JPH0221690B2 - - Google Patents

Info

Publication number
JPH0221690B2
JPH0221690B2 JP4600683A JP4600683A JPH0221690B2 JP H0221690 B2 JPH0221690 B2 JP H0221690B2 JP 4600683 A JP4600683 A JP 4600683A JP 4600683 A JP4600683 A JP 4600683A JP H0221690 B2 JPH0221690 B2 JP H0221690B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrodes
electrode
vibration
interdigital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4600683A
Other languages
Japanese (ja)
Other versions
JPS59172825A (en
Inventor
Hiroshi Shimizu
Shigeru Oyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4600683A priority Critical patent/JPS59172825A/en
Publication of JPS59172825A publication Critical patent/JPS59172825A/en
Publication of JPH0221690B2 publication Critical patent/JPH0221690B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、圧電体の屈曲振動を利用した振動子
及び圧電フイルタに関するもので、特に一枚の正
方形圧電板に対角線と平行に交差指電極を形成
し、支持の容易な鞍形の屈曲振動を利用するもの
に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibrator and a piezoelectric filter that utilize bending vibration of a piezoelectric material, and in particular, interdigitated electrodes are formed in parallel to the diagonal on a single square piezoelectric plate, making it easy to support. It relates to something that uses saddle-shaped bending vibration.

圧電体の屈曲振動を利用した振動子は、従来、
受話器、スピーカ、ブザー、マイクロフオン、ピ
ツクアツプ等の可聴周波用音響、振動センサ、空
中超音波用変換器、あるいは数100kHz以下の周
波数帯における共振子やフイルタ素子に用いられ
ている。
Conventionally, vibrators that utilize the bending vibration of piezoelectric materials
It is used in audio frequency acoustics such as telephone receivers, speakers, buzzers, microphones, and pickups, vibration sensors, transducers for airborne ultrasound, and resonators and filter elements in frequency bands of several 100 kHz or less.

屈曲振動子の代表的な例としては、2板の圧電
板あるいは圧電板と金属板を接着剤により貼り合
わせたバイモルフ構造のものが知られている。し
かし、このバイモルフ構造のものでは接着層の存
在の為、共振周波数のばらつきやQ(品質係数)
の低下がおこり好ましくない。
As a typical example of a bending vibrator, one having a bimorph structure in which two piezoelectric plates or a piezoelectric plate and a metal plate are bonded together with an adhesive is known. However, due to the presence of an adhesive layer in this bimorph structure, variations in resonance frequency and Q (quality factor)
This is undesirable as it causes a decrease in

一方、接着なしの圧電単体屈曲振動子として、
圧電磁器表面に設けた複数個の帯状電極間を交互
に分極し、交流駆動する構成が、例えば、田中
(「チタン酸バリウムとその応用」昭和40年オーム
社発行117頁)や、近野ら(日本音響学会講演論
文集 昭和45年10月、論文No.3−4−17、405頁)
によつて述べられている。これらの構成は圧電縦
効果を主に利用するようにしたものであるが、容
量比を小さくすることが出来ない為、これまで殆
んど利用されなかつた。
On the other hand, as a piezoelectric single bending vibrator without adhesive,
A configuration in which multiple strip electrodes provided on the surface of a piezoelectric ceramic are alternately polarized and driven with alternating current has been proposed, for example, by Tanaka (``Barium titanate and its applications'', published by Ohmsha, 1965, p. 117) and Konno et al. Proceedings of the Acoustical Society of Japan, October 1970, Paper No. 3-4-17, p. 405)
It is stated by. Although these configurations mainly utilize the piezoelectric longitudinal effect, they have rarely been used until now because the capacitance ratio cannot be reduced.

これに対し、発明者のうち清水らは、圧電磁器
板の表面に交差指電極(くし形電極)を伸縮歪の
方向と平行に設けて圧電横効果を利用するように
した通常のバイモルフ振動子に匹敵する小さな容
量比を持つ圧電単体屈曲振動子、及び単一モード
屈曲振動圧電フイルタについて特願昭57−56313
号に提案している。
In contrast, Shimizu et al., among the inventors, proposed a normal bimorph resonator that utilizes the piezoelectric transverse effect by providing interdigital electrodes (comb-shaped electrodes) on the surface of a piezoelectric ceramic plate in parallel to the direction of expansion/contraction strain. Patent application No. 57-56313 concerning a single piezoelectric bending vibrator with a small capacitance ratio comparable to , and a single mode bending vibration piezoelectric filter
It is proposed in the issue.

本発明者らは更に研究を重ねた結果、貼り合せ
構造によらない圧電単体屈曲振動子および圧電フ
イルタで、前記特願昭57−56313号のものより支
持を容易にし且つスプリアス応答を一段と小さく
した圧電単体屈曲振動子及び3端子あるいは4端
子の屈曲振動圧電フイルタを提供することを目的
とする。
As a result of further research, the inventors of the present invention have developed a single piezoelectric bending vibrator and a piezoelectric filter that do not rely on a bonded structure, which are easier to support than those of the patent application No. 57-56313, and have a much smaller spurious response. It is an object of the present invention to provide a single piezoelectric bending vibrator and a three-terminal or four-terminal bending vibration piezoelectric filter.

本発明は正方形の圧電板の少なくとも一方の面
に複数の電極が対角線と平行に設けられ、該複数
の電極は1つおきに接続して交差指電極を形成
し、該交差指電極に直流電圧を印加する方法によ
り該圧電板に分極処理を施こして、前記正方形圧
電板の2つの対角線上で互に逆相の面垂直屈曲振
動をなし、十字形の節線をもつ鞍形の振動モード
を該交差指電極により励振、検出するようにした
ことを特徴とする圧電単体屈曲振動子である。
In the present invention, a plurality of electrodes are provided on at least one surface of a square piezoelectric plate in parallel with a diagonal line, the plurality of electrodes are connected every other to form an interdigital electrode, and a DC voltage is applied to the interdigital electrode. The piezoelectric plate is polarized by a method of applying , and the square piezoelectric plate undergoes plane-perpendicular bending vibration in opposite phases on two diagonals of the plate, and a saddle-shaped vibration mode with cross-shaped nodal lines is generated. is excited and detected by the interdigital electrodes.

また本発明は正方形の圧電板の少なくとも一方
の面に対角線と平行な電極指をもつ交差指電極を
形成し、該交差指電極に直流電圧を印加する方法
により該圧電板に分極処理を施こして、前記正方
形圧電板の2つの対角線上で互に逆相の面垂直屈
曲振動をなし、十字形の節線をもつ鞍形の振動モ
ードを利用するようにした圧電単体屈曲振動子に
おいて、前記交差指電極を振動励振用と検出用の
2つに分け、3端子または4端子のフイルタを形
成させたことを特徴とする圧電フイルタである。
Further, the present invention provides a method of forming interdigital electrodes having electrode fingers parallel to diagonal lines on at least one surface of a square piezoelectric plate, and polarizing the piezoelectric plate by applying a DC voltage to the interdigital electrodes. In the single piezoelectric bending vibrator, the piezoelectric single bending vibrator is configured to perform plane-perpendicular bending vibrations of mutually opposite phases on two diagonals of the square piezoelectric plate, and utilize a saddle-shaped vibration mode having cross-shaped nodal lines. This piezoelectric filter is characterized in that interdigital electrodes are divided into two parts, one for vibration excitation and one for detection, forming a three-terminal or four-terminal filter.

本発明は、正方形の圧電板を用い、圧電横効果
だけでなく、圧電縦効果をも相加的に利用して、
通常のバイモルフ振動子では駆動が不可能であつ
た鞍形の屈曲振動の励振を可能とし、支持の容易
なスプリアス共振応答の極めて少ない特長ある屈
曲振動子及びフイルタを提供するものである。
The present invention uses a square piezoelectric plate and additively utilizes not only the piezoelectric transverse effect but also the piezoelectric longitudinal effect.
The object of the present invention is to provide a bending vibrator and filter that can excite saddle-shaped bending vibrations that cannot be driven with ordinary bimorph vibrators, are easy to support, and have extremely low spurious resonance responses.

本発明について、その動作原理を説明する。 The operating principle of the present invention will be explained.

第1図は本発明による屈曲振動子の基本構造を
示すもので、交差指電極2及び3が正方形の圧電
板1の対角線方向に平行となるように構成され、
これらの電極は1つおきに周辺部で引き出し電極
に接続されている。そして交差指電極2,3との
間に電圧を印加し、電極の長さ方向とは直角な方
向に分極を施こしておく。
FIG. 1 shows the basic structure of a bending vibrator according to the present invention, in which interdigital electrodes 2 and 3 are configured to be parallel to the diagonal direction of a square piezoelectric plate 1.
Every other electrode is connected to an extraction electrode at the periphery. Then, a voltage is applied between the interdigital electrodes 2 and 3 to polarize the electrodes in a direction perpendicular to the length direction of the electrodes.

このような構造にして、2及び3に交流電圧を
加えて駆動してやると、圧電縦効果と圧電横効果
の駆動力が相加的に加わることとなり、第2図に
示すような、2つの対角線A−B及びC−Dの上
で互いに逆相の面垂直屈曲振動をする十字形の節
線(M−M′,N−N′線)を持つ鞍形の振動モー
ドが励振される。即ち、一方の対角線A−Bの端
が面上方に変位した場合、他方の対角線C−Dで
は端が面下方に変位する。このような振動モード
は、通常のバイモルフ構造によつては励振が困難
なものである。
When this structure is driven by applying AC voltage to 2 and 3, the driving forces of the piezoelectric longitudinal effect and the piezoelectric transverse effect are added, and the two diagonal lines as shown in Fig. 2 A saddle-shaped vibration mode having cross-shaped nodal lines (M-M', N-N' lines) that performs plane-perpendicular bending vibration in opposite phases on AB and CD is excited. That is, when the end of one diagonal line AB is displaced upward in the plane, the end of the other diagonal line CD is displaced downward in the plane. Such a vibration mode is difficult to excite using a normal bimorph structure.

本発明による圧電振動子について、共振周波形
及び振動モードを有限要素法により計算した。第
3図aは、圧電板の1/4区域(例えば第2図にお
いてOM′BN′で囲まれた区域)における面垂直方
向(Z方向)の変位Uzの分布を平面的に表現し
たものである。斜線の大きさがUzの大きさを表
わしている。この図よりx(あるいはy)方向に
沿つて、節線O−M′(あるいはO−N′)より板1
の端に近づくに従つて変位が大きくなり、また対
角線上でも中心Oより離れるに従つて大きくなつ
ている。
The resonance frequency waveform and vibration mode of the piezoelectric vibrator according to the present invention were calculated using the finite element method. Figure 3a is a two-dimensional representation of the distribution of displacement Uz in the direction perpendicular to the surface (Z direction) in the 1/4 area of the piezoelectric plate (for example, the area surrounded by OM'BN' in Figure 2). be. The size of the diagonal line represents the size of Uz. From this figure, along the x (or y) direction, from the node line O-M' (or O-N'), plate 1
The displacement increases as it approaches the edge of O, and also increases as it moves away from the center O on the diagonal line.

同図bは同様に1/4区域について、板の表面に
おけるx及びy方向の変位Ux,Uyの変位量を示
すもので、便宜上輪郭の変化だけを示し、a図に
比べ変位を10倍に拡大して図示している。Ux,
Uyは板の上面と下面では大きさが等しく互いに
逆位相である。
Similarly, figure b shows the displacement amounts of Ux and Uy in the x and y directions on the surface of the plate for the 1/4 area.For convenience, only the changes in the outline are shown, and the displacement is 10 times that of figure a. The illustration is enlarged. Ux,
Uy is equal in magnitude on the top and bottom surfaces of the plate, and is in antiphase with each other.

第3図a,bから明らかなように、本発明によ
る圧電屈曲振動子は、x,y方向の輪郭振動の変
位は極めて小さく、主として圧電板の上下方向に
振動する屈曲振動であることが明らかである。
As is clear from FIGS. 3a and 3b, in the piezoelectric bending vibrator according to the present invention, the displacement of the contour vibration in the x and y directions is extremely small, and it is clear that the bending vibration mainly vibrates in the vertical direction of the piezoelectric plate. It is.

前述したように、本発明による鞍形の屈曲振動
の振動モードを効果的に励振する為の電極形状を
求めるために、正方形圧電板の表面の歪分布を計
算した。この結果によると、伸縮歪Sxx,Syyに
比べすべり歪Sxyが周辺部を除いて2ケタ程大き
い。(但しSxxはx方向の伸縮歪、Syyはy方向
の伸縮歪、Sxyはxy面内のすべり歪である。) すべり歪Sxyは周辺部で急激に小さくなつてい
る。そのSxyの計算結果を第4図に示した。Sxy
は両対角線方向の互に逆相の伸縮歪の和で表わさ
れるから、このモードの励振には、交差指電極を
正方形圧電板の対角線に平行に配置すれば良いこ
とが分る。即ち、圧電横効果に基づく電極指と平
行の方向(一方の対角線の方向)の伸縮歪と、圧
電縦効果に基づく電極指と直角の方向(他方の対
角線の方向)の伸縮歪とが逆位相で生じ、両者が
上記鞍形の振動モードの励振に対し相加的に働く
ことになる。
As described above, the strain distribution on the surface of the square piezoelectric plate was calculated in order to find the electrode shape for effectively exciting the vibration mode of the saddle-shaped bending vibration according to the present invention. According to this result, the slip strain Sxy is about two orders of magnitude larger than the expansion and contraction strains Sxx and Syy, except for the peripheral area. (However, Sxx is the expansion/contraction strain in the x direction, Syy is the expansion/contraction strain in the y direction, and Sxy is the sliding strain in the xy plane.) The sliding strain Sxy decreases rapidly in the peripheral area. The calculation result of Sxy is shown in Fig. 4. Sxy
is expressed as the sum of mutually opposite phase expansion and contraction strains in both diagonal directions, so it is understood that for excitation in this mode, interdigital electrodes should be arranged parallel to the diagonals of the square piezoelectric plate. In other words, the expansion/contraction strain in the direction parallel to the electrode finger (direction of one diagonal line) due to the piezoelectric transverse effect and the expansion/contraction strain in the direction perpendicular to the electrode finger (direction of the other diagonal line) due to the piezoelectric longitudinal effect are in opposite phase. , and both act additively on the excitation of the saddle-shaped vibration mode.

本発明における鞍形屈曲振動モードを効率良く
励振する系の交差指電極の活性領域の形と大きさ
を決めるために次の計算を行つた。
In order to determine the shape and size of the active region of the interdigital electrode of the system that efficiently excites the saddle-shaped bending vibration mode in the present invention, the following calculations were performed.

前述の特願昭57−56313号で明らかにしている
ように、圧電効果利用の場合には、電極幅aと電
極周期pの比a/pが0.5の時容量比は最小であ
り、圧電縦効果利用の場合にはa/pは小さい程
容量比が小さくなることからa/pを0.3にする
ことにすると、横効果利用の場合の容量比は縦効
果利用の場合のほぼ1/2である。そこで、圧電横
効果と圧電縦効果に直線結びつく歪の主値(主方
向は殆ど対角線方向)をS01,S02とし、 |S01|+|S02/√2|と、|S01/√2|+|
S02| の分布を計算した。圧電板の半分についてその結
果を第5図に示した。図では、中心Oでの最大値
を10として基準化した等値線で表わした。(但し、
図中の矢印は交差指電極の方向を示す。) 以上のような結果をもとに屈曲振動子を作製し
た。
As clarified in the above-mentioned Japanese Patent Application No. 57-56313, in the case of utilizing the piezoelectric effect, when the ratio a/p of the electrode width a and the electrode period p is 0.5, the capacitance ratio is the minimum, and the piezoelectric vertical In the case of effective use, the smaller a/p is, the smaller the capacity ratio is, so if a/p is set to 0.3, the capacity ratio in horizontal effect use is approximately 1/2 of that in vertical effect use. be. Therefore, the principal values of strain that are linearly connected to the piezoelectric transverse effect and the piezoelectric longitudinal effect (the principal directions are mostly diagonal directions) are S 01 and S 02 , and |S 01 |+|S 02 /√2| and |S 01 / √2|+|
The distribution of S 02 | was calculated. The results for half of the piezoelectric plate are shown in FIG. In the figure, the maximum value at the center O is set as 10 and is expressed as an isovalue line. (however,
The arrows in the figure indicate the direction of the interdigital electrodes. ) Based on the above results, we fabricated a bending vibrator.

1辺が10mmで厚さが0.5mmの正方形の圧電磁器
板(東北金属工業(株)製ジルコン酸チタン酸鉛N6
材)を用い、p=0.5mm、a/p=0.3とし、第5
図の9,8,7,6の等値線に活性領域の輪郭を
ほぼ合わせた交差指電極を、第6図aの様に板の
両面に形成し、その容量比を測定した。(第6図
aの電極パターンを表わす9,8,7,6は第5
図の等値線の値9,8,7,6との意と同じ。)
その結果が同b図で、電極パターン7あるいは6
とすることにより、即ち駆動電極の活性領域を広
くすることにより、11〜12位の小さい容量比の振
動子が得られることを示した。
A square piezoelectric ceramic plate with a side of 10 mm and a thickness of 0.5 mm (lead zirconate titanate N6 manufactured by Tohoku Metal Industry Co., Ltd.)
material), p = 0.5 mm, a/p = 0.3, and the fifth
Interdigital electrodes were formed on both sides of the plate as shown in FIG. 6a, and the capacitance ratio was measured by forming interdigital electrodes whose outlines of the active regions were approximately aligned with contour lines 9, 8, 7, and 6 in the figure. (9, 8, 7, 6 representing the electrode pattern in Figure 6a are the fifth
Same as the values 9, 8, 7, and 6 of the isovalue lines in the figure. )
The result is shown in figure b, electrode pattern 7 or 6.
By doing so, that is, by widening the active region of the drive electrode, it was shown that a vibrator with a capacitance ratio as small as 11 to 12 could be obtained.

次ぎに、上記の振動子のうち電極パターン7の
振動子を用い、両面駆動と片面駆動のアドミタン
ス特性を測定した結果を第7図のa,bに夫々示
す。共振周波数10.293kHzに対し、片面駆動では
120kHz迄は殆どスプリア応答が現われず、両面
駆動では更らに260kHz迄殆ど現われないことが
示されている。
Next, the admittance characteristics of double-sided drive and single-sided drive were measured using the vibrator with electrode pattern 7 among the above vibrators, and the results are shown in FIGS. 7a and 7b, respectively. With single-sided drive, the resonant frequency is 10.293kHz.
It has been shown that almost no spurious response appears up to 120kHz, and in double-sided drive, almost no spurious response appears up to 260kHz.

以上、本発明による振動子の実施例を用いて説
明したが、正方形の圧電板に対角線方向と平行に
交差指電極を形成してやることにより、圧電横効
果及び圧電縦効果を相加的に利用し、従来のバイ
モルフ振動子に匹敵する小さな容量比を持ち、し
かも接着層のなく、支持が容易な圧電単体屈曲振
動子が得られることを明らかにした。
The above has been explained using the embodiment of the vibrator according to the present invention, but by forming interdigital electrodes in parallel to the diagonal direction on a square piezoelectric plate, the piezoelectric transverse effect and the piezoelectric longitudinal effect can be utilized additively. It was revealed that a single piezoelectric bending vibrator can be obtained that has a small capacitance ratio comparable to that of conventional bimorph vibrators, and is easy to support without an adhesive layer.

次ぎに、本発明のもう一つである圧電フイルタ
について説明する。
Next, a piezoelectric filter, which is another aspect of the present invention, will be explained.

上記の屈曲振動子を応用し、3端子あるいは4
端子の単一モードフイルタを構成するものであ
る。
Applying the above bending vibrator, 3-terminal or 4-terminal
This constitutes a single mode filter for the terminal.

本発明による圧電フイルタは、1枚の正方形圧
電板に対角線と平行に交差指電極を二種類形成
し、一方の電極から信号を入れて屈曲振動を励振
し、これをもう一方の電極で電気信号に変換して
取り出すものである。
The piezoelectric filter according to the present invention has two types of interdigital electrodes formed in parallel with the diagonal lines on one square piezoelectric plate, and a signal is input from one electrode to excite bending vibration, which is then transmitted to the other electrode as an electric signal. It is converted into and extracted.

その具体例を第8図以降に示す。 A specific example thereof is shown in FIG. 8 and subsequent figures.

第8図は、圧電板1の片面に交差指電極を形成
するもので、電極をほぼ中央で4と6の2つの電
極に分割し、一方を入力用、他方を出力用の電極
とし、電極5を共通電極とした3端子(あるいは
4端子)フイルタである。同図bはa図のA−
A′での断面を示したもので、記号7,8は電極
4,6と接続された入力及び出力用端子である。
記号9は共通電極に接続されたアース端子であ
る。
In Fig. 8, an interdigital electrode is formed on one side of the piezoelectric plate 1, and the electrode is divided into two electrodes 4 and 6 approximately at the center, one for input and the other for output. This is a 3-terminal (or 4-terminal) filter with 5 as a common electrode. Figure b is A- of figure a.
The cross section taken at A' is shown, and symbols 7 and 8 are input and output terminals connected to the electrodes 4 and 6.
Symbol 9 is a ground terminal connected to the common electrode.

第9図は、圧電板1の両面に第8図と同様の電
極を表裏が対向するように形成したもので、7,
8は夫々表裏の対応する電極4及び6と夫々接続
された入力及び出力用の端子で、9は表裏の電極
5に接続した共通端子である。
In FIG. 9, electrodes similar to those in FIG. 8 are formed on both sides of a piezoelectric plate 1 so that the front and back sides face each other.
Reference numerals 8 denote input and output terminals connected to the corresponding electrodes 4 and 6 on the front and back, respectively, and 9 is a common terminal connected to the electrodes 5 on the front and back.

第8図,第9図では、交差指電極をほぼ中央で
2つに分割し入力用と出力用の電極としたが、第
10図と第11図はその電極の分け方を変えて、
入力用電極と出力用電極が交互に入り組んだ形に
配置されるようにした例を示したものである。す
なわち、共通電極5をミアンダライン(ジグザク
線路)状とし、その両側に入力用電極4と出力用
電極6を配置したものである。このような電極配
置にすると、入力用電極も出力用電極もそれぞれ
に良好な対称性が保たれるため、第8図,第9図
の電極に比しスプリアス共振応答が大幅に減少
し、特性が改善される。また、第12図、圧電板
1の両面に交差指電極を形成し、これを板1の面
内で分割せずに、一方の面の電極を入力用、他方
の面の電極を出力用として4端子フイルタにした
ものである。7,7′は入力端子、8,8′は出力
端子である。
In Figures 8 and 9, the interdigital electrodes are divided into two approximately at the center to serve as input and output electrodes, but in Figures 10 and 11, the way the electrodes are divided is changed.
This shows an example in which input electrodes and output electrodes are alternately arranged in a complicated manner. That is, the common electrode 5 has a meander line (zigzag line) shape, and the input electrode 4 and the output electrode 6 are arranged on both sides thereof. With this electrode arrangement, good symmetry is maintained between the input and output electrodes, so spurious resonance responses are significantly reduced compared to the electrodes shown in Figures 8 and 9, and the characteristics are improved. is improved. In addition, as shown in Fig. 12, interdigital electrodes are formed on both sides of the piezoelectric plate 1, and without dividing them within the plane of the plate 1, the electrodes on one side are used for input and the electrodes on the other side are used for output. This is a 4-terminal filter. 7 and 7' are input terminals, and 8 and 8' are output terminals.

第13図に、第10図の電極を用いた単一モー
ド3端子フイルタを構成した場合のフイルタ特性
の一例を示す。
FIG. 13 shows an example of filter characteristics when a single mode three-terminal filter is constructed using the electrodes shown in FIG. 10.

以上、本発明の圧電フイルタの構成について説
明したが、本発明によれば、比較的低周波で低損
失のフイルタが比較的小さな寸法で実現可能と
し、しかもバイモルフ振動子のような接着層がな
いため、特性のバラツキが小さくなり、さらには
鞍形の振動モードをとるために、中心を含む十字
形線状に振動節の線を有するため支持が極めて容
易となる。
The structure of the piezoelectric filter of the present invention has been described above.According to the present invention, a relatively low-frequency, low-loss filter can be realized with relatively small dimensions, and it does not have an adhesive layer like a bimorph resonator. Therefore, variations in characteristics are reduced, and since the vibration mode takes a saddle-shaped vibration mode, the vibration nodes are formed in a cross shape including the center, making it extremely easy to support.

またスプリアス共振応答は高い周波数領域まで
抑圧されて、高品位の圧電フイルタの提供が可能
となつた。
Furthermore, spurious resonance responses are suppressed up to high frequency ranges, making it possible to provide high-quality piezoelectric filters.

なお、本発明における電極の形成は、銀粉のス
クリーン印刷塗布、スパツタリング法、蒸着法な
ど従来の技術で十分であり、またフイルタにおけ
る交差指電極の形成は第6図aと同様に歪分布の
いずれの等値線にそつたものでも良いことは当然
で、何んら限定を加えるものではない。
It should be noted that the electrodes in the present invention can be formed by conventional techniques such as silver powder screen printing, sputtering, and vapor deposition, and the interdigital electrodes in the filter can be formed by any strain distribution as shown in FIG. 6a. Of course, it is possible to use a value that lies along the isovalue line, and there is no restriction in any way.

この他、本発明によつて得られる単一モードフ
イルタで、同じ特性の複数個のフイルタを、結合
容量などを用いることなく直接縦続に接続するこ
とにより、容易に高選択度のフイルタとすること
が可能で、これらも本発明に含まれることは当然
である。
In addition, in the single mode filter obtained by the present invention, a filter with high selectivity can be easily obtained by directly connecting a plurality of filters with the same characteristics in cascade without using a coupling capacitance or the like. Naturally, these are also included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による屈曲振動子の基本構造
を示す平面図、第2図は、圧電板の振動モードを
説明する図、第3図は、同振動モードにおける圧
電板の1/4区画における振動変位の分布を示す図
で、a図は面に垂直な方向(z方向)の振動変位
を示す図、b図は辺方向(x,y方向)の変位を
示す図、第4図は同振動モードにおける表面のす
べり歪を圧電板の1/4区画について示す図、第5
図は、同振動モードにおける歪分布を圧電板の半
分について示す図、第6図aは第5図の歪等値線
6,7,8,9に対応した輪郭をもつた交差指電
極パターンの平面図、第6図bは電極パターン形
状による容量比の変化を示す実測値、第7図は電
極パターン7を用いた振動子のアドミツタンス周
波数特性図で、a図は両面駆動の場合、b図は片
面駆動の場合、第8図,第9図および第12図は
圧電フイルタのそれぞれ互いに異なる実施例を示
し、いずれもa図は平面図で、b図は、a図にお
けるA−A′線断面図、第10図および第11図
は、圧電フイルタの他の実施例を示す図、第13
図は第10図の3端子フイルタのフイルタ特性を
示すグラフである。 1……圧電磁器板、2,3,4,5,6……交
差指電極、7,7′,8,8′,9,9′……端子。
Fig. 1 is a plan view showing the basic structure of the bending vibrator according to the present invention, Fig. 2 is a diagram explaining the vibration mode of the piezoelectric plate, and Fig. 3 is a quarter section of the piezoelectric plate in the same vibration mode. Figure 4 shows the vibration displacement distribution in the direction perpendicular to the plane (z direction), Figure b shows the displacement in the side direction (x, y direction), and Figure 4 shows the vibration displacement in the direction perpendicular to the surface (z direction). Figure 5 showing the surface slip strain in the same vibration mode for 1/4 section of the piezoelectric plate.
The figure shows the strain distribution in the same vibration mode for half of the piezoelectric plate. Plan view, Figure 6b shows actual measured values showing changes in capacitance ratio due to electrode pattern shape, Figure 7 is an admittance frequency characteristic diagram of a vibrator using electrode pattern 7, Figure a is for double-sided drive, Figure b is 8, 9 and 12 show different embodiments of the piezoelectric filter, in which figure a is a plan view and figure b is a line A-A' in figure a. The sectional views, FIGS. 10 and 11, are views showing other embodiments of the piezoelectric filter, and FIGS.
The figure is a graph showing the filter characteristics of the three-terminal filter shown in FIG. 1... Piezoelectric ceramic plate, 2, 3, 4, 5, 6... Interdigital electrode, 7, 7', 8, 8', 9, 9'... Terminal.

Claims (1)

【特許請求の範囲】 1 正方形の圧電板の少なくとも一方の面に複数
の電極が対角線と平行に設けられ、該複数の電極
は1つおきに接続して交差指電極を形成し、該交
差指電極に直流電圧を印加する方法により該圧電
板に分極処理を施こして、前記正方形圧電板の2
つの対角線上で互に逆相の面垂直屈曲振動をな
し、十字形の節線をもつ鞍形の振動モードを該交
差指電極により励振、検出するようにしたことを
特徴とする圧電単体屈曲振動子。 2 正方形の圧電板の少なくとも一方の面に対角
線と平行な電極指をもつ交差指電極を形成し、該
交差指電極に直流電圧を印加する方法により該圧
電板に分極処理を施こして、前記正方形圧電板の
2つの対角線上で互に逆相の面垂直屈曲振動をな
し、十字形の節線をもつ鞍形の振動モードを利用
するようにした圧電単体屈曲振動子において、前
記交差指電極を振動励振用と検出用の2つに分
け、3端子または4端子のフイルタを形成させた
ことを特徴とする圧電フイルタ。
[Scope of Claims] 1. A plurality of electrodes are provided on at least one surface of a square piezoelectric plate in parallel with a diagonal line, and the plurality of electrodes are connected every other to form an interdigital electrode, and the interdigital electrode The piezoelectric plate is subjected to polarization treatment by applying a DC voltage to the electrodes, and two of the square piezoelectric plates are polarized.
A piezoelectric single body bending vibration characterized in that a saddle-shaped vibration mode having cross-shaped nodal lines is excited and detected by the interdigital electrodes, and the plane-perpendicular bending vibration is performed in opposite phases on two diagonals. Child. 2. An interdigital electrode having electrode fingers parallel to the diagonal is formed on at least one surface of a square piezoelectric plate, and the piezoelectric plate is polarized by a method of applying a DC voltage to the interdigital electrode. In a single piezoelectric bending vibrator that performs plane-perpendicular bending vibration in opposite phases on two diagonals of a square piezoelectric plate and utilizes a saddle-shaped vibration mode having cross-shaped nodal lines, the interdigital electrodes A piezoelectric filter characterized in that it is divided into two parts, one for vibration excitation and one for detection, to form a three-terminal or four-terminal filter.
JP4600683A 1983-03-22 1983-03-22 Piezoelectric bending vibrator and piezoelectric filter Granted JPS59172825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4600683A JPS59172825A (en) 1983-03-22 1983-03-22 Piezoelectric bending vibrator and piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4600683A JPS59172825A (en) 1983-03-22 1983-03-22 Piezoelectric bending vibrator and piezoelectric filter

Publications (2)

Publication Number Publication Date
JPS59172825A JPS59172825A (en) 1984-09-29
JPH0221690B2 true JPH0221690B2 (en) 1990-05-15

Family

ID=12734979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4600683A Granted JPS59172825A (en) 1983-03-22 1983-03-22 Piezoelectric bending vibrator and piezoelectric filter

Country Status (1)

Country Link
JP (1) JPS59172825A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927273A (en) * 1988-07-21 1990-05-22 Nippon Thompson Co., Ltd. Linear motion rolling contact bearing assembly having a feed-in port
CN101185241B (en) * 2005-05-27 2010-10-06 Nxp股份有限公司 Bulk acoustic wave resonator device, filter comprising the device and electronic device
US8513863B2 (en) * 2009-06-11 2013-08-20 Qualcomm Mems Technologies, Inc. Piezoelectric resonator with two layers

Also Published As

Publication number Publication date
JPS59172825A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
JP2790177B2 (en) Electrostrictive resonance element
JPH01176110A (en) Electrostriction resonator
US5057801A (en) Filter device of piezo-electric type including divided co-planar electrodes
JP3838024B2 (en) Vertically coupled multimode piezoelectric filter
NL1010853C2 (en) Piezoelectric resonator adapted to generate a harmonic wave in a vibration mode varying in thickness.
JPH114133A (en) Thickness vertical piezoelectric resonator
KR20020020683A (en) Component
JPH114135A (en) Energy continement-type thickness vertical piezoelectric resonators
JPH0221690B2 (en)
JPH0354895B2 (en)
JPH0153808B2 (en)
JPH01191508A (en) Electrostrictive resonator
JP4344798B2 (en) Piezoelectric vibrator for tactile sensor
JPH10215140A (en) Piezoelectric resonator and electronic component using the resonator
JP2002044785A (en) Piezo-resonator
JP2012165032A (en) Elastic wave device
JP3901013B2 (en) Vertically coupled multimode piezoelectric filter device and electronic component
JP3922096B2 (en) Vertically coupled multimode piezoelectric filter device, longitudinally coupled multimode piezoelectric filter, and electronic component
JP3904895B2 (en) Acoustic transducer
JP3485114B2 (en) Thickness vertical piezoelectric resonator and piezoelectric resonant component
JP3838158B2 (en) Vertically coupled multimode piezoelectric filter
JP3312260B2 (en) Piezoelectric vibration gyro
JP4692811B2 (en) Piezoelectric resonance component
JPH0537533Y2 (en)
JPH0522068A (en) Piezoelectric resonator