JP2003153434A - Power conditioner for solar power generation - Google Patents

Power conditioner for solar power generation

Info

Publication number
JP2003153434A
JP2003153434A JP2001343835A JP2001343835A JP2003153434A JP 2003153434 A JP2003153434 A JP 2003153434A JP 2001343835 A JP2001343835 A JP 2001343835A JP 2001343835 A JP2001343835 A JP 2001343835A JP 2003153434 A JP2003153434 A JP 2003153434A
Authority
JP
Japan
Prior art keywords
voltage
power
switching means
input end
power conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001343835A
Other languages
Japanese (ja)
Other versions
JP3832573B2 (en
Inventor
Masahide Yamaguchi
雅英 山口
Takashi Takuma
隆史 詫間
Tatsuya Kawamatsu
達弥 川松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001343835A priority Critical patent/JP3832573B2/en
Publication of JP2003153434A publication Critical patent/JP2003153434A/en
Application granted granted Critical
Publication of JP3832573B2 publication Critical patent/JP3832573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conditioner with high safety capable of preventing arc discharge. SOLUTION: This power conditioner for solar power generation having a switching means for converting electric power generated from a solar battery to AC power detects voltage at a DC input end of the power conditioner and voltage at an input end of the switching means, and turns off the switching means when the voltage at the DC input end of the power conditioner increases more than the voltage at the input end of the switching means by a prescribed value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽光発電用パワー
コンディショナに関する。
TECHNICAL FIELD The present invention relates to a power conditioner for photovoltaic power generation.

【0002】[0002]

【従来の技術】太陽光発電システムは、太陽電池の発電
した直流電力をパワーコンディショナにて交流電力に変
換し、一般に系統と連系して電力を負荷に供給するシス
テムである。本システムは太陽光という再生可能エネル
ギーを利用していることから、きわめてクリーンであ
り、資源の枯渇がないことから世界的に実用化がすすめ
られている。
2. Description of the Related Art A solar power generation system is a system in which DC power generated by a solar cell is converted into AC power by a power conditioner and is generally connected to a grid to supply the power to a load. This system is extremely clean because it uses the renewable energy of sunlight, and it is being put to practical use worldwide because there is no depletion of resources.

【0003】図3は、このような太陽光発電システムの
構成例で、1は太陽電池、2はパワーコンディショナ、
3は負荷、4は系統である。本構成例では、パワーコン
ディショナ2にて太陽電池1の発電電力を交流電力に変
換し、系統4と連系して負荷3に供給する。このとき、
太陽電池1の発電電力が負荷3の消費電力より小さい場
合は、発電電力はすべて負荷3にて消費され、不足分が
系統4から供給されるが、発電電力が負荷3の消費電力
より大きい場合は余剰電力が発生し、系統4に逆潮流電
力として供給される。
FIG. 3 shows an example of the configuration of such a photovoltaic power generation system, 1 is a solar cell, 2 is a power conditioner,
3 is a load and 4 is a system. In this configuration example, the power conditioner 2 converts the power generated by the solar cell 1 into AC power, which is connected to the grid 4 and supplied to the load 3. At this time,
When the generated power of the solar cell 1 is smaller than the consumed power of the load 3, all the generated power is consumed by the load 3 and the shortage is supplied from the grid 4, but when the generated power is larger than the consumed power of the load 3. Surplus power is generated and is supplied to the grid 4 as reverse flow power.

【0004】図3において、パワーコンディショナ2は
太陽電池1の直流電力を交流電力に変換し、負荷3およ
び系統4に供給するために、インバータ等のスイッチン
グ手段や保護装置等から構成されている。図4はこのよ
うなパワーコンディショナの構成例で、21、22はノ
イズフィルタ、23は保護ダイオード、24はスイッチ
ング手段、25はリアクトル、26は絶縁変圧器、27
は保護装置である。本構成例では、太陽電池1の直流電
力は、スイッチング手段24にて交流電力に変換され、
リアクトル25と絶縁変圧器26を介して負荷3および
系統4に供給される。保護装置27は、系統4に障害が
発生した場合にスイッチング手段24を停止させるため
に設置している。また、保護ダイオード23は、スイッ
チング手段24から太陽電池1に電力が逆流するのを防
止するために設置している。さらに、スイッチング手段
24のスイッチングにともなう高周波成分が太陽電池1
または系統4に流出するのを防止するために、ノイズフ
ィルタ21、22を内蔵している。
In FIG. 3, a power conditioner 2 is composed of switching means such as an inverter and a protection device for converting the DC power of the solar cell 1 into AC power and supplying the AC power to the load 3 and the grid 4. . FIG. 4 is a configuration example of such a power conditioner, in which 21 and 22 are noise filters, 23 is a protection diode, 24 is a switching means, 25 is a reactor, 26 is an insulation transformer, and 27.
Is a protective device. In this configuration example, the DC power of the solar cell 1 is converted into AC power by the switching means 24,
It is supplied to the load 3 and the system 4 via the reactor 25 and the insulation transformer 26. The protection device 27 is installed to stop the switching means 24 when a failure occurs in the system 4. In addition, the protection diode 23 is installed in order to prevent electric power from flowing backward from the switching means 24 to the solar cell 1. Further, the high frequency component accompanying the switching of the switching means 24 is the solar cell 1.
Alternatively, noise filters 21 and 22 are built in in order to prevent the noise from flowing out to the system 4.

【0005】図5はパワーコンディショナの他の構成例
で、太陽電池1の電圧を昇圧する場合を示している。絶
縁変圧器を省略するために、昇圧チョッパとしてリアク
トル28および他のスイッチング手段29を追加してい
る。すなわち、系統4と直接連系するためには、系統4
の電圧が200Vの場合には、直流電圧として300V
以上の電圧が必要であり、太陽電池1の電圧がこれより
低い場合にリアクトル28およびスイッチング手段29
にて電圧を昇圧する。
FIG. 5 shows another example of the configuration of the power conditioner, showing a case where the voltage of the solar cell 1 is boosted. In order to omit the insulating transformer, a reactor 28 and another switching means 29 are added as a step-up chopper. That is, in order to directly connect with the system 4, the system 4
If the voltage is 200V, the DC voltage is 300V
When the above voltage is required and the voltage of the solar cell 1 is lower than this, the reactor 28 and the switching means 29.
To boost the voltage.

【0006】[0006]

【発明が解決しようとする課題】上記従来のシステムに
おいて、太陽電池1の電圧は、システム効率を向上させ
るために通常200V以上の比較的高い電圧が採用され
ている。また、太陽電池1の特性は図6に示すように定
電流特性を有しており、その開放電圧Vocが最大出力
動作電圧Vaに比べて高いという特徴がある。
In the above conventional system, the voltage of the solar cell 1 is usually a relatively high voltage of 200 V or higher in order to improve the system efficiency. Further, the characteristics of the solar cell 1 are constant current characteristics as shown in FIG. 6, and the open circuit voltage Voc is higher than the maximum output operating voltage Va.

【0007】パワーコンディショナ2は、通常、太陽電
池1から最大電力を得るために、その直流入力電圧が最
大出力動作電圧Vaとなるようにスイッチング手段が制
御される。この場合、万一、パワーコンディショナ2の
直流入力端(イ)とスイッチング手段の入力端(ロ)に
至る回路、すなわち図4におけるノイズフィルタ21、
保護ダイオード23や図5におけるノイズフィルタ2
1、保護ダイオード23、リアクトル28の接続部等に
接続不良が発生すると、当該部分に前記開放電圧Voc
と最大出力電圧Vaとの差電圧(数十V)が瞬時に印加
され、電流を流し続けようとする結果、接続不良部位に
アーク放電が生じる。すなわち、通常、パワーコンディ
ショナ2は、その入力電圧が図6のA点となるようにス
イッチング手段が制御されるが、接続不良が発生すると
アーク放電による電圧降下が発生し、太陽電池1の動作
点がBに移動する。
In the power conditioner 2, normally, in order to obtain the maximum power from the solar cell 1, the switching means is controlled so that the DC input voltage becomes the maximum output operating voltage Va. In this case, by any chance, a circuit reaching the DC input terminal (a) of the power conditioner 2 and the input terminal (b) of the switching means, that is, the noise filter 21 in FIG.
The protection diode 23 and the noise filter 2 in FIG.
1. If a connection failure occurs in the connection part of the protection diode 23, the reactor 28, etc., the open circuit voltage Voc is applied to the connection part.
The difference voltage (several tens of V) between the maximum output voltage Va and the maximum output voltage Va is instantaneously applied, and as a result of trying to keep the current flowing, arc discharge occurs at the connection failure part. That is, normally, in the power conditioner 2, the switching means is controlled so that the input voltage thereof becomes the point A in FIG. 6, but when a connection failure occurs, a voltage drop due to arc discharge occurs, and the operation of the solar cell 1 proceeds. The point moves to B.

【0008】このとき、接続不良部位にはB点の電流I
bと上記電圧降下分Vdとの積に相当する電力が発生
し、たとえばそれぞれが20A、20Vであったとする
と、その電力は400Wとなり、相当量の発熱が生じ
る。また、周知のとおり、直流電流は電流のゼロ点がな
いため、一旦アーク放電が始まると、一定量の空間距離
が確保されるまで消滅しないという問題がある。
At this time, the current I at the point B is present in the defective connection portion.
Electric power corresponding to the product of b and the voltage drop Vd is generated. For example, if the electric power is 20 A and 20 V, the electric power is 400 W, and a considerable amount of heat is generated. Further, as is well known, since there is no zero point of the current in the direct current, there is a problem that once the arc discharge starts, it does not disappear until a certain space distance is secured.

【0009】したがって、このような事態が発生する
と、瞬時にパワーコンディショナの内部が高温となり、
安全上問題となる場合があった。本発明の目的は、この
ような接続不良を検知することにより、アーク放電を防
止し、安全性の高いパワーコンディショナを提供するこ
とにある。
Accordingly, when such a situation occurs, the temperature inside the power conditioner instantly becomes high,
In some cases, it was a safety issue. An object of the present invention is to provide a highly safe power conditioner that prevents arc discharge by detecting such a connection failure.

【0010】[0010]

【課題を解決するための手段】上記問題を解決するた
め、本発明の太陽光発電用パワーコンディショナは、太
陽電池の発電電力を交流電力に変換するスイッチング手
段を有する太陽光発電用パワーコンディショナにおい
て、このパワーコンディショナの直流入力端の電圧と前
記スイッチング手段の入力端の電圧とを検出し、前記パ
ワーコンディショナの直流入力端の電圧が前記スイッチ
ング手段の入力端の電圧に比べて所定の値以上上昇した
場合に、前記スイッチング手段をオフするようにした。
In order to solve the above problems, a power conditioner for photovoltaic power generation according to the present invention is a power conditioner for photovoltaic power generation having a switching means for converting generated power of a solar cell into AC power. In, the voltage at the DC input end of the power conditioner and the voltage at the input end of the switching means are detected, and the voltage at the DC input end of the power conditioner is higher than the voltage at the input end of the switching means by a predetermined value. The switching means is turned off when the value exceeds the value.

【0011】また、本発明の他の太陽光発電用パワーコ
ンディショナは、太陽電池の発電電力を昇圧する昇圧チ
ョッパと、前記昇圧された発電電力を交流電力に変換す
るスイッチング手段とを有する太陽光発電用パワーコン
ディショナにおいて、前記昇圧チョッパが他のスイッチ
ング手段を備え、このパワーコンディショナの直流入力
端の電圧と前記他のスイッチング手段の入力端の電圧と
を検出し、前記パワーコンディショナの直流入力端の電
圧が前記他のスイッチング手段の入力端の電圧に比べて
所定の値以上上昇した場合に、前記スイッチ手段および
/または前記他のスイッチ手段をオフするようにした。
Further, another power conditioner for photovoltaic power generation of the present invention is a solar light having a step-up chopper for boosting the generated power of the solar cell and a switching means for converting the boosted generated power into AC power. In the power conditioner for power generation, the step-up chopper is provided with another switching means, detects the voltage at the DC input terminal of this power conditioner and the voltage at the input terminal of the other switching means, and detects the DC voltage of the power conditioner. The switch means and / or the other switch means are turned off when the voltage at the input end is higher than the voltage at the input end of the other switching means by a predetermined value or more.

【0012】[0012]

【発明の実施の形態】本発明では、パワーコンディショ
ナの直流入力端の電圧とスイッチング手段の入力端の電
圧を検出する。スイッチング手段の入力端の電圧がパル
ス幅変調されている場合はフィルタによりその平均値を
求める。次に、これらの各電圧の差を求めて、所定の値
と比較し、この値以上であればスイッチング手段を停止
する。すなわち、通常、上記各電圧の差は、回路の直流
抵抗とパワーコンディショナの直流電流の積で決まる値
であり、パワーコンディショナの定格運転時であっても
高々数V程度の値であるが、万一、接続不良が発生した
場合は、この差電圧が数十Vまで上昇するので、容易に
接続不良を検知することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the voltage at the DC input terminal of the power conditioner and the voltage at the input terminal of the switching means are detected. When the voltage at the input end of the switching means is pulse width modulated, the average value is obtained by a filter. Next, the difference between each of these voltages is obtained and compared with a predetermined value. If it is equal to or greater than this value, the switching means is stopped. That is, usually, the difference between the voltages is a value determined by the product of the DC resistance of the circuit and the DC current of the power conditioner, and is a value of about several V at most even during the rated operation of the power conditioner. In the unlikely event that a connection failure occurs, this difference voltage rises to several tens of volts, so that the connection failure can be easily detected.

【0013】スイッチング手段としては、IGBTやF
ETが適用でき、前記スイッチング手段で直流電力を交
流電力に変換可能である。好ましくは、昇圧チョッパと
組み合わせるのが良い。
As a switching means, IGBT or F
ET is applicable, and DC power can be converted to AC power by the switching means. It is preferably combined with a boost chopper.

【0014】上記昇圧チョッパとしては、IGBTやF
ETを用いた他のスイッチング手段を備えたものが好ま
しく、より好ましくはリアクトルと前記他のスイッチン
グ手段とから構成されたものがよい。前記他のスイッチ
ング手段を備えた場合には、該他のスイッチング手段の
入力端で電圧を検出する。そしてパワーコンディショナ
の直流入力端の電圧との比較を行う。
The boost chopper may be an IGBT or F
It is preferable to have another switching means using ET, and more preferable to be one including a reactor and the other switching means. When the other switching means is provided, the voltage is detected at the input terminal of the other switching means. Then, it is compared with the voltage at the DC input terminal of the power conditioner.

【0015】[0015]

【実施例】図1は本発明による実施例で、51、52は
分圧回路、53は定電圧ダイオード、54は比較回路で
ある。また、その他については従来の構成例と同様であ
る。本実施例では、通常時、パワーコンディショナ2の
直流入力端の電圧は直流電力を交流電力に変換するIG
BTからなるスイッチング手段24の入力端の電圧に対
して数V高い程度であるので、この電圧が定電圧ダイオ
ード53の電圧(ここでは、10Vを用いた)以下であ
れば、分圧回路51の出力電圧は分圧回路52の出力電
圧より低く、比較回路54の出力はLとなっている。
1 is an embodiment according to the present invention, in which 51 and 52 are voltage divider circuits, 53 is a constant voltage diode, and 54 is a comparison circuit. Others are the same as the conventional configuration example. In the present embodiment, in a normal condition, the voltage at the DC input end of the power conditioner 2 is an IG that converts DC power into AC power.
Since it is about several V higher than the voltage at the input end of the switching means 24 composed of BT, if this voltage is equal to or lower than the voltage of the constant voltage diode 53 (here, 10 V is used), the voltage dividing circuit 51 The output voltage is lower than the output voltage of the voltage dividing circuit 52, and the output of the comparison circuit 54 is L.

【0016】万一、パワーコンディショナ2の直流回路
に接続不良が生じ、この電圧降下が定電圧ダイオード5
3の電圧を超えると、分圧回路51の出力電圧が分圧回
路52の出力電圧より高くなり、比較回路54の出力は
Hとなってスイッチング手段24が停止する。
In the unlikely event that a connection failure occurs in the DC circuit of the power conditioner 2, this voltage drop is caused by the constant voltage diode 5
When the voltage exceeds 3, the output voltage of the voltage dividing circuit 51 becomes higher than the output voltage of the voltage dividing circuit 52, the output of the comparison circuit 54 becomes H, and the switching means 24 stops.

【0017】また、図2は本発明による他の実施例で、
パワーコンディショナ2に発電電力を昇圧するためのリ
アクトル28とIGBTからなる他のスイッチング手段
29とから構成される昇圧チョッパを内蔵した場合であ
る。この場合の構成は図1とほぼ同様であるが、昇圧チ
ョッパにおける他のスイッチング手段29の入力がパル
ス幅変調されているので、分圧回路52に簡単なフィル
タコンデンサ55を追加している。これにより、他のス
イッチング手段29の入力端の平均電圧を検知すること
ができ、同様に接続不良による電圧降下を検知してスイ
ッチング手段24または他のスイッチング手段29の少
なくとも一方を停止することができる。
FIG. 2 shows another embodiment according to the present invention.
This is the case where the power conditioner 2 has a built-in booster chopper including a reactor 28 for boosting the generated power and another switching means 29 including an IGBT. The configuration in this case is almost the same as that of FIG. 1, but since the input of the other switching means 29 in the step-up chopper is pulse-width modulated, a simple filter capacitor 55 is added to the voltage dividing circuit 52. Thereby, the average voltage at the input end of the other switching means 29 can be detected, and similarly, the voltage drop due to the connection failure can be detected and at least one of the switching means 24 and the other switching means 29 can be stopped. .

【0018】なお、以上のように、スイッチング手段を
停止すれば、太陽電池からの電流経路が絶たれ、アーク
放電を消滅させることができる。また、接続不良を検知
する差電圧、すなわち定電圧ダイオードの値としては、
5〜20Vが好ましく、より好ましくは10V程度が適
当であることを確認している。
As described above, by stopping the switching means, the current path from the solar cell is cut off and the arc discharge can be extinguished. In addition, the difference voltage for detecting the connection failure, that is, the value of the constant voltage diode,
It has been confirmed that 5 to 20 V is preferable, and about 10 V is more preferable.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、パワー
コンディショナの直流入力端の電圧とスイッチング手段
の入力端の電圧とを検出し、パワーコンディショナの直
流入力端の電圧がスイッチング手段の入力端の電圧に比
べて所定の値以上上昇した場合に、スイッチング手段を
オフするようにしたので、接続不良が発生した場合でも
アーク放電による発熱を未然に防止することができ、き
わめて安全性の高いパワーコンディショナを構成できる
という効果がある。
As described above, according to the present invention, the voltage at the DC input end of the power conditioner and the voltage at the input end of the switching means are detected, and the voltage at the DC input end of the power conditioner is detected. Since the switching means is turned off when the voltage rises above a certain value compared to the input terminal voltage, even if a connection failure occurs, it is possible to prevent heat generation due to arc discharge, and it is extremely safe. The effect is that a high power conditioner can be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる太陽光発電用パワーコンディシ
ョナの一実施形態を示す図。
FIG. 1 is a diagram showing an embodiment of a power conditioner for photovoltaic power generation according to the present invention.

【図2】本発明にかかる太陽光発電用パワーコンディシ
ョナの他の一実施形態を示す図。
FIG. 2 is a diagram showing another embodiment of the power conditioner for photovoltaic power generation according to the present invention.

【図3】太陽光発電システムの概略を示す図。FIG. 3 is a diagram showing an outline of a solar power generation system.

【図4】従来の太陽光発電用パワーコンディショナの一
例を示す図。
FIG. 4 is a diagram showing an example of a conventional power conditioner for photovoltaic power generation.

【図5】従来の太陽光発電用パワーコンディショナの他
の一例を示す図。
FIG. 5 is a diagram showing another example of a conventional power conditioner for photovoltaic power generation.

【図6】太陽電池の出力特性を示す図。FIG. 6 is a diagram showing output characteristics of a solar cell.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 パワーコンディショナ 3 負荷 4 系統 21、22 ノイズフィルタ 23 保護ダイオード 24、29 スイッチング手段 25、28 リアクトル 26 絶縁変圧器 27 保護装置 51、52 分圧回路 53 定電圧ダイオード 54 比較回路 55 フィルタコンデンサ 1 solar cell 2 power conditioner 3 load 4 lines 21, 22 Noise filter 23 Protection diode 24, 29 switching means 25, 28 reactor 26 Isolation transformer 27 Protective device 51, 52 voltage divider circuit 53 Constant voltage diode 54 Comparison circuit 55 Filter capacitor

フロントページの続き (72)発明者 川松 達弥 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 Fターム(参考) 5G053 AA07 AA09 BA04 CA02 EB01 FA01 5H007 BB07 CC01 DB01 DC02 GA08Continued front page    (72) Inventor Tatsuya Kawamatsu             Kyoto Prefecture Kyoto City Minami-ku Kichijoin Nishinosho Inono Babacho             No. 1 within Japan Battery Co., Ltd. F-term (reference) 5G053 AA07 AA09 BA04 CA02 EB01                       FA01                 5H007 BB07 CC01 DB01 DC02 GA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の発電電力を交流電力に変換する
スイッチング手段を有する太陽光発電用パワーコンディ
ショナにおいて、このパワーコンディショナの直流入力
端の電圧と前記スイッチング手段の入力端の電圧とを検
出し、前記パワーコンディショナの直流入力端の電圧が
前記スイッチング手段の入力端の電圧に比べて所定の値
以上上昇した場合に、前記スイッチング手段をオフする
ことを特徴とする太陽光発電用パワーコンディショナ。
1. A power conditioner for photovoltaic power generation having switching means for converting generated power of a solar cell into alternating current power, wherein a voltage at a DC input end of the power conditioner and a voltage at an input end of the switching means are set. Detecting, when the voltage at the DC input end of the power conditioner rises by a predetermined value or more as compared with the voltage at the input end of the switching means, the switching means is turned off. Conditioner.
【請求項2】太陽電池の発電電力を昇圧する昇圧チョッ
パと、前記昇圧された発電電力を交流電力に変換するス
イッチング手段とを有する太陽光発電用パワーコンディ
ショナにおいて、前記昇圧チョッパが他のスイッチング
手段を備え、このパワーコンディショナの直流入力端の
電圧と前記他のスイッチング手段の入力端の電圧とを検
出し、前記パワーコンディショナの直流入力端の電圧が
前記他のスイッチング手段の入力端の電圧に比べて所定
の値以上上昇した場合に、前記スイッチ手段および/ま
たは前記他のスイッチ手段をオフすることを特徴とする
太陽光発電用パワーコンディショナ。
2. A power conditioner for photovoltaic power generation, comprising: a boosting chopper for boosting the generated power of a solar cell; and a switching means for converting the boosted generated power into AC power. Means for detecting the voltage at the DC input end of the power conditioner and the voltage at the input end of the other switching means, and the voltage at the DC input end of the power conditioner is detected at the input end of the other switching means. A power conditioner for photovoltaic power generation, characterized in that when the voltage rises by a predetermined value or more, the switch means and / or the other switch means are turned off.
JP2001343835A 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation Expired - Lifetime JP3832573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343835A JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343835A JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Publications (2)

Publication Number Publication Date
JP2003153434A true JP2003153434A (en) 2003-05-23
JP3832573B2 JP3832573B2 (en) 2006-10-11

Family

ID=19157453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343835A Expired - Lifetime JP3832573B2 (en) 2001-11-08 2001-11-08 Power conditioner for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP3832573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126460A1 (en) * 2010-04-07 2011-10-13 Eti Elektroelement D.D. Arc preventing switch
JP2013251981A (en) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp Power conditioner
WO2018150876A1 (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Arc detection circuit, switch system, power conditioner system and arc detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126460A1 (en) * 2010-04-07 2011-10-13 Eti Elektroelement D.D. Arc preventing switch
JP2013251981A (en) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp Power conditioner
WO2018150876A1 (en) * 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 Arc detection circuit, switch system, power conditioner system and arc detection method
JPWO2018150876A1 (en) * 2017-02-14 2019-11-07 パナソニックIpマネジメント株式会社 Arc detection circuit, switch system, power conditioner system, and arc detection method

Also Published As

Publication number Publication date
JP3832573B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP5208374B2 (en) Grid interconnection power conditioner and grid interconnection power system
US8379418B2 (en) Power converter start-up circuit
US8836162B2 (en) Inverter for photovoltaic systems
US8937824B2 (en) Photovoltaic system and method of controlling same
JP4225923B2 (en) Inverter for grid connection
TWI389417B (en) System interconnection inverter
EP2058921A1 (en) Power conditioner
CN111934352B (en) Photovoltaic system, control method of turn-off device of photovoltaic system and switch control device
US8897040B2 (en) Power converter systems and methods of operating a power converter system
JP5284447B2 (en) Distributed power system
WO2017169665A1 (en) Power conditioner, power supply system, and current control method
JP3941346B2 (en) Power conditioner in solar power generation system
WO2011135658A1 (en) System interconnection inverter
JP2001238465A (en) Inverter device
JP2003153434A (en) Power conditioner for solar power generation
JP5622923B2 (en) Grid connection power conditioner
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JPH08179841A (en) Photovoltaic power generation device
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
JP5464910B2 (en) Power converter
JP3979740B2 (en) Grid-connected power generator
JPH11262256A (en) Power unit and electric discharge lamp turning-on device
JP2002165369A (en) Power system interconnection inverter
JP2005137149A (en) Power conditioner and power generation system
JP2003134670A (en) Excessive current suppressing device at start of linkage, and photovoltaic power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Ref document number: 3832573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term