JPH05326360A - Method and apparatus for manufacture of semiconductor device - Google Patents

Method and apparatus for manufacture of semiconductor device

Info

Publication number
JPH05326360A
JPH05326360A JP4152842A JP15284292A JPH05326360A JP H05326360 A JPH05326360 A JP H05326360A JP 4152842 A JP4152842 A JP 4152842A JP 15284292 A JP15284292 A JP 15284292A JP H05326360 A JPH05326360 A JP H05326360A
Authority
JP
Japan
Prior art keywords
semiconductor device
light
manufacturing
epitaxial layer
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152842A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishihata
俊彦 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4152842A priority Critical patent/JPH05326360A/en
Publication of JPH05326360A publication Critical patent/JPH05326360A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To increase the integration density of the title semiconductor device by increasing the alignment accuracy of the following: a substratum pattern which is formed before an epitaxial process; and a pattern which is formed through a lithographic process after the epitaxial process. CONSTITUTION:In a method of manufacturing of a semiconductor device, an epitaxial layer 2 whose impurity concentration is lower than that of heavily doped regions 3 is formed, by an epitaxial growth operation, on a semiconductor substrate 1 in which the heavily doped regions 3 have been formed in parts on the surface, the epitaxial layer 2 is irradiated with a beam of referene light, and an alignment signal for a next lithographic process is obtained by detecting and processing a beam of diffracted light. In the manufacturing method, infrared rays whose wavelength is 10mum or higher are used as the beam of reference light. In the manufacturing method of the semiconductor device, an infrared-ray generation device 17 whose wavelength is 10mum or higher is used as a light source for the beam of reference light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エピタキシャル成長工
程とリソグラフィ工程とを含む多数の工程を経て製造さ
れる半導体装置の製造方法、及びこの方法を実施する製
造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device manufactured through a number of steps including an epitaxial growth step and a lithography step, and a manufacturing apparatus for carrying out this method.

【0002】[0002]

【従来の技術】半導体集積回路の中でも、バイポーラト
ランジスタを基本素子とする集積回路は、一般にエピタ
キシャル成長工程を経て製造される。また、最近ではC
−MOSやCCD等においても、特性向上のためにエピ
タキシャル成長工程によるエピタキシャル層を活用する
ものが多い。このように製造工程にエピタキシャル成長
工程が含まれている場合、次のリソグラフィ工程の位置
合せのために、エピタキシャル層上からエピタキシャル
層下の半導体基板の下地パターンの位置を検出する必要
がある。
2. Description of the Related Art Among semiconductor integrated circuits, an integrated circuit having a bipolar transistor as a basic element is generally manufactured through an epitaxial growth process. Also, recently C
In many cases such as -MOS and CCD, an epitaxial layer formed by an epitaxial growth process is used to improve the characteristics. When the manufacturing process includes the epitaxial growth process as described above, it is necessary to detect the position of the underlying pattern of the semiconductor substrate above the epitaxial layer and below the epitaxial layer in order to align the next lithography process.

【0003】以下、バイポーラトランジスタの製造工程
における下地パターンの位置検出について説明する。バ
イポーラ集積回路においてもっとも重要な基本素子とな
るnpnトランジスタは、図4(a)に平面構造を、図4
(b)に断面構造をそれぞれ示すように、p- 形基板1と
n形エピタキシャル層2の界面に配置した高濃度のn+
形埋込み層3、それをとり囲むように拡散形成したp+
形分離領域4、それにより分離したn形エピタキシャル
層2内に形成したp形ベース領域5、さらに、その中に
高濃度のn形不純物を拡散形成したn+ 形エミッタ領域
6、このn+ 形エミッタ領域6の形成と同時に、コレク
タコンタク用として形成されたn+ 形コレクタ領域7に
よって構成されている。このトランジスタの表面には、
コンタクトホール以外、全面にシリコン酸化膜8を形成
して保護している。
The position detection of the underlying pattern in the manufacturing process of the bipolar transistor will be described below. The npn transistor, which is the most important basic element in the bipolar integrated circuit, has a plane structure shown in FIG.
The cross-sectional structure as shown respectively in (b), p - high concentrations disposed at the interface of the shape the substrate 1 and the n-type epitaxial layer 2 of n +
Buried layer 3, p + diffused to surround it
A type isolation region 4, a p type base region 5 formed in the n type epitaxial layer 2 separated thereby, an n + type emitter region 6 in which a high concentration n type impurity is diffused therein, and this n + type Simultaneously with the formation of the emitter region 6, the n + -type collector region 7 is formed for collector contact. On the surface of this transistor,
A silicon oxide film 8 is formed and protected on the entire surface except for the contact holes.

【0004】このトランジスタを製造する場合、先ず、
- 形基板1上にn+ 形埋込み層3となるn+ 領域を形
成しておき、次に、エピタキシャル成長工程によりn形
エピタキシャル層2を形成する。その後、フォトリソグ
ラフィ工程を経てp+ 形分離領域4、p形ベース領域
5、n+ 形エミッタ領域6、n+ 形コレクタ領域7を順
次形成する。この際、n形エピタキシャル層2の後に形
成される各領域は、この層の下のn+ 形埋込み層3に対
して水平方向の相対位置が精度よく一致していなければ
ならない。
When manufacturing this transistor, first,
p - previously formed an n + region serving as the n + -type buried layer 3 on the form board 1, then forming an n-type epitaxial layer 2 by an epitaxial growth process. Then, a p + -type isolation region 4, a p-type base region 5, an n + -type emitter region 6, and an n + -type collector region 7 are sequentially formed through a photolithography process. At this time, each region formed after the n-type epitaxial layer 2 has to be accurately aligned in the horizontal relative position with respect to the n + -type buried layer 3 below this region.

【0005】このように、エピタキシャル成長前の下地
パターンに、エピタキシャル成長後のフォトリソグラフ
ィ工程にて形成するパターンの位置を一致させるべく、
エピタキシャル成長前の基板表面に数百ナノメータの段
差をつけておき、エピタキシャル成長後の基板表面に段
差を反映した凹凸を生ぜしめ、エピタキシャル成長後の
最初のパターン形成に際してこの凹凸を基準にして位置
合わせが行われる。
Thus, in order to match the position of the pattern formed in the photolithography process after the epitaxial growth with the underlying pattern before the epitaxial growth,
A step of several hundred nanometers is formed on the substrate surface before epitaxial growth, and unevenness that reflects the step is generated on the substrate surface after epitaxial growth, and alignment is performed based on this unevenness when forming the first pattern after epitaxial growth. ..

【0006】図5はエピタキシャル成長後の凹凸を検出
してフォトリソグラフィ工程の位置合せ信号を得る従来
の製造装置の概略構成図である。同図において、レーザ
光発生装置11から放射されたレーザ光はビーム整形光学
系12でスリット状にされてウエハを照射する。そのと
き、段差による回折光は検出器13で検出され、検出信号
が信号処理系14に導かれる。信号処理系14は、A−D変
換器、メモリ、CPU等を含み、検出信号をディジタル
信号に変換して記憶し、さらに、記憶データに対して所
定の処理を施し、例えば凸部(又は凹部)の中心位置を
検出して次のリソグラフィ工程の位置合わせ制御系15に
加える。
FIG. 5 is a schematic configuration diagram of a conventional manufacturing apparatus for detecting unevenness after epitaxial growth to obtain an alignment signal in a photolithography process. In the figure, the laser beam emitted from the laser beam generator 11 is slitted by the beam shaping optical system 12 and irradiates the wafer. At that time, the diffracted light due to the step is detected by the detector 13, and the detection signal is guided to the signal processing system 14. The signal processing system 14 includes an AD converter, a memory, a CPU, etc., converts the detection signal into a digital signal and stores the digital signal, and further performs a predetermined process on the stored data, for example, a convex portion (or a concave portion). ) Is detected and added to the alignment control system 15 for the next lithography process.

【0007】[0007]

【発明が解決しようとする課題】上述したように、段差
のあるパターン上にエピタキシャル成長を行うと、図6
に示したように、エピタキシャル成長後の表面パターン
は下地基板のそれとは位置も形状も多少変化してパター
ンのダレ9や、ズレ10がでてくる。このダレ・ズレがあ
ると中心位置がずれて次のリソグラフィ工程でパターン
の正確な位置合せができなくなり、極端な場合にはパタ
ーンが消えてしまうことさえある。かかるパターンのダ
レ・ズレは、エピタキシャル成長条件を最適化すること
によってある程度は改善できるが完全には解消し得なか
った。また、パターンの変形を改善するための最適条件
が、他の特性、例えば膜質等を改善するための条件と相
いれない場合があった。
As described above, when epitaxial growth is performed on a stepped pattern, as shown in FIG.
As shown in FIG. 5, the surface pattern after the epitaxial growth is slightly different in position and shape from that of the base substrate, and a pattern sag 9 or a gap 10 appears. If this sagging or misalignment occurs, the center position shifts and the pattern cannot be accurately aligned in the next lithography process, and in an extreme case, the pattern may even disappear. The sagging / deviation of such a pattern can be improved to some extent by optimizing the epitaxial growth conditions, but could not be completely eliminated. In addition, the optimum condition for improving the pattern deformation may not be compatible with the condition for improving other characteristics such as film quality.

【0008】かくして、従来の半導体装置の製造方法
は、段差のある下地パターンとエピタキシャル成長後の
表面パターンとの間にある程度の位置ずれを見込んで、
寸法的に余裕を持たせた設計をせざるを得ず、これがた
めに集積度が低く抑えられてしまうという問題があっ
た。
Thus, the conventional method of manufacturing a semiconductor device allows for a certain amount of positional deviation between the underlying pattern having steps and the surface pattern after epitaxial growth,
There was a problem in that the design had to have a dimensional allowance, which reduced the degree of integration.

【0009】本発明は、上記の問題点を解決するために
なされたもので、エピタキシャル工程前に形成される下
地パターンと、エピタキシャル工程後のリソグラフィ工
程を経て形成されるパターンとの位置合せ精度を上げ
得、これによって集積度を高めることのできる半導体装
置の製造方法及び製造装置を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and improves the alignment accuracy between a base pattern formed before an epitaxial process and a pattern formed through a lithography process after the epitaxial process. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus of a semiconductor device that can be increased and thereby increase the degree of integration.

【0010】[0010]

【課題を解決するための手段】本発明に係る半導体装置
の製造方法は、表面の一部に不純物の高濃度領域が形成
された半導体基板上に、エピタキシャル成長により高濃
度領域よりも不純物濃度の低いエピタキシャル層を形成
し、エピタキシャル層上から参照光を放射すると共に、
回折光を検出、処理することにより次のリソグラフィ工
程の位置合せ信号を得るとき、参照光として波長が約10
μm以上の赤外光線を用いるものである。
According to a method of manufacturing a semiconductor device of the present invention, an impurity concentration is lower than that of a high concentration region by epitaxial growth on a semiconductor substrate having a high concentration region of impurity formed on a part of its surface. An epitaxial layer is formed and reference light is emitted from the epitaxial layer,
When the alignment signal for the next lithography process is obtained by detecting and processing the diffracted light, the wavelength of about 10 is used as the reference light.
Infrared rays of μm or more are used.

【0011】また、本発明に係る半導体装置の製造装置
は、エピタキシャル層上から参照光を放射すると共に、
回折光を検出、処理することにより、エピタキシャル層
下の半導体基板の下地パターンの位置を検出するとき、
参照光の光源として波長が約10μm以上の赤外光線発生
装置を用いるものである。
The semiconductor device manufacturing apparatus according to the present invention emits reference light from above the epitaxial layer, and
When detecting the position of the underlying pattern of the semiconductor substrate under the epitaxial layer by detecting and processing the diffracted light,
An infrared ray generator having a wavelength of about 10 μm or more is used as a reference light source.

【0012】[0012]

【作用】本発明においては、エピタキシャル層上から参
照光として波長が約10μm以上の赤外光線を照射し、そ
の回折光を検出、処理しているので、エピタキシャル工
程前に形成される下地パターンを直接検出することがで
き、エピタキシャル工程後のリソグラフィ工程を経て形
成されるパターンとの位置合せ精度を向上させることが
でき、これによって設計時に見込むずれが小さくなるた
め集積度を上げることができる。
In the present invention, since the infrared light having a wavelength of about 10 μm or more is irradiated as the reference light from above the epitaxial layer and the diffracted light is detected and processed, the underlayer pattern formed before the epitaxial process is processed. It can be directly detected, and the alignment accuracy with the pattern formed through the lithography process after the epitaxial process can be improved. As a result, the misalignment expected at the time of designing can be reduced and the integration degree can be increased.

【0013】[0013]

【実施例】以下本発明の半導体装置の製造方法及び製造
装置を図面に示す実施例によって詳細に説明する。図1
は本発明に係る半導体装置の製造方法及びこの方法を実
施する装置の説明図である。図中、図4及び図5と同一
の符号を付したものはそれぞれ同一の要素を示す。ここ
では、レーザ光発生装置11の代わりに赤外光線発生装置
17を用いた点、及び、位置合せ用の凹凸をなくしてn+
形埋込み層を直接検出するようにした点が図4及び図5
と異なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device manufacturing method and manufacturing apparatus according to the present invention will be described below in detail with reference to the embodiments shown in the drawings. Figure 1
FIG. 3 is an explanatory view of a method for manufacturing a semiconductor device according to the present invention and an apparatus for carrying out this method. In the figure, the same reference numerals as those in FIGS. 4 and 5 denote the same elements. Here, an infrared ray generator is used instead of the laser light generator 11.
The point using 17 and the unevenness for alignment are eliminated and n +
4 and FIG. 5 are such that the embedded buried layer is directly detected.
Is different from

【0014】これは、p- 形基板1とn形エピタキシャ
ル層2との界面に高濃度のn+ 形埋込み層3が形成され
ているとき、n形エピタキシャル層2の上から赤外光線
を照射すると、この赤外光線がn形エピタキシャル層2
を透過し、n+ 形埋込み層3及びp- 形基板1で反射
し、再びn形エピタキシャル層2を透過して放出される
ので、その回折光を検出器13で検出し、検出信号を信号
処理系14で処理することにより次のリソグラフィ工程の
位置合せ信号を得るものである。この場合、n+形埋込
み層3とp- 形基板1とを比較すると、不純物濃度の高
いn+ 形埋込み層3の反射率が高いことを利用してn+
形埋込み層3を直接検出することができる。
This is because when a high-concentration n + -type buried layer 3 is formed at the interface between the p -type substrate 1 and the n-type epitaxial layer 2, infrared rays are irradiated from above the n-type epitaxial layer 2. Then, this infrared ray is reflected by the n-type epitaxial layer 2
Is transmitted, is reflected by the n + -type buried layer 3 and the p -type substrate 1, and is transmitted through the n-type epitaxial layer 2 again to be emitted. Therefore, the diffracted light is detected by the detector 13 and a detection signal is output. By processing in the processing system 14, an alignment signal for the next lithography process is obtained. In this case, the n + -type buried layer 3 and p - Comparing shape substrate 1, by utilizing the reflectance of the high n + -type buried layer 3 of high impurity concentration is n +
The buried layer 3 can be detected directly.

【0015】このように赤外光線を用いることによって
+ 形埋込み層3を直接検出できる理由を以下に説明す
る。シリコンの光吸収係数αは図2に示すように波長に
依存して変化する。すなわち、可視光領域では光の吸収
が大きく、波長の長い波長領域での吸収は小さい。した
がって、可視光領域では層が薄くても遮断されるが、赤
外領域では層が薄いと光が透過すると考えられる。
The reason why the n + -type buried layer 3 can be directly detected by using infrared rays in this way will be described below. The light absorption coefficient α of silicon changes depending on the wavelength as shown in FIG. That is, light absorption is large in the visible light region and small in the long wavelength region. Therefore, it is considered that even if the layer is thin, it is blocked in the visible light region, but light is transmitted in the infrared region when the layer is thin.

【0016】また、一般に光は屈折率が大きく変化する
界面でよく反射する。シリコンの屈折率nは図3に不純
物濃度をパラメータとして示すように、波長が約10μm
以下の光に対しては不純物濃度に対する依存性は小さい
が、波長が約10〜40μmの範囲では不純物濃度が増すほ
ど屈折率は小さくなっている。ところで、図4に示した
npnトランジスタのp- 形基板1と比較してn+ 形埋
込み層3の不純物濃度は高く、さらに、n形エピタキシ
ャル層2の不純物濃度はn+ 形埋込み層3と比較して低
くなっている。したがって、波長が約10μm以上の赤外
光線を参照光としてn形エピタキシャル層上から照射す
ると、n形エピタキシャル層2とn+ 形埋込み層3との
界面で反射し、n形エピタキシャル層2とp- 形基板1
との界面で反射が殆どなくなる。
Generally, light is well reflected at the interface where the refractive index changes greatly. The refractive index n of silicon is about 10 μm at the wavelength, as shown in FIG.
The following light has little dependency on the impurity concentration, but the refractive index decreases as the impurity concentration increases in the wavelength range of about 10 to 40 μm. By the way, the impurity concentration of the n + -type buried layer 3 is higher than that of the p -type substrate 1 of the npn transistor shown in FIG. 4, and the impurity concentration of the n-type epitaxial layer 2 is higher than that of the n + -type buried layer 3. And it is getting lower. Therefore, when an infrared ray having a wavelength of about 10 μm or more is irradiated as a reference light from above the n-type epitaxial layer, it is reflected at the interface between the n-type epitaxial layer 2 and the n + -type buried layer 3, and the n-type epitaxial layer 2 and the p-type - form the substrate 1
Almost no reflection occurs at the interface with.

【0017】よって、n形エピタキシャル層2の上から
赤外光線を照射し、その回折光を検出器13で検出し、検
出信号を信号処理14で処理することによりn+ 形埋込み
層3の位置を直接検出することができる。
Accordingly, infrared rays are irradiated from above the n-type epitaxial layer 2, the diffracted light is detected by the detector 13, and the detection signal is processed by the signal processing 14, whereby the position of the n + -type buried layer 3 is determined. Can be detected directly.

【0018】なお、上記実施例ではnpnトランジスタ
を主要素とする集積回路について説明したが、本発明は
これに適用を限定されるものではなく、表面の一部に不
純物の高濃度領域が形成された半導体基板上に、エピタ
キシャル成長により高濃度領域よりも不純物濃度の低い
エピタキシャル層を形成し、エピタキシャル層上から参
照光を放射すると共に、回折光を検出、処理して次のリ
ソグラフィ工程の位置合せ信号を得る殆どの半導体装置
に適用することができる。
Although the integrated circuit having the npn transistor as the main element has been described in the above embodiments, the present invention is not limited to this application, and a high-concentration impurity region is formed on a part of the surface. On the semiconductor substrate, an epitaxial layer with a lower impurity concentration than the high-concentration region is formed by epitaxial growth, the reference light is emitted from the epitaxial layer, and the diffracted light is detected and processed to provide the alignment signal for the next lithography process. Can be applied to almost all semiconductor devices.

【0019】[0019]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、エピタキシャル層上から参照光として波
長が約10μm以上の赤外光線を照射し、その回折光を検
出、処理しているので、エピタキシャル工程前に形成さ
れる下地パターンを直接検出することができ、エピタキ
シャル工程後のリソグラフィ工程を経て形成されるパタ
ーンとの位置合せ精度を向上させることができ、これに
よって設計時に見込むずれが小さくなるため集積度を上
げることができる。また、本発明によれば、エピタキシ
ャル成長によるパターンのズレ・ダレの影響を受けない
ため、エピタキシャル成長条件の自由度が増し、その結
果、膜質等、他の特性を向上させることができる。さら
にまた、本発明によれば、下地パターンに凹凸の位置合
せマークを形成する必要がなく、製造工程が簡単化され
る。
As is apparent from the above description, according to the present invention, infrared light having a wavelength of about 10 μm or more is irradiated as reference light from the epitaxial layer, and the diffracted light is detected and processed. Therefore, the underlying pattern formed before the epitaxial process can be directly detected, and the alignment accuracy with the pattern formed through the lithography process after the epitaxial process can be improved. Since it becomes smaller, the degree of integration can be increased. Further, according to the present invention, since there is no influence of pattern deviation / difference due to epitaxial growth, the degree of freedom in epitaxial growth conditions is increased, and as a result, other characteristics such as film quality can be improved. Furthermore, according to the present invention, it is not necessary to form an uneven alignment mark on the underlying pattern, and the manufacturing process is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus for carrying out the present invention.

【図2】本発明の動作を説明するためにSiの光吸収係
数と波長との関係を示した線図である。
FIG. 2 is a diagram showing the relationship between the light absorption coefficient of Si and the wavelength for explaining the operation of the present invention.

【図3】本発明の動作を説明ためにSiの屈折率と波長
との関係を示した線図である。
FIG. 3 is a diagram showing the relationship between the refractive index of Si and the wavelength for explaining the operation of the present invention.

【図4】本発明を適用する一般的な集積回路の構成を示
す平面図及び断面図である。
FIG. 4 is a plan view and a cross-sectional view showing a configuration of a general integrated circuit to which the present invention is applied.

【図5】従来の半導体装置の製造装置の概略構成図であ
る。
FIG. 5 is a schematic configuration diagram of a conventional semiconductor device manufacturing apparatus.

【図6】従来の半導体装置の製造方法を説明するための
集積回路の断面図である。
FIG. 6 is a cross-sectional view of an integrated circuit for explaining a conventional method for manufacturing a semiconductor device.

【符号の説明】 1 p- 形基板 2 n形エピタキシャル層 3 n+ 形埋込み層 4 p+ 形分離領域 5 p形ベース領域 6 n+ 形エミッタ領域 7 n+ 形コレクタ領域 12 ビーム整形光学系 13 検出器 14 信号処理系 15 位置合わせ制御系 17 赤外光線発生装置[Reference Numerals] 1 p - forms a substrate 2 n-type epitaxial layer 3 n + form buried layer 4 p + form isolation region 5 p-type base region 6 n + -type emitter region 7 n + form collector region 12 the beam shaping optics 13 Detector 14 Signal processing system 15 Positioning control system 17 Infrared ray generator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面の一部に不純物の高濃度領域が形成さ
れた半導体基板上に、エピタキシャル成長により前記高
濃度領域よりも不純物濃度の低いエピタキシャル層を形
成し、前記エピタキシャル層上から参照光を放射すると
共に、回折光を検出、処理することにより次のリソグラ
フィ工程の位置合せ信号を得る半導体装置の製造方法に
おいて、前記参照光として波長が約10μm以上の赤外光
線を用いることを特徴とする半導体装置の製造方法。
1. An epitaxial layer having an impurity concentration lower than that of the high-concentration region is formed by epitaxial growth on a semiconductor substrate having a high-concentration impurity region formed on a part of its surface, and a reference light is emitted from the epitaxial layer. In a method of manufacturing a semiconductor device which emits and detects and processes diffracted light to obtain an alignment signal in the next lithography process, an infrared ray having a wavelength of about 10 μm or more is used as the reference light. Method of manufacturing semiconductor device.
【請求項2】エピタキシャル層上から参照光を放射する
と共に、回折光を検出、処理することにより、前記エピ
タキシャル層下の半導体基板の下地パターンの位置を検
出する半導体装置の製造装置において、前記参照光の光
源として波長が約10μm以上の赤外光線発生装置を用い
ることを特徴とする半導体装置の製造装置。
2. A semiconductor device manufacturing apparatus for detecting the position of a base pattern of a semiconductor substrate under the epitaxial layer by emitting reference light from the epitaxial layer and detecting and processing diffracted light. An apparatus for manufacturing a semiconductor device, wherein an infrared ray generator having a wavelength of about 10 μm or more is used as a light source of light.
JP4152842A 1992-05-20 1992-05-20 Method and apparatus for manufacture of semiconductor device Pending JPH05326360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152842A JPH05326360A (en) 1992-05-20 1992-05-20 Method and apparatus for manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152842A JPH05326360A (en) 1992-05-20 1992-05-20 Method and apparatus for manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05326360A true JPH05326360A (en) 1993-12-10

Family

ID=15549326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152842A Pending JPH05326360A (en) 1992-05-20 1992-05-20 Method and apparatus for manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05326360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041608A1 (en) * 1997-11-20 2000-10-04 Nikon Corporation Mark detection method and mark position sensor
JP2007534144A (en) * 2003-08-20 2007-11-22 クコー ピーティーワイ リミテッド Manufacture of nanoscale and atomic scale devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354814A (en) * 1990-02-13 1991-03-08 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354814A (en) * 1990-02-13 1991-03-08 Hitachi Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041608A1 (en) * 1997-11-20 2000-10-04 Nikon Corporation Mark detection method and mark position sensor
EP1041608A4 (en) * 1997-11-20 2003-11-19 Nikon Corp Mark detection method and mark position sensor
JP2007534144A (en) * 2003-08-20 2007-11-22 クコー ピーティーワイ リミテッド Manufacture of nanoscale and atomic scale devices
JP4855255B2 (en) * 2003-08-20 2012-01-18 クコー ピーティーワイ リミテッド Manufacture of nanoscale and atomic scale devices

Similar Documents

Publication Publication Date Title
US5641715A (en) Semiconductor IC device fabricating method
US6433366B1 (en) Circuit-incorporating light receiving device and method of fabricating the same
US6376871B1 (en) Semiconductor device having photodetector and optical pickup system using the same
US4791468A (en) Radiation-sensitive semiconductor device
KR19980063584A (en) Photodetector
JP2009099950A (en) Light-receiving/emitting integrated element array, and sensor device using the same
EP0810440B1 (en) Optical semiconductor component and method of fabrication
US20090050998A1 (en) Semiconductor device
US5256898A (en) Semiconductor device with a different epitaxial thickness between adjacent circuit regions
JPH05326360A (en) Method and apparatus for manufacture of semiconductor device
JPH05326900A (en) Solid-state image-sensing device and manufacture thereof
EP0855743A2 (en) Photodiode with a divided active region
JP3428828B2 (en) Photodetector with built-in circuit
JP3294625B2 (en) Electronic component manufacturing method
WO1999008314A1 (en) Semiconductor integrated circuit device and method of fabrication thereof
US5990540A (en) Semiconductor device and method for manufacturing the same
JP3386218B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62128118A (en) Semiconductor device
JPS6145862B2 (en)
US20060091491A1 (en) Optical detector and method of producing an arrangement of multiple semiconductor layers
EP0377101B1 (en) A reference mark structure for guiding the alignment of unfinished semiconductor integrated circuits topographies to successive masks
JP2000252190A (en) Alignment mark of semiconductor device
TWI685983B (en) Photodiode structure and manufacturing method therefore
JPS63237484A (en) Semiconductor device
JPS639151A (en) Manufacture of bipolar semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980113