JPH0354814A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0354814A
JPH0354814A JP2029572A JP2957290A JPH0354814A JP H0354814 A JPH0354814 A JP H0354814A JP 2029572 A JP2029572 A JP 2029572A JP 2957290 A JP2957290 A JP 2957290A JP H0354814 A JPH0354814 A JP H0354814A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
buried
substrate
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029572A
Other languages
Japanese (ja)
Inventor
Akira Kanai
明 金井
Hiroo Tochikubo
栃久保 浩夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2029572A priority Critical patent/JPH0354814A/en
Publication of JPH0354814A publication Critical patent/JPH0354814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To improve the accuracy of mask alignment for a buried layer formed in a semiconductor substrate partially by a method wherein an infrared beam is applied onto the main surface of the semiconductor substrate and the reflective image of the buried layer obtained by the beam application is detected and used as the reference for the mask alignment. CONSTITUTION:An epitaxial semiconductor layer 4 is formed on a semiconductor substrate 1. Then a buried layer 2 which has higher impurity concentration than the layer 4 is partially formed between the substrate 1 and the layer 4. An infrared beam is applied onto the main surface of the substrate 1 and a reflective image 7 obtained by the beam application is used as the reference for mask alignment. After that, impurity is selectively introduced into the surface of the layer 4 by using the mask to form a semiconductor region. With this constitution, even if there is slack or discrepancy in the upper layer, the layer 2 can be recognized directly, and thereby the accuracy of mask alignment for the layer 2 can be improved.

Description

【発明の詳細な説明】 [技術分野] 本発明は半導体装置の製造におけるマスク位置合わせ技
術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to mask alignment technology in manufacturing semiconductor devices.

[背景技術] バイボーラICの製造プロセスでは、サブストレート(
基板半導体)の表面に酸化膜マスクを通して埋込層とな
る高濃度不純物を拡散し、その上にエピタキシャル或長
による半導体層を形戊したものを基体として、このエピ
タキシャル半導体層表面にマスクを用いた選択拡散によ
り各種の半導体素子を形成するが、マスク拡散は上記埋
込拡散層の位置を基準にして行なわれる。従来,この埋
込層位置の決定にあたっては、第1図に示すように埋込
拡散層2の形威されたサブストレートl表面に形成され
る酸化膜のエッチングによる凹部3がエピタキシャル半
導体層4表面にも2次の凹部5として現われるのを利用
し、通常の光学顕微鏡を使用して上記2次の凹部位置(
矢印6)を検出しこれを埋込層位置の基準とする。
[Background technology] In the manufacturing process of bibolar IC, substrate (
A highly concentrated impurity is diffused to form a buried layer on the surface of a substrate (semiconductor) through an oxide film mask, and a semiconductor layer is formed on top of it by epitaxial growth.A mask is used on the surface of this epitaxial semiconductor layer. Various semiconductor elements are formed by selective diffusion, and mask diffusion is performed with reference to the position of the buried diffusion layer. Conventionally, when determining the position of this buried layer, as shown in FIG. Taking advantage of the fact that it appears as a secondary recess 5 in the
Arrow 6) is detected and used as a reference for the buried layer position.

しかしながら,上記方法においてはエピタキシャル或長
の過程で基板1の結晶軸の方向により例えば主面に(1
11)結晶面から王〜10゜程度傾いた結晶面を使用す
ることにより半導体層が斜め方向に戊長ずるためエピタ
キシャル層4表面での2次の凹部の位置が埋込拡散N2
の位置から「ズレ」を生じ,又、エピタキシャル層によ
る2次凹部の「ダレ」もありそのまま「ズレ」等の位置
を基準とすることになる。この結果、エピタキシャル層
表面から基板に接続する接合分lIi層(アイソレーシ
ョン)を形成する場合に基準位置のズレ等によって極端
な場合、分離層が埋込層と異常接近し、時には重なって
しまい、アイソレーション耐圧不良の原因となる。この
ような重なりをさけて分離層を埋込層から引き離して設
計すればバイボーラICの微細化を損なうことになった
However, in the above method, depending on the direction of the crystal axis of the substrate 1 during the epitaxial growth process, for example (1
11) Since the semiconductor layer is elongated in an oblique direction by using a crystal plane that is tilted by about 10 degrees from the crystal plane, the position of the secondary recess on the surface of the epitaxial layer 4 is caused by buried diffusion N2.
There is also a "sag" from the position of the epitaxial layer, and there is also a "sagging" of the secondary recess due to the epitaxial layer, so the position of the "slip" etc. is used as a reference. As a result, when forming a junction lIi layer (isolation) that connects the epitaxial layer surface to the substrate, in extreme cases due to misalignment of the reference position, the isolation layer comes abnormally close to the buried layer, and sometimes overlaps. This may cause isolation breakdown voltage failure. If such overlap was avoided and the separation layer was designed to be separated from the buried layer, miniaturization of the bibolar IC would be impaired.

また、特開昭53−47764号公報によって開示され
ている如く積層欠陥パターンをマスク位置合わせの目印
に利用することが知られている。
It is also known to utilize a stacking fault pattern as a mark for mask alignment, as disclosed in Japanese Patent Laid-Open No. 53-47764.

この場合、エピタキシャル層内に欠陥を残すことになり
あまり好ましいとはいえない。
In this case, defects are left in the epitaxial layer, which is not very preferable.

[発明の目的] 本発明の目的は上記した点を解決するためになされたも
のであり、その目的とするところは埋込拡散層に対する
マスク合わせの精度を高め半導体装置の高集積化、高信
頼性化を図ることにある。
[Object of the Invention] The object of the present invention was to solve the above-mentioned problems, and the object is to improve the accuracy of mask alignment with the buried diffusion layer, and to achieve high integration and reliability of semiconductor devices. The goal is to sexualize it.

[発明の概要] 本発明の特徴とするところは、基板と、その上に形威さ
れたエピタキシャル半導体層と、それらの間にそのエピ
タキシャル半導体層の不純物濃度よりも高い濃度を有す
る埋込層が部分的に形威された半導体基体を用意する工
程、上記半導体基体主面に対し赤外光線を投射し、上記
埋込層の反射像を検出しマスク合わせの基準とする工程
、しかる後、上記半導体主面にマスクを用いた選択的不
純物導入により半導体領域を形成する工程、とから成る
ものである。
[Summary of the Invention] The present invention is characterized by comprising a substrate, an epitaxial semiconductor layer formed thereon, and a buried layer having an impurity concentration higher than the impurity concentration of the epitaxial semiconductor layer between them. A step of preparing a partially shaped semiconductor substrate, a step of projecting an infrared ray onto the principal surface of the semiconductor substrate, detecting a reflected image of the buried layer and using it as a reference for mask alignment; This process consists of forming a semiconductor region by selectively introducing impurities into the main surface of the semiconductor using a mask.

赤外光線は半導体結晶を透過し、不純物濃度の異なるも
のに対して透過率等の光学的性質が異なる。このため、
埋込層の部分を顕著な反射像として認識することができ
る。
Infrared light passes through semiconductor crystals, and optical properties such as transmittance differ depending on the impurity concentration. For this reason,
The buried layer portion can be recognized as a prominent reflected image.

以下本発明を実施例にそって詳述する。The present invention will be described in detail below with reference to Examples.

[実施例コ 本発明の望ましい実施形態は第2図に示すように、半導
体基板1の上にエピタキシャル半導体層を形成し、この
基板工と半導体N4との間に埋め込んだ埋込拡敢層2の
位置を検出するにあたって,エピタキシャル層表面に対
し赤外光線を投射することによって得られる上記埋込拡
散層の反射像7をマスク位置合わせの基準とするもので
ある。
[Example 2] As shown in FIG. 2, a preferred embodiment of the present invention includes an epitaxial semiconductor layer formed on a semiconductor substrate 1, and a buried expansion layer 2 buried between the substrate layer and the semiconductor N4. In detecting the position of the mask, the reflected image 7 of the buried diffusion layer obtained by projecting an infrared ray onto the surface of the epitaxial layer is used as a reference for mask positioning.

通常、バイボーラICの製造プロセスでは埋込拡散層の
不純物濃度は基板やエピタキシャル層の濃度より数ケタ
高い。例えば基板の濃度を1014〜10 1sato
ms/a+?、エピタキシャル層の濃度1 013〜1
 0”atoms/cJに対し埋込層の濃度は10 ”
 〜1 0 ”atoms/cm程度である。一方、赤
外光線はSi等の半導体結晶を透過し、不純物濃度の異
なるものに対して透過率等の光学的性質が異なっている
。したがって、エピタキシャル戊長後にエピタキシャル
層表面から赤外線顕微鏡等を用いて埋込拡散層を観察す
ると、適当な条件、例えば赤外光線を投射した場合に第
3図に斜線ハッチングAで示すように埋込拡散層の部分
を顕著な反射像として認識することができる。マスク位
置合わせが完了した後、上記エピタキシャル層表面にマ
スクを用いた選択的不純物導入により半導体領域を形成
する6 なお、同図のBはエピタキシャル層表面に形成された埋
込層の2次凹部の輪郭であってAと大きくズレているこ
とを示している。
Normally, in the bibolar IC manufacturing process, the impurity concentration of the buried diffusion layer is several orders of magnitude higher than the concentration of the substrate or epitaxial layer. For example, if the concentration of the substrate is 1014~101sato
ms/a+? , concentration of epitaxial layer 1 013~1
The concentration of the buried layer is 10” for 0”atoms/cJ.
~10" atoms/cm. On the other hand, infrared light passes through semiconductor crystals such as Si, and optical properties such as transmittance differ depending on the impurity concentration. Therefore, the epitaxial When the buried diffusion layer is observed from the surface of the epitaxial layer using an infrared microscope or the like after a long period of time, under appropriate conditions, for example, when infrared light is projected, a portion of the buried diffusion layer is observed as shown by diagonal hatching A in Figure 3. After completing the mask alignment, a semiconductor region is formed by selectively introducing impurities into the surface of the epitaxial layer using a mask. This is the outline of the secondary concave portion of the buried layer formed in Figure A, and shows that it deviates greatly from A.

第4図は本発明によるマスク位置合わせ法を行なうため
のマスクアライナ用赤外顕微鏡の原理的構造を示す6同
図において、1は試料である半導体基板、2は認識の対
象となる埋込拡散層、4はエピタキシャル層である68
は赤外光線源(ランプ)、9はハーフミラー、10は対
物レンズ、l1は接眼レンズである。光源8から出た赤
外光線をミラーを介してエピタキシャル層4に投射し、
埋込層2よりの反射光をレンズ10.11を投射してR
察し、試料に対し顕微鏡を相対移動し埋込層位置を決定
する。
Figure 4 shows the basic structure of an infrared microscope for mask aligners for performing the mask alignment method according to the present invention.6 In the same figure, 1 is a semiconductor substrate that is a sample, and 2 is an embedded diffusion that is an object of recognition. layer 4 is an epitaxial layer 68
9 is an infrared light source (lamp), 9 is a half mirror, 10 is an objective lens, and l1 is an eyepiece lens. Infrared light emitted from a light source 8 is projected onto the epitaxial layer 4 via a mirror,
The reflected light from the buried layer 2 is projected through the lens 10.11 and R
The position of the buried layer is determined by moving the microscope relative to the sample.

エピタキシャル或長の条件によって埋込拡散層の形状を
上層に伝播の際にダレやズレを生じるためエピタキシャ
ル層表面の形状から埋込拡散層の位置を判断する従来方
式では精度に限界があったが、本発明の場合はダレやズ
レがある場合でも埋夕, 込拡散層を直接に認識するものであるため、埋込拡散層
に対するマスク合わせ精度を飛躍的に向上することが可
能である。
Due to certain epitaxial length conditions, the shape of the buried diffusion layer may sag or shift when propagating to the upper layer, so the conventional method of determining the position of the buried diffusion layer from the shape of the surface of the epitaxial layer had a limit in accuracy. In the case of the present invention, the buried and buried diffusion layers can be directly recognized even when there is sagging or misalignment, so it is possible to dramatically improve the accuracy of mask alignment with respect to the buried diffusion layer.

[効果コ (1)エピタキシャル層のダレやズレに起因するアイソ
レーション不良がなくなる。
[Effects (1) Isolation defects caused by sag or misalignment of the epitaxial layer are eliminated.

(2)バイポーラICの一層の微細化が可能になる。(2) Further miniaturization of bipolar ICs becomes possible.

[利用分野] 本発明は,エピタキシャル層のダレやズレの大きい場合
において、例えば(111)結晶面からl〜10゜程度
傾いた結晶面を主面に用いる半導体装置や厚膜装置にお
いて有効であり、埋込拡散層をもつバイボーラICや接
合電界効果トランジスタを含むIC等のすべての半導体
装置に応用できる。
[Field of Application] The present invention is effective in cases where the epitaxial layer has large sag or misalignment, for example, in semiconductor devices and thick film devices that use a crystal plane tilted by about 1 to 10 degrees from the (111) crystal plane as the main surface. It can be applied to all semiconductor devices such as bibolar ICs having buried diffusion layers and ICs including junction field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第↑図はこれまでのマスク位置合わせ法における半導体
装置の形態を示す断面図, 第2図は本発明によるマスク位置合わせ法における半導
体装置の形態を示す断面図、 第3図は同じくその平面図、 第4図は本発明によるマスク位置合わせ法に使用する赤
外顕微鏡の原理構造を示す断面図である。 1・・・半導体基板、2・・・埋込拡散層、3・・・凹
部,4・・・エピタキシャル層、5・・・2次凹部、6
,7・・・像、8・・・赤外ランプ、9・・・ミラー.
10.11・・・第 1 図 第 3 図 第 4 図
Figure ↑ is a cross-sectional view showing the form of a semiconductor device in the conventional mask alignment method, Figure 2 is a cross-sectional view showing the form of a semiconductor device in the mask alignment method according to the present invention, and Figure 3 is a plan view thereof. , FIG. 4 is a sectional view showing the basic structure of an infrared microscope used in the mask alignment method according to the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Buried diffusion layer, 3... Recessed part, 4... Epitaxial layer, 5... Secondary recessed part, 6
, 7... Image, 8... Infrared lamp, 9... Mirror.
10.11...Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、基板と、その上に形成されたエピタキシャル半導体
層と、それらの間にそのエピタキシャル半導体層の不純
物濃度よりも高い濃度を有する埋込層が部分的に形成さ
れた半導体基体を用意する工程、上記半導体基体主面に
対し赤外光線を投射し、上記埋込層の反射像を検出しマ
スク合わせの基準とする工程、しかる後、上記半導体主
面にマスクを用いた選択的不純物導入により半導体領域
を形成する工程、とから成ることを特徴とする半導体装
置の製造法。
1. A step of preparing a semiconductor body in which a substrate, an epitaxial semiconductor layer formed thereon, and a buried layer having an impurity concentration higher than the impurity concentration of the epitaxial semiconductor layer are partially formed between them; A step of projecting an infrared ray onto the main surface of the semiconductor substrate, detecting the reflected image of the buried layer and using it as a reference for mask alignment, and then selectively introducing impurities into the main surface of the semiconductor using a mask. 1. A method for manufacturing a semiconductor device, comprising the steps of: forming a region.
JP2029572A 1990-02-13 1990-02-13 Manufacture of semiconductor device Pending JPH0354814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029572A JPH0354814A (en) 1990-02-13 1990-02-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029572A JPH0354814A (en) 1990-02-13 1990-02-13 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57040801A Division JPS58158919A (en) 1982-03-17 1982-03-17 Mask positioning method

Publications (1)

Publication Number Publication Date
JPH0354814A true JPH0354814A (en) 1991-03-08

Family

ID=12279831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029572A Pending JPH0354814A (en) 1990-02-13 1990-02-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0354814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326360A (en) * 1992-05-20 1993-12-10 Victor Co Of Japan Ltd Method and apparatus for manufacture of semiconductor device
JP2006165554A (en) * 2004-12-01 2006-06-22 Asml Holding Nv System and method
KR100846589B1 (en) * 2006-08-17 2008-07-16 삼성에스디아이 주식회사 Method of aligning substrate
US7835001B2 (en) 2006-05-24 2010-11-16 Samsung Mobile Display Co., Ltd. Method of aligning a substrate, mask to be aligned with the same, and flat panel display apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326360A (en) * 1992-05-20 1993-12-10 Victor Co Of Japan Ltd Method and apparatus for manufacture of semiconductor device
JP2006165554A (en) * 2004-12-01 2006-06-22 Asml Holding Nv System and method
JP4495074B2 (en) * 2004-12-01 2010-06-30 エーエスエムエル ホールディング エヌ.ブイ. System and method
US7835001B2 (en) 2006-05-24 2010-11-16 Samsung Mobile Display Co., Ltd. Method of aligning a substrate, mask to be aligned with the same, and flat panel display apparatus using the same
KR100846589B1 (en) * 2006-08-17 2008-07-16 삼성에스디아이 주식회사 Method of aligning substrate

Similar Documents

Publication Publication Date Title
US5869386A (en) Method of fabricating a composite silicon-on-insulator substrate
JP3634505B2 (en) Alignment mark placement method
KR100222195B1 (en) Exposure apparatus and manufacturing method for devices using same
JPH0354814A (en) Manufacture of semiconductor device
JPH0114694B2 (en)
WO1998057361A1 (en) Substrate for device manufacturing, process for manufacturing the substrate, and method of exposure using the substrate
JPH07221166A (en) Alignment mark and electronic device having the same as well as manufacturing method thereof
JPS62155532A (en) Formation of positioning mark for semiconductor wafer
JP3294625B2 (en) Electronic component manufacturing method
JPH02260419A (en) Irradiation with laser
JP4439935B2 (en) Manufacturing method of semiconductor device
JP3328975B2 (en) Semiconductor wafer
JP3913300B2 (en) Semiconductor integrated circuit
US6256085B1 (en) Exposure apparatus
EP0377101B1 (en) A reference mark structure for guiding the alignment of unfinished semiconductor integrated circuits topographies to successive masks
JPS62128118A (en) Semiconductor device
JPH033223A (en) Semiconductor device
JPH0250413A (en) Manufacture of semiconductor element
JPH06244070A (en) Semiconductor wafer
JPH09232220A (en) Method for forming resist pattern
JP3084901B2 (en) Exposure method and exposure apparatus for SOI structure
JPH0250414A (en) Manufacture of semiconductor element
JPH0555111A (en) Manufacture of semiconductor device
JPH0250415A (en) Manufacture of semiconductor element
JPH07142329A (en) Exposure method and aligner and mask