divided is changed so that input electrodes and output electrodes are alternately arranged in a complicated shape. Figure 13 shows the case where the electrode is divided into three parts, and the electrode 4,
4' is an input terminal, 6, 6' and 7, 7' are output terminals (6 and 7 are connected), and 5, 5' are common terminals. In FIG. 14, the common electrodes 5, 5' are shaped like a meander line (zigzag line), and input electrodes 4, 4' and output electrodes 6, 6' are arranged on both sides of the common electrodes 5, 5'. With this kind of electrode arrangement,
Spurious responses caused by dividing the electrodes in FIGS. 11 and 12 into two are suppressed, and the characteristics are improved.

第15図に第13図の電極を用いた単一モード
三端子フイルタを構成した場合のフイルタ特性の
一例を示す。
FIG. 15 shows an example of filter characteristics when a single mode three-terminal filter is constructed using the electrodes shown in FIG. 13.

以上、本発明の圧電フイルタの構成について説
明したが、本発明によれば、比較的低周波で低損
失のフイルタが比較的小さな寸法で実現可能とな
り、しかもバイモルフ振動子のような接着層がな
いため、特性のバラツキが小さくなり、さらには
鞍形の振動モードをとるために、2つの対角線が
振動節線となり支持が極めて容易となる。また、
スプリアス共振応答は高い周波数領域まで抑圧さ
れて、高品位の圧電フイルタの提供が可能となつ
た。
The structure of the piezoelectric filter of the present invention has been described above. According to the present invention, a filter with relatively low frequency and low loss can be realized with relatively small dimensions, and there is no adhesive layer like a bimorph resonator. Therefore, variations in characteristics are reduced, and furthermore, since it takes a saddle-shaped vibration mode, the two diagonal lines become vibration nodal lines, making it extremely easy to support. Also,
Spurious resonance responses are suppressed up to high frequency ranges, making it possible to provide high-quality piezoelectric filters.

なお、本発明における電極の形成は、銀粉のス
クリーン印刷塗布、スパツタリング法、蒸着法な
ど従来の技術で十分であり、フオトエツチング法
により任意の形状の電極を容易に作製することが
できるから、主振動を強く励振しスプリアス応答
を抑圧するような歪分布に合せて交差指電極の活
性領域を決めることが可能である。
In addition, conventional techniques such as screen printing coating of silver powder, sputtering method, and vapor deposition method are sufficient for forming the electrodes in the present invention, and since electrodes of arbitrary shapes can be easily produced by photoetching method, the main method is It is possible to determine the active region of the interdigital electrodes according to the strain distribution that strongly excites vibrations and suppresses spurious responses.

この他、本発明によつて得られる単一モードフ
イルタで、同じ特性の複数個のフイルタを結合容
量などを用いることなく直接縦続に接続すること
により、容易に高選択度のフイルタとすることが
可能で、これらも本発明に含まれることは当然で
ある。
In addition, with the single mode filter obtained by the present invention, a filter with high selectivity can be easily obtained by directly connecting multiple filters with the same characteristics in cascade without using a coupling capacitance or the like. Naturally, these are also included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による屈曲振動子の基本構造を
示す平面図、第2図は第1図の屈曲振動子の振動
モードを説明する図、第3図aは圧電板の1/4区
域における面垂直方向の変位の分布を平面的に表
わした図、第3図bは同じく1/4区域における板
の表面におけるxおよびy方向の変位量を示した
図、第4図は1/4区域における歪主値の分布を示
す図、第5図は対称鞍形モードの実効的な歪の分
布を示す図、第6図は電極幅aと電極周期pを変
化したときの屈曲振動子のアドミタンス特性を示
す図、第7図は振動モードを示す図、第8図は交
差指電極の活性領域を示す図、第9図は活性領域
と容量比との関係を示す図、第10図a,bは、
異なる活性領域のもののアドミツタンス特性を示
す図、第11図は圧電フイルタの実施例を示す図
で、a図は平面図、b図はA−A断面図、第12
図〜第14図は圧電フイルタの他の異なる実施例
を示す図で、a図は平面図、b図は断面図、第1
5図は、第13図の電極構成を用いた三端子フイ
ルタのフイルタ特性を示す図である。 1……圧電磁器板、2,3……交差指電極、
4,4′……入力用端子、5,5′……共通端子、
6,6′,7,7′……出力用端子。
FIG. 1 is a plan view showing the basic structure of the bending vibrator according to the present invention, FIG. 2 is a diagram explaining the vibration mode of the bending vibrator shown in FIG. 1, and FIG. A diagram showing the distribution of displacement in the direction perpendicular to the surface in a plane. Figure 3b is a diagram showing the amount of displacement in the x and y directions on the surface of the plate in the 1/4 area, and Figure 4 is a diagram showing the displacement in the x and y directions in the 1/4 area. Figure 5 is a diagram showing the distribution of effective strain in the symmetric saddle mode, Figure 6 is the admittance of the flexural oscillator when changing the electrode width a and the electrode period p. 7 is a diagram showing the vibration mode, FIG. 8 is a diagram showing the active region of the interdigital electrode, FIG. 9 is a diagram showing the relationship between the active region and the capacitance ratio, and FIG. 10a, b is
FIG. 11 is a diagram showing the admittance characteristics of different active regions, and FIG. 11 is a diagram showing an example of a piezoelectric filter. FIG. 11 is a plan view, FIG.
Figures 1 to 14 are diagrams showing other different embodiments of the piezoelectric filter, in which figure a is a plan view, figure b is a sectional view, and figure 1 is a cross-sectional view.
FIG. 5 is a diagram showing filter characteristics of a three-terminal filter using the electrode configuration of FIG. 13. 1... Piezoelectric ceramic plate, 2, 3... Interdigital electrodes,
4, 4'... Input terminal, 5, 5'... Common terminal,
6, 6', 7, 7'...Output terminals.

Claims (1)

【特許請求の範囲】 1 正方形の圧電板の少なくとも一方の面に複数
の電極が一辺と平行に設けられ、該複数の電極は
一つおきに接続して交差指電極を形成し、該交差
指電極に直流電圧を印加して圧電板に分極処理を
施し、前記正方形圧電板の辺に平行な2つの中心
線上で互いに逆相の面垂直屈曲振動をなし、2つ
の対角線が振動節線となる鞍形の振動モードを該
交差指電極により励振・検出するようにしたこと
を特徴とする圧電単体屈曲振動子。 2 特許請求の範囲の範囲第1項記載の圧電単体
屈曲振動子において、前記交差指電極の形状を、
主振動の鞍形屈曲振動モードを強く励振させ、し
かもスプリアスモードの励振を抑圧するように該
振動子の歪み分布に合わせて形成したことを特徴
とする圧電単体屈曲振動子。 3 正方形の圧電板の少なくとも一方の面に一辺
と平行な電極指をもつ交差指電極を形成し、該交
差指電極に直流電圧を印加して圧電板に分極処理
を施し、前記正方形圧電板の2つの中心線上で互
いに逆相の面垂直屈曲振動をなし、2つの対角線
が振動節線となる鞍形の振動モードを利用するよ
うにした圧電単体屈曲振動子において、前記交差
指電極を振動励振用と検出用との2つに分け、3
端子または4端子のフイルタを形成させたことを
特徴とする圧電フイルタ。 4 特許請求の範囲の範囲第3項記載の圧電フイ
ルタにおいて、前記交差指電極の形状を、主振動
の鞍形屈曲振動モードを強く励振させ、しかもス
プリアスモードの励振を抑圧するように該振動子
の歪み分布に合わせて形成したことを特徴とする
圧電フイルタ。
[Claims] 1. A plurality of electrodes are provided on at least one side of a square piezoelectric plate in parallel with one side, and the plurality of electrodes are connected every other to form an interdigital electrode, and the interdigital electrode A DC voltage is applied to the electrodes to polarize the piezoelectric plate, and plane-perpendicular bending vibrations with opposite phases occur on two center lines parallel to the sides of the square piezoelectric plate, with the two diagonal lines serving as vibration nodal lines. A single piezoelectric bending vibrator characterized in that a saddle-shaped vibration mode is excited and detected by the interdigital electrodes. 2 Scope of Claims In the piezoelectric single bending vibrator according to claim 1, the shape of the interdigital electrodes is
1. A single piezoelectric bending vibrator, characterized in that it is formed in accordance with the strain distribution of the vibrator so as to strongly excite the saddle-shaped bending vibration mode of the main vibration, while suppressing the excitation of the spurious mode. 3 Form interdigital electrodes with electrode fingers parallel to one side on at least one side of a square piezoelectric plate, apply DC voltage to the interdigital electrodes to polarize the piezoelectric plate, and polarize the piezoelectric plate. In a single piezoelectric bending vibrator that utilizes a saddle-shaped vibration mode in which plane-perpendicular bending vibrations occur in opposite phases on two center lines and two diagonal lines serve as vibration nodal lines, the interdigital electrodes are excited to vibrate. It is divided into two parts, one for use and one for detection.
A piezoelectric filter characterized by forming a terminal or four-terminal filter. 4. Scope of Claims In the piezoelectric filter according to claim 3, the shape of the interdigital electrodes is such that the vibrator is configured to strongly excite the saddle-shaped bending vibration mode of the main vibration, while suppressing the excitation of the spurious mode. A piezoelectric filter characterized in that it is formed to match the strain distribution of.
JP5103284A 1984-03-19 1984-03-19 Single piezoelectric flexural resonator and piezoelectric filter Granted JPS60196005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103284A JPS60196005A (en) 1984-03-19 1984-03-19 Single piezoelectric flexural resonator and piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103284A JPS60196005A (en) 1984-03-19 1984-03-19 Single piezoelectric flexural resonator and piezoelectric filter

Publications (2)

Publication Number Publication Date
JPS60196005A JPS60196005A (en) 1985-10-04
JPH0354895B2 true JPH0354895B2 (en) 1991-08-21

Family

ID=12875465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103284A Granted JPS60196005A (en) 1984-03-19 1984-03-19 Single piezoelectric flexural resonator and piezoelectric filter

Country Status (1)

Country Link
JP (1) JPS60196005A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262049B2 (en) * 1997-10-01 2002-03-04 株式会社村田製作所 Piezoelectric resonator and electronic component using the same
JP3262076B2 (en) * 1997-10-03 2002-03-04 株式会社村田製作所 Piezoelectric resonator, method for adjusting frequency of piezoelectric resonator, and communication device
JP4704537B2 (en) * 2000-01-31 2011-06-15 セイコーインスツル株式会社 Ultrasonic motor and electronic device with ultrasonic motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959551A (en) * 1972-06-27 1974-06-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959551A (en) * 1972-06-27 1974-06-10

Also Published As

Publication number Publication date
JPS60196005A (en) 1985-10-04

Similar Documents

Publication Publication Date Title
JP2790177B2 (en) Electrostrictive resonance element
JP4930381B2 (en) Piezoelectric vibration device
JPH01176110A (en) Electrostriction resonator
JP3838024B2 (en) Vertically coupled multimode piezoelectric filter
US5057801A (en) Filter device of piezo-electric type including divided co-planar electrodes
JPS6340491B2 (en)
JP3535101B2 (en) Component
JPS6059900A (en) Piezoelectric vibrator using buckling spring
JPH114135A (en) Energy continement-type thickness vertical piezoelectric resonators
JPH0354895B2 (en)
JPH0221690B2 (en)
JPS58173912A (en) Piezoelectric element bending oscillator and piezoelectric filter
JPH07336184A (en) Energy confining type piezoelectric resonator
JPH0410764B2 (en)
JPH01191508A (en) Electrostrictive resonator
JP4344798B2 (en) Piezoelectric vibrator for tactile sensor
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
JP3901013B2 (en) Vertically coupled multimode piezoelectric filter device and electronic component
JP3312260B2 (en) Piezoelectric vibration gyro
JP3838158B2 (en) Vertically coupled multimode piezoelectric filter
JP3922096B2 (en) Vertically coupled multimode piezoelectric filter device, longitudinally coupled multimode piezoelectric filter, and electronic component
JP3922095B2 (en) Vertically coupled multimode piezoelectric filter
JP3922094B2 (en) Vertically coupled multimode piezoelectric filter and electronic component
JPH0663773B2 (en) Piezoelectric vibration gyro
JP3175275B2 (en) Ultrasonic delay element