JPH0354366B2 - - Google Patents

Info

Publication number
JPH0354366B2
JPH0354366B2 JP19065383A JP19065383A JPH0354366B2 JP H0354366 B2 JPH0354366 B2 JP H0354366B2 JP 19065383 A JP19065383 A JP 19065383A JP 19065383 A JP19065383 A JP 19065383A JP H0354366 B2 JPH0354366 B2 JP H0354366B2
Authority
JP
Japan
Prior art keywords
solar
circuit
output
current
solar power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19065383A
Other languages
Japanese (ja)
Other versions
JPS6083115A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19065383A priority Critical patent/JPS6083115A/en
Publication of JPS6083115A publication Critical patent/JPS6083115A/en
Publication of JPH0354366B2 publication Critical patent/JPH0354366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は太陽電池の直流を所定の電力に変換す
る太陽光発電システムに係り、特に太陽電池の起
電力を適切にモニタし電力変換装置の起動を行う
ことができる太陽光発電システムの起動方法に関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a solar power generation system that converts direct current from a solar cell into predetermined power, and in particular appropriately monitors the electromotive force of a solar cell and starts a power conversion device. This invention relates to a method for starting a solar power generation system that can perform the following steps.

〔発明の技術的背景〕[Technical background of the invention]

太陽光の照射を受けて発電する太陽電池板は第
1図に示すように太陽電池板の日射量と温度を或
る値に一定としたとき、出力電流Isが或る一定値
以上に増加すると出力電圧Vsは急激に低下して
行き零となる。また、このような特性をもつ太陽
電池の最大出力電力Pmaxは出力電流がIopのと
きに生じ、電力値はIopとこのときの出力電圧
Vopの積によつて与えられる。
As shown in Figure 1, a solar cell plate that generates electricity when irradiated with sunlight generates electricity when the output current Is increases above a certain value when the amount of solar radiation and temperature of the solar cell plate are constant at a certain value. The output voltage Vs rapidly decreases to zero. Also, the maximum output power Pmax of a solar cell with such characteristics occurs when the output current is Iop, and the power value is calculated by Iop and the output voltage at this time.
given by the product of Vop.

太陽電池パネルはこの太陽電池板を一枚のパネ
ルに40〜50の複数個取り付けたものを直列あるい
は並列に接続して構成される。例えば太陽電池パ
ネルの構成は第2図に示されるように構成され
る。図中、1は太陽電池板であり、太陽光の照射
を受けると、端子3に正、端子4に負の極性の起
電力を発生し、出力5を得る。第2図の構成の太
陽電池パネル2は起電状態では第3図に示す回路
で等価的に示される。ここで、第3図に示す符号
は第2図と同符号のものは、同一機能を示すもの
である。この太陽電池パネル2は温度を一定(例
えば300〓)として日射量を変化させたときにお
ける出力電流Isと出力電圧Vsの関係曲線は第4
図に示すように日射量の変化と共に変化し、最大
出力点は図中点線で示すa曲線のように変化す
る。従つて今、日射量が50mW/cm2のとき最大出
力を取り出しうるような抵抗を負荷として太陽電
池パネル2に接続して運転していたとき、例えば
天候の変化により日射量が50から100mW/cm2
増加したときには、動作点は負荷特性曲線bと日
射量50のときの出力電流対出力電圧の関係曲線と
の交点Aから、日射量が100mW/cm2のときの出
力電流対出力電圧の関係曲線との交点Bに移り、
最早、最大出力を取り出し得なくなる。また、日
射量が50mW/cm2から例えば10mW/cm2に減少し
たときには、動作点はその最大出力点から著しく
はずれた点Cに移る。このように日射量の変化に
伴い、出力が変動する太陽電池パネル2を複数個
用いて直並列接続することによつて構成される太
陽電池パネル群もその出力は日射量の影響を受け
易い。従つてこのままでは太陽電池パネル群から
能率よく出力を取り出すことができないため、太
陽光発電システムは低効率のものとなる。ここで
通常、太陽光発電システムは、負荷としては交流
機器が一般的であり、あるいは交流電力系統に接
続されるため直流を交流に変換する必要があるた
め、第5図のように太陽光発電器11の出力はイ
ンバータから構成される自励式電力変換装置13
(以下電力変換装置13と略す)を介して変流負
荷あるいは交流電力系統14に接続される。第5
図で太陽光発電器11は複数個の太陽電池パネル
2から構成される太陽電池パネル群であり、12
は逆流防止用ダイオードである。
A solar panel is constructed by connecting 40 to 50 solar panels in series or in parallel. For example, a solar cell panel is constructed as shown in FIG. In the figure, reference numeral 1 denotes a solar cell plate which, when irradiated with sunlight, generates an electromotive force with positive polarity at terminal 3 and negative polarity at terminal 4, thereby obtaining an output 5. The solar cell panel 2 having the configuration shown in FIG. 2 is equivalently represented by the circuit shown in FIG. 3 in an electromotive state. Here, the symbols shown in FIG. 3 that are the same as those in FIG. 2 indicate the same functions. In this solar panel 2, the relationship curve between the output current Is and the output voltage Vs when the temperature is constant (for example, 300〓) and the amount of solar radiation is changed is the fourth
As shown in the figure, it changes as the amount of solar radiation changes, and the maximum output point changes as shown by the dotted line a curve in the figure. Therefore, if you are operating a resistor connected to the solar panel 2 as a load that can produce maximum output when the solar radiation is 50 mW/cm 2 , for example, if the solar radiation changes from 50 to 100 mW/cm 2 due to a change in the weather. cm2 , the operating point is the intersection point A of the load characteristic curve B and the output current vs. output voltage relationship curve when the solar radiation is 50 mW/cm2, and the operating point is the output current vs. output voltage when the solar radiation is 100 mW/ cm2. Move to the intersection point B with the relationship curve of
It is no longer possible to extract maximum output. Further, when the amount of solar radiation decreases from 50 mW/cm 2 to, for example, 10 mW/cm 2 , the operating point shifts to point C, which is significantly deviated from the maximum output point. As described above, the output of a solar cell panel group configured by connecting a plurality of solar cell panels 2 in series and parallel, whose output fluctuates as the amount of solar radiation changes, is also easily affected by the amount of solar radiation. Therefore, as it is, it is not possible to efficiently extract output from the solar panel group, resulting in a low efficiency solar power generation system. Normally, solar power generation systems use AC equipment as the load, or because they are connected to an AC power system, it is necessary to convert DC to AC. The output of the converter 11 is a self-commutated power converter 13 composed of an inverter.
(hereinafter abbreviated as power converter 13), it is connected to a variable current load or an AC power system 14. Fifth
In the figure, a solar power generator 11 is a solar battery panel group consisting of a plurality of solar battery panels 2.
is a backflow prevention diode.

〔背景技術の問題点〕[Problems with background technology]

前述のような太陽光発電システムの起動に際し
ては太陽光発電器11の起電力が電力変換装置1
3を起動させるに充分な起電力を有しているかを
監視するため、従来は太陽光発電器11の起動力
を監視するモニタ回路を太陽光発電器11に近接
して設けておき、このモニタ回路の出力が所定値
以上になつたことを検出して電力変換装置13を
起動させる方法が考えられている。このモニタ回
路は第6図に示すように太陽光発電器11とは別
に太陽電池パネル2又は太陽光の照射を計測でき
る機器により構成されていた。ところが第6図の
ような構成は太陽光発電器11の真の起電力をモ
ニタリングすることはできない。例えば図中、太
陽光発電器11が雲等により日射が妨げられ、モ
ニタ回路21が日射を受けている場合はモニタ回
路21の出力により太陽光発電器11の起電力が
電力変換装置13を起動させるに充分な起電力を
有していると誤つた判断をされてしまい、起動条
件が成立して電力変換装置13に起動指令が与え
られてしまう。しかし、太陽光発電器11は電力
変換装置13を起動するのに充分な起電力を有し
ていないため、第4図の説明の中で示した動作点
を著しくずれる制御がなされてしまうため、電力
変換装置13の運転ができないという欠点を生じ
る。この欠点は太陽光発電器11の規模が大きく
なればなる程、生じ易く、起動から運転をするこ
とが難しくなる。
When starting up the solar power generation system as described above, the electromotive force of the solar power generator 11 is transferred to the power conversion device 1.
Conventionally, a monitor circuit for monitoring the starting force of the solar power generator 11 is provided close to the solar power generator 11 in order to monitor whether it has enough electromotive force to start the solar power generator 11. A method has been considered in which the power conversion device 13 is activated by detecting that the output of the circuit has exceeded a predetermined value. As shown in FIG. 6, this monitor circuit consisted of a solar panel 2 or a device capable of measuring sunlight irradiation, in addition to the solar power generator 11. However, with the configuration shown in FIG. 6, the true electromotive force of the solar power generator 11 cannot be monitored. For example, in the figure, if the solar power generator 11 is blocked by clouds or the like and the monitor circuit 21 is receiving solar radiation, the electromotive force of the solar power generator 11 activates the power converter 13 due to the output of the monitor circuit 21. It is erroneously determined that the electromotive force is sufficient to cause the power converter 13 to start, and the start condition is satisfied and a start command is given to the power conversion device 13. However, since the solar power generator 11 does not have enough electromotive force to start the power conversion device 13, the control is performed to significantly deviate from the operating point shown in the explanation of FIG. This results in the disadvantage that the power converter 13 cannot be operated. This drawback is more likely to occur as the scale of the solar power generator 11 becomes larger, and it becomes more difficult to start up and operate the solar power generator 11.

〔発明の目的〕[Purpose of the invention]

そこで本発明は従来方式のこの点をかんがみ、
太陽光発電システムの停止時には、電力変換装置
13の1構成要素であるインバータ回路のブリツ
ジを動作させ太陽光発電器11の出力を短絡する
回路を形成することにより太陽光発電器11自身
の起電力をモニタし、電力変換装置13を起動す
るに充分な起電力を有していることを確認した後
に電力変換装置13を確実に起動させることがで
きる太陽光発電システムの起動方法を提供するこ
とをその目的とする。
Therefore, the present invention takes into consideration this point of the conventional method,
When the solar power generation system is stopped, the bridge of the inverter circuit, which is one component of the power converter 13, is operated to form a circuit that short-circuits the output of the solar power generator 11, thereby reducing the electromotive force of the solar power generator 11 itself. To provide a method for starting a solar power generation system that can reliably start the power converter 13 after monitoring the power converter 13 and confirming that the electromotive force is sufficient to start the power converter 13. That purpose.

〔発明の概要〕[Summary of the invention]

本発明はこの目的を達成するために太陽電池と
該太陽電池の直流出力を所定の交流に変換する自
励式電力変換装置から構成される太陽光発電シス
テムにおいて、該太陽光発電システムの停止時に
該自励式電力変換装置の直流端子間に複数のスイ
ツチ素子を接続して構成されるインバータ回路の
ブリツジのうち、少なくとも1組を直流端子間が
短絡するよう動作させ、太陽電池と短絡動作をし
ているブリツジから形成される短絡回路を流れる
電流を検出する電流検出器と該電流検出器の出力
が所定値に達達したことを検出する電流検出回路
を有し、該電流検出回路の出力を該自励式電力変
換装置の起動信号とし、太陽光発電システムを起
動させる方法である。
To achieve this object, the present invention provides a solar power generation system consisting of a solar cell and a self-commutated power converter that converts the DC output of the solar cell into a predetermined alternating current. At least one set of the bridges of the inverter circuit, which is composed of a plurality of switch elements connected between the DC terminals of the self-excited power converter, is operated so as to short-circuit between the DC terminals, and to perform a short-circuit operation with the solar cell. It has a current detector that detects the current flowing through the short circuit formed from the bridge, and a current detection circuit that detects when the output of the current detector reaches a predetermined value. This is a method of starting a solar power generation system by using it as a starting signal for a self-excited power converter.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第7図を参図して説
明する。第7図において第5図と同符号のものは
同一の機能のものである。但し、14は交流電力
系統の場合を示してある。第7図に示す実施例で
はインバータ回路13は単相インバータで示して
あるが三相インバータでも良い。インバータ回路
13は基本構成を示したものであり、また、その
直流を交流に変換する動作原理については周知の
ことなので説明は省略する。又、直流リアクトル
31、コンデンサ32はインバータ回路33の動
作上から生じる電圧、電流リブルを抑制するフイ
ルタ回路を形成する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. Components in FIG. 7 with the same symbols as in FIG. 5 have the same functions. However, 14 shows the case of an AC power system. In the embodiment shown in FIG. 7, the inverter circuit 13 is shown as a single-phase inverter, but it may be a three-phase inverter. The basic configuration of the inverter circuit 13 is shown, and its operating principle for converting direct current to alternating current is well known, so a description thereof will be omitted. Further, the DC reactor 31 and the capacitor 32 form a filter circuit that suppresses voltage and current ripples caused by the operation of the inverter circuit 33.

第7図と第5図とを比較してその異なる手段を
述べれば従来の第5図では第6図に示すように電
力変換装置13の電源となる太陽光発電器11と
は別にモニタ回路21の検出値により電力変換装
置13を起動させるのに対し、第7図では太陽光
発電システムの停止時はインバータ回路33の直
流端子301,302間に接続される例えばスイ
ツチ素子331と332から成るブリツジのよう
に少くとも1組のブリツジのスイツチ素子を動作
させて直流端子間301,302を短絡してその
短絡回路を流れる電流を検出することにより太陽
光発電器11の起電力を監視し、電力変換装置1
3を起動させる点である。
Comparing FIG. 7 and FIG. 5, and describing the different means, in the conventional FIG. 5, as shown in FIG. The power conversion device 13 is started based on the detected value of the power converter 13, whereas in FIG. The electromotive force of the solar power generator 11 is monitored by operating at least one set of switch elements of the bridge to short-circuit the DC terminals 301 and 302 and detecting the current flowing through the short circuit. Conversion device 1
This is the point where 3 is activated.

すなわち、第7図の実施例において太陽光発電
システムの停止中は、、開閉器34を開放し、イ
ンバータ回路33を交流電力系統14を解離して
おき、スイツチ素子331と332に制御回路4
3によりオン指令を与え、直流端子301,30
2を短絡させておく。すなわち、太陽光発電器1
1は、逆流防止用ダイオード12−直流リアクト
ル31−直流端子301−スイツチ素子331,
332−直流端子302−電流検出器41から形
成される回路で第4図に示す日射量に相当した出
力電流を流すことになる。ここで太陽光発電シス
テムの場合、日常の起動・停止は太陽光発電器1
1の起動力すなわち、日射量レベルにより行われ
る。すなわち、太陽光発電システムの起動は電力
変換装置13の無負荷損以上の電力を太陽光発電
器11が給電できれば良いのでシステムを起動す
る際の前述の短絡回路の電流は、定格直流電流の
10〜15%程度であり、スイツチ素子331,33
2の電流負担は充分定格値以内である。再び第7
図の説明に戻ると前述の短絡回路を流れる電流を
電流検出器41により検出してその電流検出信号
411を電流検出回路42でレベル検出する。こ
こで電流検出回路42は周知の比較器で良いので
詳細な説明を省く。
That is, in the embodiment shown in FIG. 7, when the solar power generation system is stopped, the switch 34 is opened, the inverter circuit 33 is disconnected from the AC power system 14, and the switch elements 331 and 332 are
3 gives an ON command and connects the DC terminals 301 and 30.
2 are shorted. That is, solar power generator 1
1 is a backflow prevention diode 12-DC reactor 31-DC terminal 301-switch element 331,
332-DC terminal 302-current detector 41, an output current corresponding to the amount of solar radiation shown in FIG. 4 is caused to flow. In the case of a solar power generation system, daily startup and shutdown are performed by the solar power generator 1.
1, that is, the solar radiation level. In other words, to start up the solar power generation system, it is only necessary that the solar power generator 11 can supply power that is greater than the no-load loss of the power converter 13. Therefore, when starting up the system, the current in the short circuit described above is equal to or less than the rated DC current.
It is about 10 to 15%, and the switch elements 331 and 33
The current load of No. 2 is well within the rated value. 7th again
Returning to the explanation of the figure, the current flowing through the aforementioned short circuit is detected by the current detector 41, and the level of the current detection signal 411 is detected by the current detection circuit 42. Here, the current detection circuit 42 may be a well-known comparator, so a detailed explanation will be omitted.

日射量が増加し、太陽光発電器11の起電力が
増大すると第4図に示す通り第7図の電流検出器
41を流れる電流が増大する。この電流検出器4
1の電流検出信号411を電流検出回路42で検
出してその設定値すなわち、太陽光発電器11の
起電力が電力変換装置13を起動させるのに充分
な値に達すると出力信号421が動作する。この
出力信号421が制御回路43の起動指令として
与えられるとスイツチ素子331,332の同時
点弧を止め、所定の主回路動作となるようスイツ
チ素子311〜334にゲート信号431を与
え、起動を行う。インバータ回路33が動作して
所定の出力に達すると開閉器34を動作させて電
力変換装置13と交流電力系統14を接続し、所
定の制御が行われる。以上の動作を第8図のタイ
ムチヤートに示す。タイムチヤートを用いて本発
明の動作説明を加えると、電流検出信号41が所
定値に達するとインバータ回路33のスイツチ素
子331,332の同時通弧を停止する。インバ
ータ回路33の動作上不可欠なコンデンサ32が
太陽光発電器11により充電された後、インバー
タ回路33を動作させインバータ出力電圧が所定
の値に達した後、開閉器34を投入して交流電力
系統と接続する。図中、時間T1は、スイツチ素
子331,332の同時通弧を停止させた後、コ
ンデンサ32が太陽光発電器11により所定値に
充電されるまでの時間を示している。この時間
T1は日射量に対して変化するので、コンデンサ
32の充電電圧を図示されない直流電圧検出回路
で所定値に達したことを検出してインバータ回路
33のゲート信号431を動作させる。又、第9
図に示すようにスイツチ素子331,332の同
時通弧を停止させた後、日射量が所定値以下に低
下した場合、すなわち時間T1が所定時間T0に対
し、T1>T0の条件が成立した時点でインバータ
回路33を所定の動作をさせず、再びスイツチ素
子331,332を同時点弧させて、コンデンサ
32の充電電荷を放電させ、再び太陽光発電シス
テムの停止状態へと戻すように動作させれば太陽
光発電器11の起電力不足による電力変換装置1
3の起動不能となる事故を防止することができ
る。スイツチ素子331,332を同時点弧させ
てコンデンサ32の放電を行う際、放電電流がス
イツチ素子の許容値を超える場合はスイツチ素子
333,334も同時点弧をさせて放電電流の分
流をさせれば良い。
When the amount of solar radiation increases and the electromotive force of the solar power generator 11 increases, the current flowing through the current detector 41 of FIG. 7 increases as shown in FIG. 4. This current detector 4
1 current detection signal 411 is detected by the current detection circuit 42 and when the set value, that is, the electromotive force of the solar power generator 11 reaches a value sufficient to start the power conversion device 13, the output signal 421 is activated. . When this output signal 421 is given as a starting command to the control circuit 43, the simultaneous firing of the switch elements 331 and 332 is stopped, and a gate signal 431 is given to the switch elements 311 to 334 to start them so that the main circuit operates as specified. . When the inverter circuit 33 operates and reaches a predetermined output, the switch 34 is operated to connect the power conversion device 13 and the AC power system 14, and predetermined control is performed. The above operation is shown in the time chart of FIG. To explain the operation of the present invention using a time chart, when the current detection signal 41 reaches a predetermined value, the simultaneous conduction of the switch elements 331 and 332 of the inverter circuit 33 is stopped. After the capacitor 32, which is essential for the operation of the inverter circuit 33, is charged by the solar power generator 11, the inverter circuit 33 is operated, and after the inverter output voltage reaches a predetermined value, the switch 34 is closed and the AC power grid is connected. Connect with. In the figure, time T 1 indicates the time until the capacitor 32 is charged to a predetermined value by the solar power generator 11 after the simultaneous conduction of the switch elements 331 and 332 is stopped. this time
Since T 1 changes with the amount of solar radiation, a DC voltage detection circuit (not shown) detects that the charging voltage of the capacitor 32 reaches a predetermined value and operates the gate signal 431 of the inverter circuit 33. Also, the 9th
As shown in the figure, when the amount of solar radiation decreases below a predetermined value after stopping the simultaneous conduction of switch elements 331 and 332, that is, when time T 1 is equal to predetermined time T 0 , the condition is that T 1 > T 0 . When this is established, the inverter circuit 33 is not operated in a predetermined manner, and the switch elements 331 and 332 are fired at the same time again to discharge the charge in the capacitor 32 and return the solar power generation system to the stopped state again. If the power conversion device 1 is operated due to insufficient electromotive force of the solar power generator 11,
It is possible to prevent the accident described in 3. When discharging the capacitor 32 by firing the switch elements 331 and 332 at the same time, if the discharge current exceeds the allowable value of the switch elements, the switch elements 333 and 334 are also fired at the same time to divide the discharge current. Good.

つまり、電力変換装置13の電源となる太陽光
発電器11の起電力を直接モニタし、その検出レ
ベルにより、電力変換装置13を起動するため、
従来方式のようにモニタ回路の検出値と太陽光発
電器11の起電力との相違が生じることなく的確
な起動を行うことができる。又、従来方式のよう
に太陽電池パネル2又は太陽光の照射を計測でき
る機器のような高価なモニタ回路を必要とせず、
安価で簡単な回路で実現できる。
That is, in order to directly monitor the electromotive force of the solar power generator 11 that serves as the power source for the power conversion device 13, and start the power conversion device 13 based on the detection level,
Accurate startup can be performed without causing a difference between the detected value of the monitor circuit and the electromotive force of the solar power generator 11 unlike in the conventional system. In addition, unlike conventional methods, there is no need for an expensive monitor circuit such as a solar panel 2 or a device that can measure sunlight irradiation.
It can be realized with a cheap and simple circuit.

次に本発明の他の実施例について述べる。第7
図の実施例では、太陽光発電器11の出力をスイ
ツチ素子331,332で短絡した際の短絡電流
を検出する電流検出器41を、コンデンサ32に
対して太陽光発電器11側に設けたが、インバー
タ回路33側に設けても良い。又電流検出器41
は一般にインバータ回路33の保護、あるいは制
御のために設けられる直流電流検出器と兼用する
ことが可能である。
Next, other embodiments of the present invention will be described. 7th
In the illustrated embodiment, a current detector 41 for detecting the short-circuit current when the output of the solar power generator 11 is short-circuited by the switch elements 331 and 332 is provided on the solar power generator 11 side with respect to the capacitor 32. , may be provided on the inverter circuit 33 side. Also, current detector 41
can also be used as a direct current detector that is generally provided for protecting or controlling the inverter circuit 33.

又、第7図の実施例では、太陽光発電システム
の停止時には、スイツチ素子331,332の1
組のブリツジを動作させているが、特定のブリツ
ジに限定せず複数あるいは全数のブリツジを動作
させておいても良い。
Furthermore, in the embodiment shown in FIG. 7, when the solar power generation system is stopped, one of the switch elements 331 and 332 is turned off.
Although a set of bridges are operated, the present invention is not limited to a specific bridge, and a plurality or all of the bridges may be operated.

又、出力信号421を電力変換装置13の起動
するための条件として制御回路43に与え、図示
されない外部信号が与えられた時点でスイツチ素
子331,332の同時通弧を停止し、時間T1
後にインバータ回路33を所定の動作で起動する
こともできる。
Further, the output signal 421 is given to the control circuit 43 as a condition for starting the power conversion device 13, and when an external signal (not shown) is given, the simultaneous conduction of the switch elements 331 and 332 is stopped, and the time T 1
The inverter circuit 33 can also be activated later with a predetermined operation.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば光起電力を有する太陽
電池とその直流出力を所定の交流に変換する電力
変換装置から構成される太陽光発電システムにお
いて、システムの停止時には、1組あるいは複数
のブリツジを点弧し、太陽電池を短絡する短絡回
路を流れる電流を検出して、太陽光発電器の起電
力を的確にとらえ、電力変換装置を起動するた
め、高価な起電力モニタ回路を必要とせず、モニ
タ回路と太陽光発電器の起電力の相違によるシス
テム動作不良を生じることなく、安定した起動を
行うことができる。
Thus, according to the present invention, in a solar power generation system composed of a solar cell having a photovoltaic force and a power converter that converts its DC output into a predetermined AC, one or more bridges are turned on when the system is stopped. It detects the current flowing through the short circuit that arcs and shorts the solar cells, accurately captures the electromotive force of the solar power generator, and starts the power conversion device. Therefore, there is no need for an expensive electromotive force monitor circuit. Stable startup can be performed without system malfunctions due to differences in electromotive force between the circuit and the solar power generator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽電池板の出力電流対出力電圧の関
係特性図、第2図は太陽電池パネル構成図、第3
図は第2図の等価回路、第4図は日射量が変化し
た時の太陽電池板の出力電圧対出力電流特性図、
第5図は太陽光発電システムのブロツク図、第6
図は従来の太陽光発電装置の構成図、第7図は本
発明の一実施例を示す太陽光発電システムのブロ
ツク図、第8図第9図は第7図のタイムチヤート
である。 1…太陽電池板、2…太陽電池パネル、3,4
…端子、5…出力、11…太陽光発電器、12…
逆流防止用ダイオード、13…電力変換装置、1
4…交流負荷あるいは交流電力系統、31…直流
リアクトル、32…コンデンサ、33…インバー
タ回路、34…開閉器、41…電流検出器、42
…電流検出回路、421…出力信号、43…制御
回路、431…ゲート信号、331〜334…ス
イツチ素子、335〜338…ダイオード、44
1…電流検出信号、301,302…直流端子。
Figure 1 is a characteristic diagram of the relationship between the output current and output voltage of the solar cell plate, Figure 2 is a diagram of the configuration of the solar battery panel, and Figure 3 is a diagram of the solar battery panel configuration.
The figure shows the equivalent circuit of Fig. 2, and Fig. 4 shows the output voltage vs. output current characteristics of the solar cell plate when the amount of solar radiation changes.
Figure 5 is a block diagram of the solar power generation system, Figure 6
7 is a block diagram of a solar power generation system showing an embodiment of the present invention, and FIG. 8, FIG. 9 is a time chart of FIG. 7. 1... Solar cell plate, 2... Solar cell panel, 3, 4
...Terminal, 5...Output, 11...Solar power generator, 12...
Backflow prevention diode, 13...Power converter, 1
4... AC load or AC power system, 31... DC reactor, 32... Capacitor, 33... Inverter circuit, 34... Switch, 41... Current detector, 42
...Current detection circuit, 421...Output signal, 43...Control circuit, 431...Gate signal, 331-334...Switch element, 335-338...Diode, 44
1... Current detection signal, 301, 302... DC terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 光起電力を有する太陽電池と該太陽電池の直
流出力を交流に変換する自励式電力変換装置から
構成される太陽光発電システムにおいて、該太陽
光発電システムの停止時に該自励式電力変換装置
の直流端子間を短絡しておき、太陽電池と前記短
絡回路で形成される閉回路を流れる電流が所定値
に達したことを検出して前記自励式電力変換装置
の起動信号としたことを特徴とする太陽光発電シ
ステムの起動方法。
1. In a solar power generation system consisting of a solar cell having photovoltaic power and a self-excited power converter that converts the DC output of the solar cell into alternating current, when the solar power generation system is stopped, the self-excited power converter is activated. The DC terminals are short-circuited, and the detection that the current flowing through the closed circuit formed by the solar cell and the short circuit reaches a predetermined value is used as a start signal for the self-excited power converter. How to start a solar power generation system.
JP19065383A 1983-10-14 1983-10-14 Starting method of sunlight power generating system Granted JPS6083115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19065383A JPS6083115A (en) 1983-10-14 1983-10-14 Starting method of sunlight power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19065383A JPS6083115A (en) 1983-10-14 1983-10-14 Starting method of sunlight power generating system

Publications (2)

Publication Number Publication Date
JPS6083115A JPS6083115A (en) 1985-05-11
JPH0354366B2 true JPH0354366B2 (en) 1991-08-20

Family

ID=16261662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19065383A Granted JPS6083115A (en) 1983-10-14 1983-10-14 Starting method of sunlight power generating system

Country Status (1)

Country Link
JP (1) JPS6083115A (en)

Also Published As

Publication number Publication date
JPS6083115A (en) 1985-05-11

Similar Documents

Publication Publication Date Title
JP3271730B2 (en) Power generation system charge control device
JP4353446B2 (en) DC power output device and solar power generation system
US9761913B2 (en) High efficiency high voltage battery pack for onsite power generation systems
JP2003134661A (en) Load interruption detecting device and photovoltaic power generator
CN106058930A (en) Automatic detecting system and automatic detecting method for capacitance of photovoltaic grid-connected inverter bus capacitor
JPS60238918A (en) Control device of variable speed motor
CN215498289U (en) Quick turn-off system for photovoltaic grid-connected power generation
JP2017184362A (en) Power conditioner, power supply system, and current control method
JP2005269843A (en) Parallel operation device
JP3570283B2 (en) Battery charging / discharging device
TWM636645U (en) Solar energy monitoring shutoff device with high-voltage DC input capability and one-to-many connecting function
JPH0354366B2 (en)
JPH1127874A (en) Power storage system usign secondary battery
JPS6069720A (en) Solar light power generation system
JPS60261360A (en) Starting method of solar light power generator system
JPH0457015B2 (en)
JPH0150168B2 (en)
JPH0888978A (en) Method of detecting single operation of distributed power supply system
JPS60126719A (en) Method of startng solar light electric power generating system
JP2000236623A (en) Overvoltage-detecting device
CN221728167U (en) Aircraft ground static change power supply system
JPS6155719A (en) Starting method of solar light power generating system
JP3147525B2 (en) How to start and stop the solar power system
JP2024129270A (en) Energy Storage System
JPS6134835Y2 (en)