JPH0354461B2 - - Google Patents

Info

Publication number
JPH0354461B2
JPH0354461B2 JP57030292A JP3029282A JPH0354461B2 JP H0354461 B2 JPH0354461 B2 JP H0354461B2 JP 57030292 A JP57030292 A JP 57030292A JP 3029282 A JP3029282 A JP 3029282A JP H0354461 B2 JPH0354461 B2 JP H0354461B2
Authority
JP
Japan
Prior art keywords
etching
film
active layer
opening
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030292A
Other languages
Japanese (ja)
Other versions
JPS58147122A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3029282A priority Critical patent/JPS58147122A/en
Publication of JPS58147122A publication Critical patent/JPS58147122A/en
Publication of JPH0354461B2 publication Critical patent/JPH0354461B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明はドライエツチング法を用いた化合物半
導体の微細加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for microfabrication of compound semiconductors using a dry etching method.

(2) 技術の背景 半導体素子の高集積化及び素子特性の向上を計
る為に半導体の微細加工技術が必要不可欠となつ
ている。化合物半導体の加工法として従来よりウ
エツト化学エツチング法が用いられているが、ウ
エツト化学エツチング法では等方的にエツチング
が進行する為、例えばリセス構造を有する化合物
半導体FETを製作する場合には、ゲート直下の
リセス形成工程の際、マスク下部までエツチング
が進む為、マスクパターン幅より広い加工が施さ
れ、精度の良い微細パターンが得られない。従つ
て、このウエツト化学エツチング法により横方向
へのくい込みが、前記リセス構造のFET素子で
は、ソース抵抗Rsの増大を導き、相互コンダク
タンスgmの低下を招く。
(2) Background of technology Semiconductor microfabrication technology has become essential in order to increase the integration of semiconductor devices and improve device characteristics. Wet chemical etching has traditionally been used as a processing method for compound semiconductors, but since etching progresses isotropically in wet chemical etching, for example, when manufacturing a compound semiconductor FET with a recessed structure, the gate During the recess formation process directly below, etching progresses to the bottom of the mask, resulting in a process that is wider than the mask pattern width, making it impossible to obtain a fine pattern with high precision. Therefore, in the FET device having the recessed structure, the lateral penetration caused by this wet chemical etching method leads to an increase in the source resistance Rs and a decrease in the mutual conductance gm.

一方、ウエツト化学エツチング法に換わる技術
としてドライエツチング法が検討されているが、
ドライエツチング技術の一つであるプラズマエツ
チング法では選択性等は良好であるが、ウエツト
化学エツチングと同様、化学的反応のみを利用す
る為、等方的にエツチングが進み、前記と同様な
サイドエツチングが生じる。
On the other hand, dry etching is being considered as an alternative to wet chemical etching.
Plasma etching, which is one of the dry etching techniques, has good selectivity, but like wet chemical etching, it uses only chemical reactions, so etching proceeds isotropically, resulting in side etching similar to the above. occurs.

また、不活性ガスを用いるイオンエツチング法
では、物理的スパツタリング効果を利用する為、
イオン衝撃により化合物半導体表面のダメージが
大きいばかりでなく、エツチング速度の選択性が
非常に少なく且つエツチングレートも遅い。ま
た、レジストの硬化による変性が生じる等の原因
から加工性及び素子特性に大きく影響を及ぼす。
In addition, in the ion etching method using inert gas, the physical sputtering effect is used.
Not only does the ion bombardment cause significant damage to the surface of the compound semiconductor, but also the selectivity of the etching rate is very low and the etching rate is slow. In addition, processability and device characteristics are greatly affected due to causes such as denaturation due to curing of the resist.

そこで、最近化学的反応性に富み且つイオン性
の特徴を有する反応性イオンエツチング法がガリ
ウム・ヒ素(GaAs)等の化合物半導体に対して
も有力な微細加工技術として注目されつつある。
Therefore, reactive ion etching, which is rich in chemical reactivity and has ionic characteristics, has recently been attracting attention as a powerful microfabrication technique for compound semiconductors such as gallium arsenide (GaAs).

(3) 従来技術と問題点 次に、従来技術の問題点を図面を用いて説明す
る。第1図はリセス形成工程を施す前のFETの
概略断面である。同図に於いて、1は半絶縁性
GaAs基板、2はn型GaAs能動層、3は絶縁膜、
4はレジスト、5,6はソース・ドレイン電極を
それぞれ示している。第2図は従来のウエツト化
学エツチング法を用いて能動層2にパターンをエ
ツチングした時の前記第1図に示されたFETの
一部拡大図である。
(3) Prior art and problems Next, problems with the prior art will be explained using drawings. FIG. 1 is a schematic cross-section of the FET before the recess forming process is performed. In the same figure, 1 is semi-insulating
GaAs substrate, 2 is n-type GaAs active layer, 3 is insulating film,
Reference numeral 4 indicates a resist, and 5 and 6 indicate source and drain electrodes, respectively. FIG. 2 is an enlarged view of a portion of the FET shown in FIG. 1 after a pattern has been etched into the active layer 2 using a conventional wet chemical etching method.

能動層2上には、パターニングされた開口部7
の幅がd1を有する絶縁膜3を更に開口部7に当た
る領域にパターニングされた開口部の幅d2がd1
り小さい(d1<d2)開口部8を有するレジスト4
が前記絶縁膜3上に配置されている。ここで、絶
縁層3及びレジスト4によつて形成される層の断
面形状はオーバーハング状になつているが、これ
は後の工程でゲート電極を形成する際のリフトオ
フ法に利用する。
On the active layer 2, a patterned opening 7 is formed.
A resist 4 having an opening 8 whose width d 2 is smaller than d 1 ( d 1 < d 2 ) is further patterned in the region corresponding to the opening 7.
is arranged on the insulating film 3. Here, the cross-sectional shape of the layer formed by the insulating layer 3 and the resist 4 has an overhanging shape, which is utilized in a lift-off method when forming a gate electrode in a later step.

従来より上記構成から成る能動層2にレジスト
4に設けられた開口部8のパターンをエツチング
する際、水酸化カリウム(KOH)と過酸化水素
(H2O2)の混合溶液等を用いてウエツト化学エツ
チングを施していた。しかしながらウエツト化学
エツチング法では、パターンニングマスクとして
レジスト4よりも絶縁膜3が働き、且つ等方的に
エツチングが進行する為、能動層2でのエツチン
グの深さtに対するパターンの幅dはdd1+2t
となる。従つて能動層2に形成されるパターン幅
dはレジスト4の開口部8の幅d2によつて決定す
ることはできないという問題点があつた。
Conventionally, when etching the pattern of the openings 8 provided in the resist 4 in the active layer 2 having the above-mentioned structure, a wet etching process was performed using a mixed solution of potassium hydroxide (KOH) and hydrogen peroxide (H 2 O 2 ). It had been chemically etched. However, in the wet chemical etching method, the insulating film 3 acts as a patterning mask rather than the resist 4, and the etching progresses isotropically, so the width d of the pattern relative to the etching depth t in the active layer 2 is dd 1 +2t
becomes. Therefore, there was a problem that the width d of the pattern formed in the active layer 2 could not be determined by the width d 2 of the opening 8 of the resist 4.

(4) 発明の目的 本発明の目的は、化合物半導体基板、若しくは
化合物半導体層(この後、化合物半導体基体と略
す)上に、開口部を有する絶縁膜が配置され該絶
縁膜上の前記開口部に当たる領域に前記開口部の
幅より小さい開口部を有するレジスト膜が配置さ
れた構造から成る半導体層に、前記レジスト膜を
マスクとして前記レジスト膜に設けられた開口部
のパターンを前記化合物半導体基体にエツチング
する際、前記レジスト膜の開口部が前記化合物半
導体基体でのパターン幅を精度良く規定すること
ができるエツチング方法を提供することにある。
(4) Object of the Invention An object of the invention is to provide an insulating film having an opening on a compound semiconductor substrate or a compound semiconductor layer (hereinafter abbreviated as a compound semiconductor substrate), the opening on the insulating film. A pattern of openings provided in the resist film is formed on the compound semiconductor substrate using the resist film as a mask. An object of the present invention is to provide an etching method in which the opening of the resist film can accurately define the pattern width on the compound semiconductor substrate during etching.

(5) 発明の構成 本発明は、化合物半導体基板上に形成された化
合物半導体からなる能動層と、該能動層上にゲー
トリセス形成予定領域を挟んで対向配置されたソ
ース及びドレイン電極を有する化合物半導体装置
にゲート電極を形成する方法であつて、該能動層
表面に該能動層とは異なる材料から成る第1の
膜、第2の膜及び第3の膜を順次積層する工程
と、前記第3の膜の該ゲートリセス形成予定領域
対応する部分に該ゲートリセスの幅と略等しい幅
の第1の開口部を形成する工程と、該第3の膜を
マスクとして前記第2の膜をエツチングし、該第
1の開口部より大きな開口幅を有する第2の開口
部を形成する工程と、前記第1の膜より前記能動
層のエツチング速度が速いエツチングガスを用い
て反応性イオンエツチングにより前記第1の開口
部のパターンを前記能動層にパターニングする工
程を有することを特徴としている。
(5) Structure of the Invention The present invention provides a compound semiconductor having an active layer made of a compound semiconductor formed on a compound semiconductor substrate, and a source and a drain electrode disposed on the active layer to face each other across a region where a gate recess is to be formed. A method for forming a gate electrode in a device, the method comprising: sequentially laminating a first film, a second film, and a third film made of a material different from the active layer on the surface of the active layer; forming a first opening having a width substantially equal to the width of the gate recess in a portion of the film corresponding to the region where the gate recess is to be formed; etching the second film using the third film as a mask; forming a second opening having a larger opening width than the first opening; and etching the first film by reactive ion etching using an etching gas that etches the active layer faster than the first film. The method is characterized in that it includes a step of patterning the active layer with a pattern of openings.

(6) 発明の実施例 本発明を本発明の一実施例を用いて詳述する。
第3図は前記第1図のFETを本発明の一実施例
の方法を用いてエツチングした時の一部拡大図で
ある。第1図で説明した部分と同部分は同記号で
指示してある。
(6) Embodiment of the invention The present invention will be described in detail using an embodiment of the invention.
FIG. 3 is a partially enlarged view of the FET shown in FIG. 1 etched using the method of one embodiment of the present invention. The same parts as those explained in FIG. 1 are indicated by the same symbols.

本発明によれば、まず能動層2表面を酸素を含
む雰囲気中に一定時間さらすか或いは自然酸化し
て膜厚20〜30〔Å〕の酸化膜9を形成し、該酸化
膜9上にCVD法により膜厚0.5〔μm〕の二酸化
シリコン(SiO2)膜3を堆積し、更にSiO2膜3
上にフオトレジスト、例えばAZ1350J(商品名)
4を膜厚0.6〔μm〕塗布する。しかる後、フオト
レジスト4をパターニングして開口部の幅d2
1.5〔μm〕となるような開口部8を形成する。次
に該フオトレジスト4をマスクとしてSiO2膜3
のみをフツ化水素(HF)溶液でウエツト化学エ
ツチングして前記レジスト4に形成した開口部8
下に開口部7を形成する。このとき、開口部7の
幅d1はd2よりも大きい5〔μm〕となるようにす
る。
According to the present invention, first, the surface of the active layer 2 is exposed to an oxygen-containing atmosphere for a certain period of time or is naturally oxidized to form an oxide film 9 with a thickness of 20 to 30 [Å], and then CVD is performed on the oxide film 9. A silicon dioxide (SiO 2 ) film 3 with a thickness of 0.5 [μm] is deposited by a method, and then a SiO 2 film 3 is deposited.
Photoresist on top, e.g. AZ1350J (product name)
4 to a thickness of 0.6 [μm]. After that, the photoresist 4 is patterned so that the opening width d 2 is
An opening 8 having a diameter of 1.5 [μm] is formed. Next, using the photoresist 4 as a mask, the SiO 2 film 3 is
Openings 8 are formed in the resist 4 by wet chemical etching with a hydrogen fluoride (HF) solution.
An opening 7 is formed at the bottom. At this time, the width d 1 of the opening 7 is set to 5 [μm], which is larger than d 2 .

この後、平行平板電極型ドライエツチング装置
を用いて、フロン12(CCl2F2)とヘリウム
(He)との混合ガス(分圧比Pccl2F2/PHe=
0.25〜2)を導入し、ガス圧1〜5〔Pa〕、パワー
密度0.2〜0.5〔W/cm2〕の条件でSiO2膜3及びレ
ジスト4が設けられた能動層2を反応性イオンエ
ツチングによつて3分間エツチング処理する。
After that, using a parallel plate electrode type dry etching device, a mixed gas of Freon 12 (CCl 2 F 2 ) and helium (He) (partial pressure ratio Pccl 2 F 2 /PHe=
0.25 to 2) and reactive ion etching of the active layer 2 provided with the SiO 2 film 3 and the resist 4 under the conditions of a gas pressure of 1 to 5 [Pa] and a power density of 0.2 to 0.5 [W/ cm 2 ]. Etch for 3 minutes.

このエツチング処理の際、化学的に活性なフツ
素F及び塩素Clイオン10はプラズマと試料側電
極との間に発生する自己バイアス電圧に加速され
る為、試料表面に対して垂直方向の運転が生じ、
これより著しい異方性のエツチングが進行する。
During this etching process, the chemically active fluorine F and chlorine Cl ions 10 are accelerated by the self-bias voltage generated between the plasma and the sample-side electrode, so they cannot be driven in the direction perpendicular to the sample surface. arise,
From this point on, marked anisotropic etching progresses.

一方、活性化されなかつた中性のF、Cl等の反
応性中性粒子11は自己バイアスの影響を受け
ず、等方的運動を行なう為、横方向への拡がりを
もちSiO2膜3に設けられた開口部7の幅d1の領
域まで進入する。しかし能動層2表面は酸化膜9
に被覆され且つエツチングガスによる能動層2と
酸化膜9の選択エツチング比が著しく異なる為、
中性粒子11によるd1領域での能動層2のエツチ
ング進行は遮蔽される。
On the other hand, reactive neutral particles 11 such as neutral F and Cl that have not been activated are not affected by self-bias and move isotropically, so they spread in the lateral direction and are attached to the SiO 2 film 3. It enters into the area of width d 1 of the opening 7 provided. However, the surface of the active layer 2 is an oxide film 9.
Because the selective etching ratio of the active layer 2 and the oxide film 9 by the etching gas is significantly different,
The progress of etching of the active layer 2 in the d 1 region by the neutral particles 11 is blocked.

このような上記の効果から、能動層2でのエツ
チング幅dは、レジスト4の開口部8の幅d2で規
定される領域のみのエツチングが進み、該幅dは
dd2即ちdはほぼ1.5〔μm〕となる。尚、幅d2
に対応した酸化膜9のエツチングはFイオン若し
くはClイオン等による物理的スパツタリング効果
により除去されたものである。
Because of the above-mentioned effects, the etching width d in the active layer 2 progresses only in the region defined by the width d2 of the opening 8 of the resist 4, and the width d is dd2 , that is, d is approximately 1.5. [μm]. Furthermore, the width d 2
The etching of the oxide film 9 corresponding to the above was removed by a physical sputtering effect using F ions, Cl ions, or the like.

本実施例ではエツチングガスとしてCCl2F2
スを用いたが、塩素Cl若しくは臭素Brを含んだ
ガスを使用しても同様な効果が得られる。また、
前記ガスと反応性イオンエツチング法と組み合わ
せることにより自然酸化膜及びプラズマグロウン
酸化膜に対する選択エツチング比は50〜100倍程
度と大きいことが実験より確認されており、中性
粒子による選択エツチング比は前記の値に比べよ
り著しくなると考えられる。尚、本実施例ではエ
ツチングマスクとして酸化膜9を用いたが窒化膜
を用いても同様な効果が得られる。
Although CCl 2 F 2 gas was used as the etching gas in this embodiment, the same effect can be obtained by using a gas containing chlorine Cl or bromine Br. Also,
It has been confirmed through experiments that the selective etching ratio for natural oxide films and plasma-grown oxide films is as high as 50 to 100 times by combining the above gas with the reactive ion etching method. This is considered to be more significant than the value of . In this embodiment, the oxide film 9 is used as an etching mask, but the same effect can be obtained by using a nitride film.

また、反応性イオンによる異方性エツチングは
比較的低い自己バイアス電圧である80〜90V程度
で且つ高いガス圧4〜5Paの実験下に於いても
GaAsの垂直なエツチング特性が得られているこ
とにより、反応性イオンによるサイドエツチング
が非常に少ないことが確認された。GaAsの表面
ダメージも後方散乱測定により、イオンエツチン
グ法に比べ著しく少ないことが示された。更にフ
オトレジスト及びSiO2膜などの絶縁膜に対する
GaAsの選択比は各々約15倍、約40倍と良好であ
り、且つレジストの変性もほとんどないことが確
認され、本発明の反応性イオンエツチングに対す
るマクク材として有効であることが示された。
Furthermore, anisotropic etching by reactive ions is possible even under experiments with a relatively low self-bias voltage of about 80 to 90 V and a high gas pressure of 4 to 5 Pa.
It was confirmed that side etching caused by reactive ions is extremely low due to the vertical etching characteristics of GaAs. Backscattering measurements showed that GaAs surface damage was significantly less than that achieved by ion etching. Furthermore, for insulating films such as photoresist and SiO 2 film,
It was confirmed that the selectivity ratio of GaAs was good at about 15 times and about 40 times, respectively, and there was almost no denaturation of the resist, indicating that it is effective as a masking material for the reactive ion etching of the present invention.

次に前記実施例の応用を簡単に述べることにす
る。
Next, the application of the above embodiment will be briefly described.

AlxGa1−xAs(x=0.1〜0.5)層上にGaAs層を
形成し、前記実施例と同様な方法でGaAs層をエ
ツチングすると、CCl2F2を含んだガスでは
AlGaAsはGaAsと比較して強い選択性を持つて
いる為、AlxGa1−xAs層の表面でほぼエツチン
グが停止するプロフアイルが得られた。AlxGa1
−xAs(x=0.1以上)に対するGaAsの選択比は
30倍以上である。従つてAlxGa1−xAs層は
CCl2F2を含んだガスを用いてGaAs層をエツチン
グする際のストツパーの役目を果すことができ
る。
When a GaAs layer is formed on the AlxGa 1 -xAs (x = 0.1 to 0.5) layer and the GaAs layer is etched in the same manner as in the previous example, the gas containing CCl 2 F 2 etches.
Since AlGaAs has strong selectivity compared to GaAs, a profile was obtained in which etching almost stopped at the surface of the AlxGa 1 -xAs layer. AlxGa 1
The selection ratio of GaAs to −xAs (x=0.1 or more) is
It is more than 30 times. Therefore, the AlxGa 1 −xAs layer is
It can serve as a stopper when etching a GaAs layer using a gas containing CCl 2 F 2 .

(6) 発明の効果 本発明によれば化合物半導体基体上に開口部を
有する絶縁膜が配設され、該絶縁膜上の前記開口
部に当たる領域に前記開口部の幅より小さい開口
部を有するレジスト膜が配設された構造から成る
半導体層を前記レジスト膜をマスクとして前記レ
ジスト膜に設けられた開口部のパターンを前記化
合物半導体基体にエツチングする際、前記レジス
ト膜の開口部が前記化合物半導体基体でのパター
ン幅を精度良く規定できるという効果がある。
(6) Effects of the Invention According to the present invention, an insulating film having an opening is disposed on a compound semiconductor substrate, and a resist having an opening smaller than the width of the opening in a region corresponding to the opening on the insulating film. When a pattern of openings provided in the resist film is etched into the compound semiconductor substrate using the resist film as a mask for etching a semiconductor layer having a structure in which a film is provided, the openings in the resist film are etched into the compound semiconductor substrate. This has the effect that the pattern width can be defined with high accuracy.

尚、本発明はリセス構造を有するFETを製造
する時のみに限定するものではない。
Note that the present invention is not limited to manufacturing FETs having a recessed structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はリセス形成工程を施す前のFETの概
略断面図、第2図は従来のウエツト化学エツチン
グ法を用いて能動層にパターンをエツチングした
時の前記第1図に示されたFETの一部拡大図、
第3図は前記第1図のFETを本発明の一実施例
の方法を用いてエツチングした時の一部拡大図で
ある。 2……n型GaAs能動層、3……絶縁膜、4…
…レジスト、9……酸化膜。
Figure 1 is a schematic cross-sectional view of the FET before the recess formation process, and Figure 2 is a cross-sectional view of the FET shown in Figure 1 after a pattern has been etched into the active layer using the conventional wet chemical etching method. Enlarged view of part,
FIG. 3 is a partially enlarged view of the FET shown in FIG. 1 etched using the method of one embodiment of the present invention. 2... n-type GaAs active layer, 3... insulating film, 4...
...Resist, 9...Oxide film.

Claims (1)

【特許請求の範囲】 1 化合物半導体基板上に形成された化合物半導
体からなる能動層と、該能動層上にゲートリセス
形成予定領域を挟んで対向配置されたソース及び
ドレイン電極を有する化合物半導体装置にゲート
電極を形成する方法であつて、 該能動層表面に該能動層とは異なる材料から成
る第1の膜、第2の膜及び第3の膜を順次積層す
る工程と、 前記第3の膜の該ゲートリセス形成予定領域に
対応する部分に該ゲートリセスの幅と略等しい幅
の第1の開口部を形成する工程と、 該第3の膜をマスクとして前記第2の膜をエツ
チングし、該第1の開口部より大きな開口幅を有
する第2の開口部を形成する工程と、 前記第1の膜より前記能動層のエツチング速度
が速いエツチングガスを用いて反応性イオンエツ
チングにより前記第1の開口部のパターンを前記
能動層にパターニングする工程を有することを特
徴とする化合物半導体装置の製造方法。
[Scope of Claims] 1. A compound semiconductor device having an active layer made of a compound semiconductor formed on a compound semiconductor substrate, and a source and a drain electrode arranged oppositely on the active layer with a region where a gate recess is to be formed sandwiched therebetween. A method of forming an electrode, the method comprising: sequentially laminating a first film, a second film, and a third film made of a material different from the active layer on the surface of the active layer; forming a first opening having a width substantially equal to the width of the gate recess in a portion corresponding to the region where the gate recess is to be formed; etching the second film using the third film as a mask; forming a second opening having an opening width larger than that of the opening; and etching the first opening by reactive ion etching using an etching gas that etches the active layer faster than the first film. 1. A method for manufacturing a compound semiconductor device, comprising the step of patterning the active layer with a pattern.
JP3029282A 1982-02-26 1982-02-26 Dry etching method for compound semiconductor Granted JPS58147122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3029282A JPS58147122A (en) 1982-02-26 1982-02-26 Dry etching method for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029282A JPS58147122A (en) 1982-02-26 1982-02-26 Dry etching method for compound semiconductor

Publications (2)

Publication Number Publication Date
JPS58147122A JPS58147122A (en) 1983-09-01
JPH0354461B2 true JPH0354461B2 (en) 1991-08-20

Family

ID=12299648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029282A Granted JPS58147122A (en) 1982-02-26 1982-02-26 Dry etching method for compound semiconductor

Country Status (1)

Country Link
JP (1) JPS58147122A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595454A (en) * 1984-06-15 1986-06-17 At&T Bell Laboratories Fabrication of grooved semiconductor devices
JPH0212817A (en) * 1988-06-29 1990-01-17 Nec Corp Dry etching method
JP2953958B2 (en) * 1994-09-01 1999-09-27 日本電気株式会社 Dry etching method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117554A (en) * 1976-03-30 1977-10-03 Toshiba Corp Manufacturing method of semiconductor device
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole
JPS5737835A (en) * 1980-08-19 1982-03-02 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117554A (en) * 1976-03-30 1977-10-03 Toshiba Corp Manufacturing method of semiconductor device
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole
JPS5737835A (en) * 1980-08-19 1982-03-02 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS58147122A (en) 1983-09-01

Similar Documents

Publication Publication Date Title
JP3248072B2 (en) Oxide film etching method
US6117788A (en) Semiconductor etching methods
US4371407A (en) Method for producing semiconductor device
JPS6246073B2 (en)
JPH0354461B2 (en)
JPH0133933B2 (en)
JPH08288256A (en) Trench etching method
JP2773700B2 (en) Compound semiconductor device and method of manufacturing the same
JPS61271839A (en) Pattern forming method
JPH03278543A (en) Manufacture of field-effect transistor
JPH09321024A (en) Manufacture of semiconductor device
JPH07297174A (en) Manufacture of semiconductor device
JPH02192172A (en) Superconducting transistor
JPH0257701B2 (en)
JPS60200572A (en) Manufacture of semiconductor device
JPH0628314B2 (en) High-speed semiconductor device manufacturing method
JPH05175328A (en) Semiconductor device and manufacture thereof
JPH0567634A (en) Manufacture of mis type semiconductor device
JPH05235338A (en) Semiconductor device and manufacture thereof
JPS59191333A (en) Manufacture of semiconductor device
JPH0319695B2 (en)
JPH08195383A (en) Dry etching method and manufacture of semiconductor device
JPH06177164A (en) Manufacture of semiconductor device
JP2000269235A (en) Manufacture of junction gate field effect transistor
JPH0713959B2 (en) Method for manufacturing semiconductor device