JP3832573B2 - Power conditioner for photovoltaic power generation - Google Patents

Power conditioner for photovoltaic power generation Download PDF

Info

Publication number
JP3832573B2
JP3832573B2 JP2001343835A JP2001343835A JP3832573B2 JP 3832573 B2 JP3832573 B2 JP 3832573B2 JP 2001343835 A JP2001343835 A JP 2001343835A JP 2001343835 A JP2001343835 A JP 2001343835A JP 3832573 B2 JP3832573 B2 JP 3832573B2
Authority
JP
Japan
Prior art keywords
voltage
switching means
power
power conditioner
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001343835A
Other languages
Japanese (ja)
Other versions
JP2003153434A (en
Inventor
雅英 山口
隆史 詫間
達弥 川松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2001343835A priority Critical patent/JP3832573B2/en
Publication of JP2003153434A publication Critical patent/JP2003153434A/en
Application granted granted Critical
Publication of JP3832573B2 publication Critical patent/JP3832573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は太陽光発電用パワーコンディショナに関する。
【0002】
【従来の技術】
太陽光発電システムは、太陽電池の発電した直流電力をパワーコンディショナにて交流電力に変換し、一般に系統と連系して電力を負荷に供給するシステムである。本システムは太陽光という再生可能エネルギーを利用していることから、きわめてクリーンであり、資源の枯渇がないことから世界的に実用化がすすめられている。
【0003】
図3は、このような太陽光発電システムの構成例で、1は太陽電池、2はパワーコンディショナ、3は負荷、4は系統である。本構成例では、パワーコンディショナ2にて太陽電池1の発電電力を交流電力に変換し、系統4と連系して負荷3に供給する。このとき、太陽電池1の発電電力が負荷3の消費電力より小さい場合は、発電電力はすべて負荷3にて消費され、不足分が系統4から供給されるが、発電電力が負荷3の消費電力より大きい場合は余剰電力が発生し、系統4に逆潮流電力として供給される。
【0004】
図3において、パワーコンディショナ2は太陽電池1の直流電力を交流電力に変換し、負荷3および系統4に供給するために、インバータ等のスイッチング手段や保護装置等から構成されている。図4はこのようなパワーコンディショナの構成例で、21、22はノイズフィルタ、23は保護ダイオード、24はスイッチング手段、25はリアクトル、26は絶縁変圧器、27は保護装置である。本構成例では、太陽電池1の直流電力は、スイッチング手段24にて交流電力に変換され、リアクトル25と絶縁変圧器26を介して負荷3および系統4に供給される。保護装置27は、系統4に障害が発生した場合にスイッチング手段24を停止させるために設置している。また、保護ダイオード23は、スイッチング手段24から太陽電池1に電力が逆流するのを防止するために設置している。さらに、スイッチング手段24のスイッチングにともなう高周波成分が太陽電池1または系統4に流出するのを防止するために、ノイズフィルタ21、22を内蔵している。
【0005】
図5はパワーコンディショナの他の構成例で、太陽電池1の電圧を昇圧する場合を示している。絶縁変圧器を省略するために、昇圧チョッパとしてリアクトル28および他のスイッチング手段29を追加している。すなわち、系統4と直接連系するためには、系統4の電圧が200Vの場合には、直流電圧として300V以上の電圧が必要であり、太陽電池1の電圧がこれより低い場合にリアクトル28およびスイッチング手段29にて電圧を昇圧する。
【0006】
【発明が解決しようとする課題】
上記従来のシステムにおいて、太陽電池1の電圧は、システム効率を向上させるために通常200V以上の比較的高い電圧が採用されている。また、太陽電池1の特性は図6に示すように定電流特性を有しており、その開放電圧Vocが最大出力動作電圧Vaに比べて高いという特徴がある。
【0007】
パワーコンディショナ2は、通常、太陽電池1から最大電力を得るために、その直流入力電圧が最大出力動作電圧Vaとなるようにスイッチング手段が制御される。この場合、万一、パワーコンディショナ2の直流入力端(イ)とスイッチング手段の入力端(ロ)に至る回路、すなわち図4におけるノイズフィルタ21、保護ダイオード23や図5におけるノイズフィルタ21、保護ダイオード23、リアクトル28の接続部等に接続不良が発生すると、当該部分に前記開放電圧Vocと最大出力電圧Vaとの差電圧(数十V)が瞬時に印加され、電流を流し続けようとする結果、接続不良部位にアーク放電が生じる。すなわち、通常、パワーコンディショナ2は、その入力電圧が図6のA点となるようにスイッチング手段が制御されるが、接続不良が発生するとアーク放電による電圧降下が発生し、太陽電池1の動作点がBに移動する。
【0008】
このとき、接続不良部位にはB点の電流Ibと上記電圧降下分Vdとの積に相当する電力が発生し、たとえばそれぞれが20A、20Vであったとすると、その電力は400Wとなり、相当量の発熱が生じる。また、周知のとおり、直流電流は電流のゼロ点がないため、一旦アーク放電が始まると、一定量の空間距離が確保されるまで消滅しないという問題がある。
【0009】
したがって、このような事態が発生すると、瞬時にパワーコンディショナの内部が高温となり、安全上問題となる場合があった。
本発明の目的は、このような接続不良を検知することにより、アーク放電を防止し、安全性の高いパワーコンディショナを提供することにある。
【0010】
【課題を解決するための手段】
上記問題を解決するため、本発明の太陽光発電用パワーコンディショナは、太陽電池の発電電力を交流電力に変換するスイッチング手段を有する太陽光発電用パワーコンディショナにおいて、前記太陽電池の特性は前記最大出力動作電圧よりも開放電圧が高く、前記パワーコンディショナの直流入力端の電圧が最大出力動作電圧となるように前記スイッチング手段が制御され、このパワーコンディショナの直流入力端の電圧と前記スイッチング手段の入力端の電圧とを検出し、前記パワーコンディショナの直流入力端の電圧が前記スイッチング手段の入力端の電圧に比べて所定の値以上上昇した場合に、前記スイッチング手段をオフし、前記パワーコンディショナの直流入力端と前記スイッチング手段の入力端に至る回路に発生する接続不良部位に前記開放電圧と最大出力動作電圧との差電圧が瞬時に印加され生じるアーク放電を消滅するようにした。
【0011】
また、本発明の他の太陽光発電用パワーコンディショナは、太陽電池の発電電力を昇圧する昇圧チョッパと、前記昇圧された発電電力を交流電力に変換するスイッチング手段とを有する太陽光発電用パワーコンディショナにおいて、前記昇圧チョッパが他のスイッチング手段を備え、前記太陽電池の特性は前記最大出力動作電圧よりも開放電圧が高く、前記パワーコンディショナの直流入力端の電圧が最大出力動作電圧となるように前記スイッチング手段が制御され、このパワーコンディショナの直流入力端の電圧と前記他のスイッチング手段の入力端の電圧とを検出し、前記パワーコンディショナの直流入力端の電圧が前記他のスイッチング手段の入力端の電圧に比べて所定の値以上上昇した場合に、前記スイッチング手段および/または前記他のスイッチ手段をオフし、前記パワーコンディショナの直流入力端と前記他のスイッチング手段の入力端に至る回路に発生する接続不良部位に前記開放電圧と最大出力動作電圧との差電圧が瞬時に印加され生じるアーク放電を消滅するようにした。
【0012】
【発明の実施の形態】
本発明では、パワーコンディショナの直流入力端の電圧とスイッチング手段の入力端の電圧を検出する。スイッチング手段の入力端の電圧がパルス幅変調されている場合はフィルタによりその平均値を求める。次に、これらの各電圧の差を求めて、所定の値と比較し、この値以上であればスイッチング手段を停止する。すなわち、通常、上記各電圧の差は、回路の直流抵抗とパワーコンディショナの直流電流の積で決まる値であり、パワーコンディショナの定格運転時であっても高々数V程度の値であるが、万一、接続不良が発生した場合は、この差電圧が数十Vまで上昇するので、容易に接続不良を検知することができる。
【0013】
スイッチング手段としては、IGBTやFETが適用でき、前記スイッチング手段で直流電力を交流電力に変換可能である。好ましくは、昇圧チョッパと組み合わせるのが良い。
【0014】
上記昇圧チョッパとしては、IGBTやFETを用いた他のスイッチング手段を備えたものが好ましく、より好ましくはリアクトルと前記他のスイッチング手段とから構成されたものがよい。前記他のスイッチング手段を備えた場合には、該他のスイッチング手段の入力端で電圧を検出する。そしてパワーコンディショナの直流入力端の電圧との比較を行う。
【0015】
【実施例】
図1は本発明による実施例で、51、52は分圧回路、53は定電圧ダイオード、54は比較回路である。また、その他については従来の構成例と同様である。本実施例では、通常時、パワーコンディショナ2の直流入力端の電圧は直流電力を交流電力に変換するIGBTからなるスイッチング手段24の入力端の電圧に対して数V高い程度であるので、この電圧が定電圧ダイオード53の電圧(ここでは、10Vを用いた)以下であれば、分圧回路51の出力電圧は分圧回路52の出力電圧より低く、比較回路54の出力はLとなっている。
【0016】
万一、パワーコンディショナ2の直流回路に接続不良が生じ、この電圧降下が定電圧ダイオード53の電圧を超えると、分圧回路51の出力電圧が分圧回路52の出力電圧より高くなり、比較回路54の出力はHとなってスイッチング手段24が停止する。
【0017】
また、図2は本発明による他の実施例で、パワーコンディショナ2に発電電力を昇圧するためのリアクトル28とIGBTからなる他のスイッチング手段29とから構成される昇圧チョッパを内蔵した場合である。この場合の構成は図1とほぼ同様であるが、昇圧チョッパにおける他のスイッチング手段29の入力がパルス幅変調されているので、分圧回路52に簡単なフィルタコンデンサ55を追加している。これにより、他のスイッチング手段29の入力端の平均電圧を検知することができ、同様に接続不良による電圧降下を検知してスイッチング手段24または他のスイッチング手段29の少なくとも一方を停止することができる。
【0018】
なお、以上のように、スイッチング手段を停止すれば、太陽電池からの電流経路が絶たれ、アーク放電を消滅させることができる。また、接続不良を検知する差電圧、すなわち定電圧ダイオードの値としては、5〜20Vが好ましく、より好ましくは10V程度が適当であることを確認している。
【0019】
【発明の効果】
以上のように、本発明によれば、パワーコンディショナの直流入力端の電圧とスイッチング手段の入力端の電圧とを検出し、パワーコンディショナの直流入力端の電圧がスイッチング手段の入力端の電圧に比べて所定の値以上上昇した場合に、スイッチング手段をオフするようにしたので、接続不良が発生した場合でもアーク放電による発熱を未然に防止することができ、きわめて安全性の高いパワーコンディショナを構成できるという効果がある。
【図面の簡単な説明】
【図1】本発明にかかる太陽光発電用パワーコンディショナの一実施形態を示す図。
【図2】本発明にかかる太陽光発電用パワーコンディショナの他の一実施形態を示す図。
【図3】太陽光発電システムの概略を示す図。
【図4】従来の太陽光発電用パワーコンディショナの一例を示す図。
【図5】従来の太陽光発電用パワーコンディショナの他の一例を示す図。
【図6】太陽電池の出力特性を示す図。
【符号の説明】
1 太陽電池
2 パワーコンディショナ
3 負荷
4 系統
21、22 ノイズフィルタ
23 保護ダイオード
24、29 スイッチング手段
25、28 リアクトル
26 絶縁変圧器
27 保護装置
51、52 分圧回路
53 定電圧ダイオード
54 比較回路
55 フィルタコンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conditioner for photovoltaic power generation.
[0002]
[Prior art]
A solar power generation system is a system that converts DC power generated by a solar cell into AC power using a power conditioner, and generally supplies the power to a load linked to a grid. Since this system uses renewable energy such as sunlight, it is extremely clean and has been put to practical use worldwide because it does not run out of resources.
[0003]
FIG. 3 shows a configuration example of such a photovoltaic power generation system, in which 1 is a solar cell, 2 is a power conditioner, 3 is a load, and 4 is a system. In the present configuration example, the power conditioner 2 converts the generated power of the solar cell 1 into AC power, which is connected to the system 4 and supplied to the load 3. At this time, when the generated power of the solar cell 1 is smaller than the power consumption of the load 3, all the generated power is consumed by the load 3, and the shortage is supplied from the system 4, but the generated power is the power consumption of the load 3. If it is larger, surplus power is generated and supplied to the grid 4 as reverse power flow.
[0004]
In FIG. 3, the power conditioner 2 includes switching means such as an inverter, a protection device, and the like in order to convert the DC power of the solar cell 1 into AC power and supply it to the load 3 and the system 4. FIG. 4 shows a configuration example of such a power conditioner, in which 21 and 22 are noise filters, 23 is a protection diode, 24 is a switching means, 25 is a reactor, 26 is an insulation transformer, and 27 is a protection device. In the present configuration example, the DC power of the solar cell 1 is converted into AC power by the switching means 24 and supplied to the load 3 and the system 4 via the reactor 25 and the insulation transformer 26. The protection device 27 is installed to stop the switching means 24 when a failure occurs in the system 4. The protective diode 23 is installed to prevent the power from flowing back from the switching means 24 to the solar cell 1. Further, noise filters 21 and 22 are incorporated in order to prevent high frequency components accompanying switching of the switching means 24 from flowing out to the solar cell 1 or the system 4.
[0005]
FIG. 5 shows another configuration example of the power conditioner, in which the voltage of the solar cell 1 is boosted. In order to omit the insulation transformer, a reactor 28 and other switching means 29 are added as a step-up chopper. That is, in order to directly connect to the grid 4, when the voltage of the grid 4 is 200V, a voltage of 300V or more is required as a DC voltage, and when the voltage of the solar cell 1 is lower than this, the reactor 28 and The voltage is boosted by the switching means 29.
[0006]
[Problems to be solved by the invention]
In the conventional system, a relatively high voltage of 200 V or higher is usually adopted as the voltage of the solar cell 1 in order to improve the system efficiency. Moreover, the characteristic of the solar cell 1 has a constant current characteristic as shown in FIG. 6, and the open circuit voltage Voc is higher than the maximum output operating voltage Va.
[0007]
In order to obtain the maximum power from the solar cell 1, the power conditioner 2 normally has its switching means controlled so that its DC input voltage becomes the maximum output operating voltage Va. In this case, in the unlikely event, a circuit extending from the DC input terminal (A) of the power conditioner 2 to the input terminal (B) of the switching means, that is, the noise filter 21 and the protection diode 23 in FIG. When a connection failure occurs in the connection part of the diode 23, the reactor 28, etc., the difference voltage (several tens of volts) between the open circuit voltage Voc and the maximum output voltage Va is instantaneously applied to the part, and the current continues to flow. As a result, arc discharge occurs at the connection failure site. That is, normally, the switching means is controlled so that the input voltage of the power conditioner 2 becomes the point A in FIG. 6, but when a connection failure occurs, a voltage drop due to arc discharge occurs, and the operation of the solar cell 1 The point moves to B.
[0008]
At this time, power corresponding to the product of the current Ib at point B and the voltage drop Vd is generated at the poorly connected portion. For example, if the power is 20 A and 20 V, respectively, the power is 400 W, which is a considerable amount. An exotherm occurs. Further, as is well known, since direct current has no zero point of current, there is a problem that once arc discharge starts, it does not disappear until a certain amount of spatial distance is secured.
[0009]
Therefore, when such a situation occurs, the inside of the power conditioner may instantaneously become a high temperature, which may cause a safety problem.
An object of the present invention is to provide a power conditioner having high safety by preventing arc discharge by detecting such a connection failure.
[0010]
[Means for Solving the Problems]
To solve the above problems, photovoltaic power conditioner of the present invention is a photovoltaic power conditioner having a switching means for converting the power generated by the solar battery into AC power, characteristics of the solar cell the The switching means is controlled such that the open circuit voltage is higher than the maximum output operating voltage, and the voltage at the DC input terminal of the power conditioner becomes the maximum output operating voltage. The voltage at the DC input terminal of the power conditioner and the switching Detecting the voltage at the input end of the means, and when the voltage at the DC input end of the power conditioner is higher than the voltage at the input end of the switching means, the switching means is turned off , Connection failure occurring in the circuit leading to the DC input terminal of the inverter and the input terminal of the switching means Voltage difference between the open-circuit voltage and the maximum output operating voltage so as to extinguish the arc discharge generated is applied instantaneously position.
[0011]
Further, another photovoltaic power conditioner of the present invention is a photovoltaic power having a boost chopper that boosts the generated power of the solar cell and switching means that converts the boosted generated power into AC power. In the conditioner, the step-up chopper includes other switching means, and the characteristics of the solar cell are higher in open circuit voltage than the maximum output operating voltage, and the voltage at the DC input terminal of the power conditioner becomes the maximum output operating voltage. The switching means is controlled to detect the voltage at the DC input terminal of the power conditioner and the voltage at the input terminal of the other switching means, and the voltage at the DC input terminal of the power conditioner is the other switching voltage. The switching means and / or when the voltage rises by a predetermined value or more compared to the voltage at the input terminal of the means Turns off the serial other switch means, the voltage difference between the open-circuit voltage and the maximum output operating voltage connection failure site occurred in the circuit leading to the input of the other switching means and the DC input end of the power conditioner instantaneous The arc discharge generated when applied to is extinguished .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the voltage at the DC input terminal of the power conditioner and the voltage at the input terminal of the switching means are detected. When the voltage at the input terminal of the switching means is pulse width modulated, the average value is obtained by a filter. Next, the difference between these voltages is obtained and compared with a predetermined value, and if it is greater than this value, the switching means is stopped. That is, normally, the difference between the above voltages is a value determined by the product of the DC resistance of the circuit and the DC current of the power conditioner, and is a value of several volts at most even during rated operation of the power conditioner. In the unlikely event that a connection failure occurs, this difference voltage rises to several tens of volts, so that the connection failure can be easily detected.
[0013]
IGBT or FET can be applied as the switching means, and the switching means can convert DC power into AC power. Preferably, it is combined with a step-up chopper.
[0014]
The step-up chopper is preferably provided with other switching means using IGBT or FET, and more preferably constituted by a reactor and the other switching means. When the other switching means is provided, the voltage is detected at the input terminal of the other switching means. And it compares with the voltage of the DC input terminal of a power conditioner.
[0015]
【Example】
FIG. 1 shows an embodiment according to the present invention, in which 51 and 52 are voltage dividing circuits, 53 is a constant voltage diode, and 54 is a comparison circuit. Others are the same as the conventional configuration example. In the present embodiment, the voltage at the DC input terminal of the power conditioner 2 is normally several V higher than the voltage at the input terminal of the switching means 24 made of IGBT for converting DC power into AC power. If the voltage is equal to or lower than the voltage of the constant voltage diode 53 (here, 10 V is used), the output voltage of the voltage dividing circuit 51 is lower than the output voltage of the voltage dividing circuit 52 and the output of the comparison circuit 54 is L. Yes.
[0016]
If a connection failure occurs in the DC circuit of the power conditioner 2 and this voltage drop exceeds the voltage of the constant voltage diode 53, the output voltage of the voltage dividing circuit 51 becomes higher than the output voltage of the voltage dividing circuit 52. The output of the circuit 54 becomes H and the switching means 24 is stopped.
[0017]
FIG. 2 shows another embodiment according to the present invention, in which the power conditioner 2 has a built-in boost chopper composed of a reactor 28 for boosting generated power and other switching means 29 made of IGBT. . The configuration in this case is almost the same as that in FIG. 1, but a simple filter capacitor 55 is added to the voltage dividing circuit 52 because the input of the other switching means 29 in the boost chopper is pulse width modulated. As a result, the average voltage at the input terminal of the other switching means 29 can be detected, and similarly, a voltage drop due to poor connection can be detected to stop at least one of the switching means 24 or the other switching means 29. .
[0018]
In addition, if the switching means is stopped as described above, the current path from the solar cell is cut off, and arc discharge can be extinguished. Further, it has been confirmed that the differential voltage for detecting a connection failure, that is, the value of the constant voltage diode is preferably 5 to 20 V, more preferably about 10 V.
[0019]
【The invention's effect】
As described above, according to the present invention, the voltage at the DC input terminal of the power conditioner and the voltage at the input terminal of the switching means are detected, and the voltage at the DC input terminal of the power conditioner is the voltage at the input terminal of the switching means. Since the switching means is turned off when the value rises above a predetermined value compared to the above, even if a connection failure occurs, heat generation due to arc discharge can be prevented in advance, and an extremely safe power conditioner There is an effect that can be configured.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a power conditioner for photovoltaic power generation according to the present invention.
FIG. 2 is a diagram showing another embodiment of a power conditioner for photovoltaic power generation according to the present invention.
FIG. 3 is a diagram showing an outline of a photovoltaic power generation system.
FIG. 4 is a diagram showing an example of a conventional power conditioner for photovoltaic power generation.
FIG. 5 is a view showing another example of a conventional power conditioner for photovoltaic power generation.
FIG. 6 is a graph showing output characteristics of a solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Power conditioner 3 Load 4 System | systems 21, 22 Noise filter 23 Protection diode 24, 29 Switching means 25, 28 Reactor 26 Insulation transformer 27 Protection device 51, 52 Voltage dividing circuit 53 Constant voltage diode 54 Comparison circuit 55 Filter Capacitor

Claims (2)

太陽電池の発電電力を交流電力に変換するスイッチング手段を有する太陽光発電用パワーコンディショナにおいて、前記太陽電池の特性は前記最大出力動作電圧よりも開放電圧が高く、前記パワーコンディショナの直流入力端の電圧が最大出力動作電圧となるように前記スイッチング手段が制御され、このパワーコンディショナの直流入力端の電圧と前記スイッチング手段の入力端の電圧とを検出し、前記パワーコンディショナの直流入力端の電圧が前記スイッチング手段の入力端の電圧に比べて所定の値以上上昇した場合に、前記スイッチング手段をオフし、前記パワーコンディショナの直流入力端と前記スイッチング手段の入力端に至る回路に発生する接続不良部位に前記開放電圧と最大出力動作電圧との差電圧が瞬時に印加され生じるアーク放電を消滅することを特徴とする太陽光発電用パワーコンディショナ。In the photovoltaic power conditioner having switching means for converting the generated power of the solar cell into alternating current power, the characteristics of the solar cell are higher in open voltage than the maximum output operating voltage, and the DC input terminal of the power conditioner The switching means is controlled so that the voltage of the power supply becomes the maximum output operating voltage, and the DC input terminal voltage of the power conditioner and the input terminal voltage of the switching means are detected, and the DC input terminal of the power conditioner is detected. Is generated in a circuit that turns off the switching means and reaches the DC input terminal of the power conditioner and the input terminal of the switching means. The difference voltage between the open circuit voltage and the maximum output operating voltage is instantaneously applied to the connection failure site Power conditioner for solar power generation, which comprises eliminating the over arc discharge. 太陽電池の発電電力を昇圧する昇圧チョッパと、前記昇圧された発電電力を交流電力に変換するスイッチング手段とを有する太陽光発電用パワーコンディショナにおいて、前記昇圧チョッパが他のスイッチング手段を備え、前記太陽電池の特性は前記最大出力動作電圧よりも開放電圧が高く、前記パワーコンディショナの直流入力端の電圧が最大出力動作電圧となるように前記スイッチング手段が制御され、このパワーコンディショナの直流入力端の電圧と前記他のスイッチング手段の入力端の電圧とを検出し、前記パワーコンディショナの直流入力端の電圧が前記他のスイッチング手段の入力端の電圧に比べて所定の値以上上昇した場合に、前記スイッチング手段および/または前記他のスイッチ手段をオフし、前記パワーコンディショナの直流入力端と前記他のスイッチング手段の入力端に至る回路に発生する接続不良部位に前記開放電圧と最大出力動作電圧との差電圧が瞬時に印加され生じるアーク放電を消滅することを特徴とする太陽光発電用パワーコンディショナ。A step-up chopper for boosting the power generated by the solar cell, the power conditioner for solar power generation and a switching means for converting the boosted generated power into AC power, the step-up chopper with other switching means, wherein The characteristic of the solar cell is that the open circuit voltage is higher than the maximum output operating voltage, and the switching means is controlled so that the voltage at the DC input terminal of the power conditioner becomes the maximum output operating voltage, and the DC input of the power conditioner When the voltage at the end and the voltage at the input end of the other switching means are detected, and the voltage at the DC input end of the power conditioner increases by a predetermined value or more compared to the voltage at the input end of the other switching means to, and turns off the switching means and / or the other switch means, the power conditioner Characterized in that it eliminated the arc discharge voltage difference occurs is applied instantaneously between the open-circuit voltage and the maximum output operating voltage connection failure site occurred in the circuit leading to the input of the other switching means and the DC input end Power conditioner for solar power generation.
JP2001343835A 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation Expired - Lifetime JP3832573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343835A JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343835A JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Publications (2)

Publication Number Publication Date
JP2003153434A JP2003153434A (en) 2003-05-23
JP3832573B2 true JP3832573B2 (en) 2006-10-11

Family

ID=19157453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343835A Expired - Lifetime JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP3832573B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI23360A (en) * 2010-04-07 2011-10-28 Eti Elektroelement D.D. Arc-based disconnector
JP2013251981A (en) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp Power conditioner
WO2018150876A1 (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Arc detection circuit, switch system, power conditioner system and arc detection method

Also Published As

Publication number Publication date
JP2003153434A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
JP5208374B2 (en) Grid interconnection power conditioner and grid interconnection power system
US8379418B2 (en) Power converter start-up circuit
EP3055916B1 (en) Smart grid power converter
US8836162B2 (en) Inverter for photovoltaic systems
US8937824B2 (en) Photovoltaic system and method of controlling same
JP4225923B2 (en) Inverter for grid connection
US20050105224A1 (en) Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
WO2012098390A2 (en) Inverters
CN108604607B (en) Protection circuit for a Photovoltaic (PV) module, method for operating the protection circuit and Photovoltaic (PV) system comprising such a protection circuit
JP5681785B2 (en) Power converter
CN101027830A (en) Switching power supply apparatus
JP5284447B2 (en) Distributed power system
JP3941346B2 (en) Power conditioner in solar power generation system
JP6730826B2 (en) Power conditioner, power supply system and current control method
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
KR102273767B1 (en) bidirectional DC-DC converter, and energy storage system including the same
KR20130049095A (en) Photovoltaic power generating apparatus and controlling method of the same in grid-connected system
JP2001238465A (en) Inverter device
JP3832573B2 (en) Power conditioner for photovoltaic power generation
US20230283169A1 (en) Power converter, protection method, and system
JP2010252596A (en) System linkage inverter device
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JP3591297B2 (en) Solar power system
KR20150102766A (en) Control device and Control method for Hybrid Photovoltaic cell
JP5464910B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Ref document number: 3832573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term