JPS60261360A - Starting method of solar light power generator system - Google Patents

Starting method of solar light power generator system

Info

Publication number
JPS60261360A
JPS60261360A JP59115521A JP11552184A JPS60261360A JP S60261360 A JPS60261360 A JP S60261360A JP 59115521 A JP59115521 A JP 59115521A JP 11552184 A JP11552184 A JP 11552184A JP S60261360 A JPS60261360 A JP S60261360A
Authority
JP
Japan
Prior art keywords
solar
circuit
output
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59115521A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogawa
清 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59115521A priority Critical patent/JPS60261360A/en
Publication of JPS60261360A publication Critical patent/JPS60261360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PURPOSE:To start a power converter with good response by shortcircuiting the output of a solar light generator by a switch element of a stepup chopper circuit when a solar light power generator system is stopped, thereby collecting an electromotive force by the shortcircuiting current. CONSTITUTION:The DC output of a solar battery 11 is converted through a power converter 13 to an AC, and connected through a switch 15 with an AC power system 14. The converter 13 has a stepup chopper 31 and an inverter 32, which are controlled by a controller 43 together with a current detector 42. Thus, when a solar light power generator system is stopped, a switch element 312 connected between DC terminals 301 and 302 of a solar battery 11 is operated, and shortcircuited through a DC reactor 311. The current in the shortcircuiting circuit is detected by a current detector 41, a level is detected from the signal 411 by the current detector 42 to monitor the electromotive force of the battery 11, thereby starting the converter 13.

Description

【発明の詳細な説明】 〔発明の技術分野1 本発明は犬ド(−電池の出力電流を所定の?)(力に変
換する太陽先発7F(システムに係り、才1・′に太陽
電池の起電力を適切にモニタし、昂:カダ!9!〕4p
”[の起動を行うことができる太陽光発電システムの起
動方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention relates to a solar cell system that converts the output current of a battery into a predetermined force. Appropriately monitor the electromotive force, and perform the following: Kada! 9!] 4p
``Regarding a method for starting a solar power generation system that can start [.

〔発明の技術的背景〕[Technical background of the invention]

太陽光の照射を受けて発電する太陽電池板は第1図に示
すように太陽電池板の日射量と温母な成る値に一定とし
たとき、出力電流Isが成る一定値以−Eに増加すると
出力電圧Vsは急激に低下して行き零となる。また、こ
のような特性をもつ太陽電池の最大出力電力Pmaxは
出力電流が工Opのときに生じ、電力値はIopとこの
ときの出力電圧Vopの積によって与えられる。
As shown in Figure 1, a solar cell plate that generates electricity when irradiated with sunlight increases the output current Is beyond a certain value -E when the solar cell plate is kept at a constant value equal to the amount of solar radiation. Then, the output voltage Vs rapidly decreases to zero. Further, the maximum output power Pmax of a solar cell having such characteristics occurs when the output current is Iop, and the power value is given by the product of Iop and the output voltage Vop at this time.

太陽電池パネルはこの太陽電波板を一枚のパネルに40
〜50の複数個取り付けたものを直列あるいは並列に接
続して構成される。例えば太陽電池パネルの構成は第2
図に示されるように構成される。図中、1は太陽電池板
であり、太陽光の照射を受けると、端子3に正、端子4
に負の極性の起電、力を発生し、出力5を得る。第2図
の構成の太陽電池パネル2は起電状態では第3図に示す
回路で等価的に示される。ここで、第3図に示す附号は
第2図と同符号のものは、同−桟iff;を示すもので
ある。この太1ii%電池パネル2 );j 温度を一
定(例えば300’に’)として日射量を変化させたと
きにおける出力′小流Isと出力゛電圧VSの[y、I
係曲紳は第4図に示すように日射量の変化と共に変化し
、最大出力点は図中点線で示す3曲線のように変化する
A solar panel consists of 40 solar radio wave plates in one panel.
It is constructed by connecting a plurality of ~50 units in series or in parallel. For example, the configuration of the solar panel is
Constructed as shown in the figure. In the figure, 1 is a solar cell plate, and when it is irradiated with sunlight, the positive terminal 3 and the terminal 4
A negative polarity electromotive force is generated and an output of 5 is obtained. The solar cell panel 2 having the configuration shown in FIG. 2 is equivalently represented by the circuit shown in FIG. 3 in an electromotive state. Here, the numbers shown in FIG. 3 are the same as those in FIG. This thick 1ii% battery panel 2 ); j is the output 'small current Is and the output 'voltage VS [y, I
As shown in Fig. 4, the engagement curve changes with changes in the amount of solar radiation, and the maximum output point changes as shown by the three curves indicated by dotted lines in the figure.

従って今、日射量が59mW/cmのとき最大出力を取
り出しうるような抵抗を負荷として太陽電池パネル2に
接続して運転していたとき、例えば天候の変化により日
射量が50から100mW/cmに増加したときには、
動作点は負荷も一性曲線すと日射量50のときの出力、
−b流対出力電汁の関係曲線との交点Aから、日射量が
100mW/dのときの出力弗:流対田力電圧の関係曲
線との交点Bに移り、最早、最大出力を取り出し得なく
なる。また、日射量が5 Q m W/cr/I から
例えばl Q mW/+* に減少したときには、動作
点はその最大出力点から著しくはずれ; た点Cに移る
。このように日射量の変化に伴い、出力が変動する太陽
電池パネル2をネ!コ敞個用いて直並列接続することに
よって構成される太陽電池パネル群もその出力は日射量
の影響を受け易い。
Therefore, if you are operating a resistor connected to the solar panel 2 as a load that can produce maximum output when the solar radiation is 59 mW/cm, for example, due to a change in the weather, the solar radiation will change from 50 to 100 mW/cm. When it increases,
The operating point is the output when the solar radiation is 50 if the load is also a uniform curve.
-B Moves from the intersection A with the current vs. output voltage relationship curve to the intersection B with the output vs. current vs. voltage relationship curve when the solar radiation is 100 mW/d, and it is no longer possible to extract the maximum output. . Further, when the amount of solar radiation decreases from 5 Q m W/cr/I to, for example, l Q mW/+*, the operating point shifts to point C, which is significantly deviated from its maximum output point. In this way, the solar panel 2 whose output fluctuates as the amount of solar radiation changes! The output of a group of solar panels constructed by connecting several panels in series and parallel is also easily affected by the amount of solar radiation.

従ってこのままでは太陽電池パネル群から能率よく出力
を取り出すことができないため、太陽光発電システムは
低効率のものとなる。ここで通常、太陽光発電システム
はその起電力を有効活用する目的で安定した旧派に変換
するか、あるいは交流電力系統に接続されるため直流を
交流に変換する必要がある。前者はチョッパに代表され
るDC−DCコンバータで構成され、後者はインバータ
に代表されるDC−ACコンバータで構成される。
Therefore, as it is, it is not possible to efficiently extract output from the solar panel group, resulting in a solar power generation system with low efficiency. Usually, in order to effectively utilize the electromotive force of a solar power generation system, it is necessary to convert it into a stable old system, or to connect it to an AC power system, so it is necessary to convert direct current into alternating current. The former is composed of a DC-DC converter typified by a chopper, and the latter is composed of a DC-AC converter typified by an inverter.

〔背景技術の問題点〕[Problems with background technology]

前記いずれの電力変換の場合も太陽電池の電圧は太陽電
池自身の耐圧上から比較的低く設定されるため、電力変
換装置に使用されるスイッチ素子の耐電圧マージンが必
要以上に余裕のある設計を余儀なしされてしまうこと、
又、日射量による最大出力点を示す太陽電池電圧が変動
するため、インバータ回路のパルス幅制御で出力電圧を
制御する方式では電圧調整に応じて出力電圧に含まれる
茜調波成分が変動する。その結果、出力電圧の高調波な
除去するためのフィルタ回路を設ける場合、パルス幅制
御範囲を考慮し、高調波の最大値のところでフィルタ回
路を設計しなければならない。
In any of the above power conversions, the voltage of the solar cell is set relatively low due to the withstand voltage of the solar cell itself, so the switch elements used in the power conversion device must be designed with a greater withstand voltage margin than necessary. Being forced to
Further, since the solar cell voltage indicating the maximum output point varies depending on the amount of solar radiation, in the method of controlling the output voltage by pulse width control of the inverter circuit, the madder harmonic component included in the output voltage varies according to the voltage adjustment. As a result, when providing a filter circuit for removing harmonics from the output voltage, the filter circuit must be designed at the maximum value of the harmonics, taking into consideration the pulse width control range.

一方、チョッパ回路を有する電力変換装置の場合、チョ
ッパ回路で逆変換器出力の交流電圧を所定の値に制御す
ることにより、逆変換器は常に一定のパルス幅となるよ
う制御すれば良いので常に電力変換装置の出力電圧の高
調波成分を一定にすることができる。すなわち、チョッ
パ回路を有する電力変換装置は、フィルタ回路を特定の
パルス幅における高調波に対して設計すればよいので、
フィルタ回路の経済設計を図ることができる。
On the other hand, in the case of a power conversion device with a chopper circuit, by controlling the AC voltage of the inverter output to a predetermined value with the chopper circuit, the inverter can be controlled so that the pulse width is always constant. The harmonic components of the output voltage of the power converter can be made constant. In other words, in a power conversion device having a chopper circuit, the filter circuit only needs to be designed for harmonics at a specific pulse width.
Economical design of the filter circuit can be achieved.

以上の理由から直流負荷の場合でも交流負荷あるいは交
流電力系統に接続される場合でも、太陽光発電システム
用電力変換装置には昇圧チョッパ回路を設けることによ
り、前述の問題を解消できることは周知のことである。
For the above reasons, it is well known that the above-mentioned problems can be solved by providing a step-up chopper circuit in the power converter for photovoltaic power generation systems, whether it is a DC load, an AC load, or connected to an AC power system. It is.

第5図に昇圧チョッパ回路を有する電力変換装置を設け
た太陽光発電システムの従来構成例を示す。
FIG. 5 shows a conventional configuration example of a solar power generation system provided with a power conversion device having a boost chopper circuit.

第5図において、11は複数個の太陽電池パネル2から
構成される太陽電池パネル群であり、12は逆流防止用
ダイオード、13は昇圧チョッパ回路とインバータ回路
から構成される電力変換装置、14は交流電力系統、1
5は開閉器である。
In FIG. 5, 11 is a solar panel group consisting of a plurality of solar panels 2, 12 is a backflow prevention diode, 13 is a power conversion device consisting of a boost chopper circuit and an inverter circuit, and 14 is a power conversion device consisting of a boost chopper circuit and an inverter circuit. AC power system, 1
5 is a switch.

このような太陽光発電システムの起動に際しては太陽光
発電器11の起電力が電力変換装置13を起動させるに
充分な起電力を有しているかを監視するため、従来は太
陽光発電器11の起電力を監視するモニタ回路を太陽光
発電器11に近接して設けておき、このモニタ回路の出
力が所定値以上になったことを検出して昇圧チョッパと
インバータを所定の動作をさせることにより電力変換装
置13を起動させる方法が考えられている。ここで、昇
圧チョッパとインバータの動作は周知のことなので説明
は省略する。
When starting up such a solar power generation system, in order to monitor whether the electromotive force of the solar power generator 11 is sufficient to start the power conversion device 13, conventionally, the electromotive force of the solar power generator 11 is monitored. A monitor circuit for monitoring the electromotive force is provided close to the solar power generator 11, and when the output of this monitor circuit exceeds a predetermined value, the boost chopper and the inverter are operated in a predetermined manner. A method of activating the power conversion device 13 has been considered. Here, since the operations of the boost chopper and the inverter are well known, their explanation will be omitted.

このモニタ回路は第6図に示すように太陽光発電器11
とは別に太陽電池パネル2又は太陽光の照射を計測でき
るモニタ回路21により構成されていた。ところが第6
図のような構成は太陽光発電器11の真の起電力をモニ
タリングすることはできない。例えば図中、太陽光発電
器11が雲等により日射が妨げられ、モニタ回路21が
日射を受けている場合はモニタ回路21の出力により太
陽光発電器11の起電力が電力変換装置13を起動させ
るに充分な起電力を有していると誤った判断をされてし
まい、起動条件が成立して電力変換装置13に起動指令
が与えられてしまう。しかし、太陽光発電器11は電力
変換装置13を起動するのに充分な起電力を有していな
いため、$4図の説明の中で示した動作点を著しくはず
れる制御がされてしまうため、電力変換装置13の運転
ができないという欠点を生じる。
This monitor circuit connects the solar power generator 11 as shown in FIG.
In addition to this, it was configured with a solar panel 2 or a monitor circuit 21 that can measure sunlight irradiation. However, the sixth
With the configuration shown in the figure, the true electromotive force of the solar power generator 11 cannot be monitored. For example, in the figure, if the solar power generator 11 is blocked by clouds or the like and the monitor circuit 21 is receiving solar radiation, the electromotive force of the solar power generator 11 activates the power converter 13 due to the output of the monitor circuit 21. It is erroneously determined that the electromotive force is sufficient to cause the power conversion device 13 to start, and the start condition is satisfied and a start command is given to the power conversion device 13. However, since the solar power generator 11 does not have enough electromotive force to start the power conversion device 13, the control is performed to significantly deviate from the operating point shown in the explanation of the $4 diagram. This results in the disadvantage that the power converter 13 cannot be operated.

この欠点は太陽光発電器11の規模が大きくなればなる
程、生じ易く、起動から運転をすることが雛しくなる。
This drawback is more likely to occur as the scale of the solar power generator 11 becomes larger, and it becomes more difficult to start and operate the solar power generator 11.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は太陽光発電システムの停止時には電力
変換装置13の1構成要素である昇圧チョッパ回路のス
イッチ素子を動作させ、太陽光発電器11の出力を短絡
する回路を形成することにより太陽光発電器11自身の
起重、力をモニタし、電力変換装R13を起動するに充
分な起電力を有していることを確認した後に、電力変換
装置13を確実に起動させることができる太陽光発電シ
ステムの起動方法を提供することをその目的とする。
Therefore, the present invention operates the switch element of the step-up chopper circuit, which is one component of the power converter 13, when the solar power generation system is stopped, and forms a circuit that short-circuits the output of the solar power generator 11. After monitoring the weight and force of the generator 11 itself and confirming that it has sufficient electromotive force to start the power converter R13, sunlight that can reliably start the power converter 13 is used. Its purpose is to provide a method for starting a power generation system.

〔発明の概要] 本発明はこの目的を達成するために太陽電池と該太陽電
池の直流出力を所定の電力に変換する昇圧チョッパ回路
を有する電力変換装置から構成される太陽光発電システ
ムにおいて、該太陽光発電システムの停止時に該電力変
換装置を構成する昇圧チョッパ回路のスイッチ素子をオ
ン状態にして直流端子間を短絡しておき、短絡電流が所
定値に達したことを検出して該昇圧チョッパ回路のスイ
ッチ孝子をオフし、該電力変換装置を起動するようにし
たものである。
[Summary of the Invention] To achieve this object, the present invention provides a solar power generation system comprising a solar cell and a power conversion device having a step-up chopper circuit that converts the DC output of the solar cell into predetermined power. When the solar power generation system is stopped, the switching element of the boost chopper circuit that constitutes the power conversion device is turned on to short-circuit the DC terminals, and when the short-circuit current reaches a predetermined value, the boost chopper circuit is activated. The power converter is started by turning off the switch of the circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第7図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

第7図において第5図と同符号のものは同一の機能のも
のである。昇圧チョッパ回路31、インバータ回路32
は基本構成を示したものであり、また、その直流を交流
に変換する動作原理については周知のことなので説明は
省略する。又、ii:i流コンデンサ33は昇圧チョッ
パ回路31の動作上から生じる電、[F!Jプルを抑制
する効ム、′を有する。
Components in FIG. 7 with the same symbols as in FIG. 5 have the same functions. Boost chopper circuit 31, inverter circuit 32
1 shows the basic configuration, and the principle of operation for converting direct current into alternating current is well known, so a description thereof will be omitted. In addition, ii: the i-current capacitor 33 is charged with electric current generated from the operation of the boost chopper circuit 31, [F! It has the effect of suppressing J-pull.

第7Vと第5ヒく1とを比較してその具なる手段を述べ
れば従来の穿5図では第6図に示ずように電力変換装置
13の電源となる太陽先発′屯器11とは別にモニタ回
y芥21の検出イぽ1により?)テカ変勘装置13を起
動させるのに対し、第7図では太陽光発電システムの停
什時は太陽先発m′器】1のW1流端子301゜302
間に接続されるスイッチ暑−子312を動作させて直流
端子30J 、 302間をii′1流リアクリアクト
ル3]1て短絡してその短絡回路を流れるa!流を検出
することにより、太陽光発電、 i゛1.1の起電力を
監視し、電力変換装置13を起動させる点である。
Comparing No. 7 V and No. 5 Hi-1 and describing the means involved, in the conventional Fig. 5, as shown in FIG. Is it due to detection point 1 of monitor number 21? ) In contrast, in Fig. 7, when the solar power generation system is stopped, the W1 flow terminals 301 and 302 of the solar converter 13 are activated.
The switch 312 connected between the DC terminals 30J and 302 is operated to short-circuit the DC terminals 30J and 302 through the reactor reactor 3]1, and the a! By detecting the current, the electromotive force of solar power generation i1.1 is monitored and the power conversion device 13 is activated.

すなわち、第7図の実施例において、太陽光発電システ
ムの停止中は昇圧チョッパ回路31のスイッチ素子31
2に制御回路43によりオン指令を力え、直流端子30
1 、302を短絡させておく。すなわち、太陽光発電
器11は逆流防止用ダイオード12−直流端子301−
直流リアクドル311−スイッチ素子312−電流検出
器41−直流端子302から形成される回路で第4図に
示す日射量に相当した出力電流を流すことになる。
That is, in the embodiment shown in FIG. 7, when the solar power generation system is stopped, the switch element 31 of the boost chopper circuit 31 is
2, the control circuit 43 applies an ON command to the DC terminal 30.
1 and 302 are shorted. That is, the solar power generator 11 has a backflow prevention diode 12-DC terminal 301-
The circuit formed from the DC reactor 311, the switch element 312, the current detector 41, and the DC terminal 302 causes an output current corresponding to the amount of solar radiation shown in FIG. 4 to flow.

ここで、太陽光発電システムの場合、日常の起動・停止
は太陽光発電器11の起電力すなわち、日射量レベルに
より行われる。すなわち、太陽光発電システムの起動は
電力変換装置13の無負荷損以上の電力を太陽光発電器
11が給電できれば良いのでシステムを起動する際の前
述の短絡回路の電流は定格直流電流の10〜15%程度
であり、スイッチ素子312の電流負担は充分定格値以
内である。
Here, in the case of a solar power generation system, daily startup and shutdown are performed based on the electromotive force of the solar power generator 11, that is, the level of solar radiation. That is, to start up the solar power generation system, it is sufficient that the solar power generator 11 can supply power that is greater than the no-load loss of the power converter 13, so the current in the short circuit described above when starting up the system is 10 to 10% of the rated DC current. This is about 15%, and the current burden on the switching element 312 is well within the rated value.

再び、第7図の説明に戻ると前述の短絡回路を流れる電
流を電流検出器41により検出してその電流検出信号4
11を電流検出回路42でレベル検出する。ここで電流
検出回路42は周知の比較器で良いので詳細な説明を省
く。
Returning to the explanation of FIG. 7 again, the current flowing through the aforementioned short circuit is detected by the current detector 41, and the current detection signal 4 is detected by the current detector 41.
11 is level detected by a current detection circuit 42. Here, the current detection circuit 42 may be a well-known comparator, so a detailed explanation will be omitted.

日射量が増加し、太陽光発電器11の起電力が増大する
と第4図に示す通り電流検出器41を流れる電流が増大
する。この電流検出器41の電流検出信号411を電流
検出回路42で検出してその設定値ずなわち、太陽光発
電器11の起′市、力が電力変換装置13を起動、させ
るのに充分な値に達すると出力信号421が発生する。
When the amount of solar radiation increases and the electromotive force of the solar power generator 11 increases, the current flowing through the current detector 41 increases as shown in FIG. 4. The current detection signal 411 of the current detector 41 is detected by the current detection circuit 42 and its set value is determined to be sufficient to start the power converter 13. When the value is reached, an output signal 421 is generated.

この出力45号421が制御回路43の起動指令として
与えられるとスイッチ素子312をオフさせる。この時
直流リアクトル311を流れていた電流は還流ダイオー
ド313を介してコンデンサに充電される。その後は昇
圧チョッパ回路31及びインバータ回路32を動作させ
てインバータ回路32は一定なパルス幅となるよう制御
すると同時に昇圧チョッパ回路で逆変Jgf、を群出力
の交流電圧を所定の値に制御する。
When this output No. 45 421 is given as a starting command to the control circuit 43, the switch element 312 is turned off. At this time, the current flowing through the DC reactor 311 is charged to the capacitor via the free-wheeling diode 313. Thereafter, the boost chopper circuit 31 and the inverter circuit 32 are operated to control the inverter circuit 32 to maintain a constant pulse width, and at the same time, the boost chopper circuit controls the AC voltage of the group output to a predetermined value by inversely changing Jgf.

以上の動作を第8図のタイムチャートに示す。The above operation is shown in the time chart of FIG.

タイムチャートを用いて本発明の動作説明を加えると太
陽光発電器11の起゛屯力が充分でない時は昇圧チョッ
パ回路31のスイッチ素子312を連続通弧するようゲ
ート信号を与えておき、電流検出信号41が所定値に達
すると昇任チョッパ回路31のス: イツチ素子312
の連続通弧のゲートを停止する。
To explain the operation of the present invention using a time chart, when the resilience of the solar power generator 11 is not sufficient, a gate signal is given so that the switch element 312 of the boost chopper circuit 31 is continuously turned on, and the current is When the detection signal 41 reaches a predetermined value, the switching element 312 of the promotion chopper circuit 31 is activated.
Stop the gate from continuous arcing.

この時、スイッチ素子312はチョッパ動作をすること
から自己消弧機能を有する素子、例えばターンオフサイ
リスク、電力用トランジスタで構成されているか又は転
流機能を有するサイリスタで構成されているので連続通
弧のゲートを停止すると同時にオフ指令を与えることが
できるので瞬時に連続通弧を止めることができる。従つ
“にの後、昇圧チョッパ回路31、インバータ回路32
は即時に起動させることができるので電力変換装置13
は速やかに太陽光発電器11の起電力を交流電力系統1
4へ供給することができる。
At this time, since the switching element 312 performs a chopper operation, it is made up of an element that has a self-extinguishing function, such as a turn-off thyristor, a power transistor, or a thyristor that has a commutation function, so it is continuously turned on. Since the off command can be given at the same time as stopping the gate, continuous arcing can be stopped instantly. After that, the boost chopper circuit 31 and the inverter circuit 32
can be started immediately, so the power converter 13
immediately transfers the electromotive force of the solar power generator 11 to the AC power system 1.
4 can be supplied.

つまり、電力変換装置13の電源となる太陽光発電器1
1の起電力な薗接モニタし、その検出レベルにより電力
変換装置13を起動するため、従来方式のようにモニタ
回路の検出値と太陽光発電器11の起電力との相違が生
じることなく的確な起動を行うことができる。又、従来
方式のように太陽電池パネル2又は太陽光の照射を計測
できる機器のような高価なモニタ回路を必要とせず、安
価で簡単な回路で実現できる。
In other words, the solar power generator 1 serves as a power source for the power conversion device 13.
Since the electromotive force of the photovoltaic power generator 11 is directly monitored and the power conversion device 13 is started based on the detected level, there is no difference between the detected value of the monitor circuit and the electromotive force of the solar power generator 11 as in the conventional method, and the result is accurate. It is possible to perform a start-up. Further, unlike the conventional method, an expensive monitor circuit such as a solar cell panel 2 or a device capable of measuring sunlight irradiation is not required, and it can be realized with an inexpensive and simple circuit.

次に本発明の他の実施例について述べる。Next, other embodiments of the present invention will be described.

第7図の実施例のタイムチサートを示す第8図では電流
検出<=号411が所定値に辿すると昇圧チョッパ回路
31のスイッチ素子3】2の連続通弧のゲートを停止す
ると11時に昇圧チョッパ回路31、インバータ回路3
2を動作させているが、この両回路の起動の仕方につい
ては本発明の特性上特に制約はなく、例えばインバータ
回路32の出力に変圧器がある場合はあらかじめインバ
ータ回路32を起動し変圧器の突入7U流を抑えた後、
^°、庄チョッパ回路31を起動しても良い、又、イン
バータ回路32は自励式インバータあるいは他励式イン
バータいづれの場合でも本発明の意図する点は同様であ
る、更に、第7図の本発明の実施例ではインバータ回路
32を付加しであるが昇圧チョッパ回路31のみの直流
−直流変換シ、ステムでも本発明の効果は同様である。
In FIG. 8, which shows the time pulse of the embodiment of FIG. 7, when the current detection <= sign 411 reaches a predetermined value, the continuous conduction gate of switch element 3]2 of the boost chopper circuit 31 is stopped, and at 11 o'clock the boost chopper circuit 31, inverter circuit 3
However, there are no particular restrictions on how to start these two circuits due to the characteristics of the present invention. For example, if there is a transformer at the output of the inverter circuit 32, the inverter circuit 32 is started in advance and the transformer is activated. After suppressing the rushing 7U flow,
^°, The chopper circuit 31 may be activated, and the inverter circuit 32 is the same regardless of whether it is a self-excited inverter or a separately excited inverter.Furthermore, the present invention as shown in FIG. In the embodiment described above, an inverter circuit 32 is added, but the effects of the present invention are the same even if the DC-DC conversion system includes only a boost chopper circuit 31.

又、電流検出器41は一般にインバータ回路32のイW
護、あるいは制御のために設けられる直流電流検出器と
兼用することができる。又、第7図の本発明実施例では
昇圧チョッパ回路31のスイッチ素子312はシステム
停止時連続通弧のゲートとしているが、常時太陽光発電
器11の出力を短絡するのではなく間けつ的に動作させ
て太陽光発電器11の起電力をモニタするようにしても
良い。
In addition, the current detector 41 generally
It can also be used as a DC current detector for protection or control. In addition, in the embodiment of the present invention shown in FIG. 7, the switch element 312 of the boost chopper circuit 31 is used as a gate for continuous conduction when the system is stopped, but the output of the solar power generator 11 is not constantly short-circuited, but is short-circuited intermittently. The electromotive force of the solar power generator 11 may be monitored by operating the solar power generator 11.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、光起電力を有する太陽電池と
その直流出力を所定の電力に変換する昇圧チョッパ回路
を有する電力変換装置から構成される太陽光発電システ
ムにおいて、太陽光発電システムの停止時に電力変換装
置を構成する昇圧チョッパ回路のスイッチ素子をオンし
、太陽光発電器を短絡する短絡回路を形成した上で、そ
の短絡回路を流れる電流を検出して太陽光発電器の起電
力を的確にとらえ、電力変換装置を起動するため、高価
な起電力モニタ回路を必要とせず、モニタ回路と太陽光
発電器の起電力の相違によるシステム動作不良を生じる
ことなく、太陽光発電器の発生した起電力を即座に交流
電力系統へ供給することができる応答の良い起動を行う
ことができる、
Thus, according to the present invention, in a solar power generation system comprising a solar cell having photovoltaic power and a power conversion device having a step-up chopper circuit that converts its DC output into predetermined power, when the solar power generation system is stopped, The switch element of the step-up chopper circuit that makes up the power conversion device is turned on to form a short circuit that shorts the solar power generator, and the current flowing through the short circuit is detected to accurately determine the electromotive force of the solar power generator. Since the power converter is activated by detecting the electromotive force generated by the solar power generator, there is no need for an expensive electromotive force monitor circuit, and there is no system malfunction due to the difference in electromotive force between the monitor circuit and the solar power generator. It is capable of responsive startup that can immediately supply electromotive force to the AC power system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽電池板の出力電流対出力電圧の関た時の太
陽電池板の出力電圧対出力電流特性図、第5図は太陽光
発電システムのブロック図、第6図は従来の太陽光発電
装置の構成図、第7図は本発明の一実施例を示す太陽先
発7(j;システムのブロック図、第8図は第7図のタ
イムチャートである。 1・・・太陽電池板、2・・太陽電池パネル、34・端
子、5・出力、11 太陽光弁′[ト器、12・・逆流
防止用ダイオード、13・・・電力変換2島、14・・
・交流電力系統、31・・・チョッパ回路、32・イン
バータ回路、41・・電流検出器、411 市流検出伯
号、42・・市原検出回路、421−出力信号、43・
・制御回路、431. 、432 ゲート43号、31
2 スイッチ素子、301 、302 直流」、1.子
、:33 ・■〕流コンデンサ、311・・・u−1流
リアクトル、313.・速流ダイオード、15−開閉器
。 第1図 第2図 第3図 第4図 ボ勾市圧CV) 第5図 第6図 六′ 第7図 /9 第8図 閾r;+i A−二法一下77一
Figure 1 is a characteristic diagram of the output voltage vs. output current of the solar battery plate when the output current vs. output voltage of the solar battery plate is related, Figure 5 is a block diagram of the solar power generation system, and Figure 6 is the conventional solar power generation system. FIG. 7 is a block diagram of the system, and FIG. 8 is a time chart of FIG. 7. 1... Solar cell plate, 2. Solar panel, 34. Terminal, 5. Output, 11. Solar valve' [torque device, 12. Backflow prevention diode, 13. 2 power conversion islands, 14.
- AC power system, 31 - chopper circuit, 32 - inverter circuit, 41 - current detector, 411 - Ichihara detection circuit, 42 - Ichihara detection circuit, 421 - output signal, 43 -
- Control circuit, 431. , 432 Gate No. 43, 31
2 Switch element, 301, 302 DC'', 1. Child, :33 ・■] Current capacitor, 311...U-1 flow reactor, 313.・Fast flow diode, 15-switch. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 6' Fig. 7/9 Fig. 8 Threshold r; +i A-2 method 1 lower 771

Claims (1)

【特許請求の範囲】[Claims] 光起電力を有する太陽電池と該太陽電池の直流出力を所
定の電力に変換する昇圧チョッパ回路を有する電力変換
装置から構成される太陽光発電システムにおいて、該太
陽光発電システムの停止時に該電力変換装置を構成する
前記昇圧チョッパ回路のスイッチ素子をオン状態として
直流端子間を短絡しておき、短終市′流が所定値仁達し
たことを検出して前記昇任チョッパ回路のスイッチ素子
をオフしてから前記電力変換装置を起動するようにした
ことを特徴とする太陽光発電システムの起動方法。
In a solar power generation system consisting of a solar cell having a photovoltaic force and a power conversion device having a step-up chopper circuit that converts the DC output of the solar cell into predetermined power, the power conversion is performed when the solar power generation system is stopped. The switch element of the step-up chopper circuit constituting the device is turned on and the DC terminals are short-circuited, and when it is detected that the short-term current has reached a predetermined value, the switch element of the step-up chopper circuit is turned off. 1. A method for starting a solar power generation system, characterized in that the power conversion device is started after the power converter is activated.
JP59115521A 1984-06-07 1984-06-07 Starting method of solar light power generator system Pending JPS60261360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115521A JPS60261360A (en) 1984-06-07 1984-06-07 Starting method of solar light power generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115521A JPS60261360A (en) 1984-06-07 1984-06-07 Starting method of solar light power generator system

Publications (1)

Publication Number Publication Date
JPS60261360A true JPS60261360A (en) 1985-12-24

Family

ID=14664582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115521A Pending JPS60261360A (en) 1984-06-07 1984-06-07 Starting method of solar light power generator system

Country Status (1)

Country Link
JP (1) JPS60261360A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050062B2 (en) * 2010-02-24 2011-11-01 General Electric Company Method and system to allow for high DC source voltage with lower DC link voltage in a two stage power converter
JP2014093877A (en) * 2012-11-05 2014-05-19 Mitsubishi Electric Corp Electrical power system
JP2014161203A (en) * 2013-01-24 2014-09-04 Omron Corp Power conditioner, solar battery system and abnormality determination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050062B2 (en) * 2010-02-24 2011-11-01 General Electric Company Method and system to allow for high DC source voltage with lower DC link voltage in a two stage power converter
JP2014093877A (en) * 2012-11-05 2014-05-19 Mitsubishi Electric Corp Electrical power system
JP2014161203A (en) * 2013-01-24 2014-09-04 Omron Corp Power conditioner, solar battery system and abnormality determination method

Similar Documents

Publication Publication Date Title
US20240072534A1 (en) Start method for photovoltaic rapid shutdown system, application apparatus and system
JPS60238918A (en) Control device of variable speed motor
US7737647B2 (en) Rectifier and system for controlling the speed of an electric motor
JPH1031525A (en) Photovoltaic power generation system
JP2005312158A (en) Power converter and its control method, and solarlight power generator
JPS60261360A (en) Starting method of solar light power generator system
US11146062B2 (en) Method and apparatus for improving PV module fill factor using a voltage clamping circuit
JP2001136755A (en) Inverter protection device
JPH0534199Y2 (en)
JPH06115836A (en) Inverter device of elevator
JPS6069720A (en) Solar light power generation system
JP3832573B2 (en) Power conditioner for photovoltaic power generation
JPH0457015B2 (en)
KR910005698Y1 (en) Converting circuit of a.c.
JPS60126719A (en) Method of startng solar light electric power generating system
JPH0354366B2 (en)
SU1436216A1 (en) Device for connecting a power thyristor
JPH08297517A (en) Solar power generation system
JPH01243826A (en) Starting of system interconnected solar photovoltaic generation system
JP2000166117A (en) Solar battery power generation module
JPH02156313A (en) Start and stop device for photovoltaic power generating system
JPS6268023A (en) Controller for system interlock inverter
JPS596158Y2 (en) Inverter device
JPS6155719A (en) Starting method of solar light power generating system
SU682979A1 (en) System for limiting switching overvoltages in a converter