JP2003134661A - Load interruption detecting device and photovoltaic power generator - Google Patents

Load interruption detecting device and photovoltaic power generator

Info

Publication number
JP2003134661A
JP2003134661A JP2001319571A JP2001319571A JP2003134661A JP 2003134661 A JP2003134661 A JP 2003134661A JP 2001319571 A JP2001319571 A JP 2001319571A JP 2001319571 A JP2001319571 A JP 2001319571A JP 2003134661 A JP2003134661 A JP 2003134661A
Authority
JP
Japan
Prior art keywords
current
load
photovoltaic power
deviation
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001319571A
Other languages
Japanese (ja)
Inventor
Hiroyuki Otake
宏之 大嶽
Koji Toyama
浩司 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001319571A priority Critical patent/JP2003134661A/en
Publication of JP2003134661A publication Critical patent/JP2003134661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a load interruption detecting device for photovoltaic power generator in which voltage rise can be minimized even if a load interruption occurs. SOLUTION: A load interruption detecting system in a photovoltaic power generator performing linkage operation with a power system comprises means for detecting the instantaneous output voltage from the photovoltaic power generator, and means for detecting deviation of a current of the photovoltaic power generator from a command value, wherein occurrence of load interruption of the photovoltaic power generator is determined when the instantaneous value of the output voltage exceeds a predetermined value and/or the deviation of the electric current from the command for exceeds a predetermined value, and when a state of load interruption takes place, an inverter is suspended by a gate blocking means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統と連系
運転を行う太陽光発電装置における負荷遮断を検出する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for detecting load shedding in a photovoltaic power generator that is interconnected with a power system.

【0002】[0002]

【従来の技術】太陽電池による太陽光発電は、他の自然
エネルギー利用の発電方式と異なり、建築物の屋根や壁
面に容易に設置することができ、騒音その他の公害の心
配もないため、無公害発電システムとして期待されるよ
うになってきている。近年、電力系統と連系運転を行う
ことが可能となり、一般家庭で太陽光発電を行うときは
系統連系用インバータによって商用交流電源と系統連系
を行うのが一般的になっている。
2. Description of the Related Art Photovoltaic power generation using solar cells, unlike other power generation systems using natural energy, can be easily installed on the roof or wall of a building, and there is no concern about noise or other pollution. It has come to be expected as a pollution power generation system. In recent years, it has become possible to perform interconnection operation with an electric power system, and when performing solar power generation in a general household, it has become common to perform system interconnection with a commercial AC power source by a grid interconnection inverter.

【0003】太陽光発電装置が電力系統と連系運転を行
っているとき、分電盤やその他の場所で突然断線状態と
なり太陽光発電装置が無負荷となる、いわゆる負荷遮断
の状態が起こることがある。負荷遮断が起こると、今ま
で流れていた電流が突然ゼロになるため、太陽光発電装
置の出力電圧が異常上昇してしまい、装置に悪影響を与
える虞があるので、これを回避するため、連系点の電流
を監視したり、電圧上昇を検出して異常を検出し、ゲー
トブロックによってインバータを停止する方法が実用化
されている。
When the photovoltaic power generator is operating in an interconnected manner with the power system, a so-called load cut-off state occurs in which the photovoltaic power generator is suddenly disconnected and the photovoltaic power generator is unloaded. There is. When the load is cut off, the current that has been flowing up to now suddenly becomes zero, causing an abnormal increase in the output voltage of the photovoltaic power generator, which may adversely affect the device. A method of monitoring the current at the system point, detecting an abnormality by detecting a voltage rise, and stopping the inverter by a gate block has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】ところが上述の方法で
は、連系点の電流を監視するための検出手段が必要とな
り、装置の小型化、低コスト化の妨げになってしまうと
いう課題があった。また、電圧上昇を検出する方法で
は、検出遅れによって電圧上昇値が大きくなるため、内
部部品の耐電圧値を大きくする必要があり、装置のコス
トアップとなってしまうという課題があった。
However, in the above method, there is a problem that detection means for monitoring the current at the interconnection point is required, which hinders downsizing and cost reduction of the device. . Further, in the method of detecting the voltage rise, the voltage rise value increases due to the detection delay, so that it is necessary to increase the withstand voltage value of the internal parts, which causes a problem of increasing the cost of the device.

【0005】本発明はこのような背景の下になされたも
ので、負荷遮断が発生しても電圧上昇を最小限に抑える
ことができる負荷遮断検出装置、およびそれを備える太
陽光発電装置を提供することを目的とする。
The present invention has been made under such a background, and provides a load cutoff detection device capable of minimizing a voltage rise even if a load cutoff occurs, and a photovoltaic power generation device including the load cutoff detection device. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、電力系統と連系運転を行う太陽光発電装置における
負荷遮断検出装置であって、太陽光発電装置の出力電圧
の瞬時値を検出する出力電圧瞬時値検出手段と、前記太
陽光発電装置の電流の指令値に対する偏差を検出する電
流偏差検出手段とを具備することを特徴とする太陽光発
電装置の負荷遮断検出装置を提供する。
According to a first aspect of the present invention, there is provided a load shedding detection device for a photovoltaic power generator that is interconnected with an electric power system, wherein an instantaneous value of an output voltage of the photovoltaic power generator is detected. There is provided a load shedding detection device for a photovoltaic power generation device, comprising: an output voltage instantaneous value detection means for detecting; and a current deviation detection means for detecting a deviation of a current of the photovoltaic power generation device from a command value. .

【0007】この発明によれば、太陽光発電装置の出力
電圧の瞬時値を監視し、定格電圧に対して所定の比率以
上に上昇したとき異常を検出する手段と、電流の指令値
に対する実際の電流の偏差が所定以上の大きさになった
とき異常を検出する手段とを備えて負荷遮断の検出を行
うので、どのようなタイミングで負荷遮断が発生しても
高速で検出を行うことができる。
According to the present invention, means for monitoring the instantaneous value of the output voltage of the photovoltaic power generator and detecting an abnormality when the output voltage exceeds a predetermined ratio with respect to the rated voltage, and an actual value for the command value of the current are detected. Since the load shedding is detected by including means for detecting an abnormality when the deviation of the current exceeds a predetermined value, it is possible to detect the load shedding at any timing at high speed. .

【0008】請求項2に記載の発明は、請求項1記載の
負荷遮断検出装置において、前記出力電圧の瞬時値が所
定のレベルを超えるか、または前記電流の指令値に対す
る偏差が所定のレベルを超えたとき、前記太陽光発電装
置の負荷遮断と認定することを特徴とする。
According to a second aspect of the present invention, in the load cutoff detecting device according to the first aspect, the instantaneous value of the output voltage exceeds a predetermined level, or the deviation of the current from the command value exceeds a predetermined level. When it exceeds, it is characterized as a load shedding of the solar power generation device.

【0009】この発明によれば、出力電圧の瞬時値が所
定のレベルを超えたとき、および、電流の指令値とイン
バータ出力電流との偏差を検出し、この偏差が所定値を
超えたときのどちらの場合も負荷遮断と認定して装置保
護を行うので、出力電圧のピークをある値以下に抑える
ことができ、安全性を高めることができる。
According to the present invention, when the instantaneous value of the output voltage exceeds the predetermined level, and when the deviation between the command value of the current and the inverter output current is detected and the deviation exceeds the predetermined value, In both cases, the device protection is performed by recognizing that the load is cut off, so that the peak of the output voltage can be suppressed to a certain value or less, and the safety can be improved.

【0010】請求項3に記載の発明は、請求項1記載の
負荷遮断検出装置において、前記出力電圧の瞬時値が所
定のレベルを超え、且つ、前記電流の指令値に対する偏
差が所定のレベルを超えたとき、前記太陽光発電装置の
負荷遮断と認定することを特徴とする。
According to a third aspect of the present invention, in the load cutoff detecting device according to the first aspect, the instantaneous value of the output voltage exceeds a predetermined level, and the deviation of the current from the command value exceeds a predetermined level. When it exceeds, it is characterized as a load shedding of the solar power generation device.

【0011】この発明によれば、出力電圧の瞬時値が所
定レベルを超え、且つ、電流の指令値とインバータ出力
電流との検出偏差が所定値を超えたとき、負荷遮断と認
定して装置保護を行うので、信頼性を高めることができ
る。
According to the present invention, when the instantaneous value of the output voltage exceeds the predetermined level and the detection deviation between the command value of the current and the inverter output current exceeds the predetermined value, it is determined that the load is cut off and the device protection is performed. Therefore, the reliability can be improved.

【0012】請求項4に記載の発明は、請求項1記載の
負荷遮断検出装置において、前記出力電圧の瞬時値が所
定のレベルを超え、且つ、前記電流の指令値がゼロでな
いにもかかわらず流れる電流がゼロであったとき、前記
太陽光発電装置の負荷遮断と認定する検出手段を具備す
ることを特徴とする。
According to a fourth aspect of the present invention, in the load cutoff detecting device according to the first aspect, the instantaneous value of the output voltage exceeds a predetermined level and the command value of the current is not zero. When the flowing current is zero, it is characterized by comprising a detection means for recognizing that the load of the photovoltaic power generation device is cut off.

【0013】この発明によれば、出力電圧の瞬時値が所
定レベルを超え、且つ、電流の指令値がゼロでないにも
かかわらず流れる電流がゼロであったとき、負荷遮断と
認定して装置保護を行うので、信頼性を高めることがで
きる。
According to the present invention, when the instantaneous value of the output voltage exceeds a predetermined level and the flowing current is zero even though the command value of the current is not zero, it is recognized as a load cutoff and device protection is performed. Therefore, the reliability can be improved.

【0014】請求項5に記載の発明は、請求項1から4
のいずれか記載の負荷遮断検出装置と、太陽電池出力を
交流電力に逆変換するインバータのゲート制御信号を遮
断するゲートブロック手段とを具備し、前記負荷遮断と
認定される状態が起こったとき、前記ゲートブロック手
段によって前記インバータを停止することを特徴とする
太陽光発電装置を提供する。
The invention described in claim 5 is from claim 1 to claim 4.
A load blockage detection device according to any one of, and a gate block means for blocking a gate control signal of an inverter that reversely converts a solar cell output to AC power, and when a condition recognized as the load blockage occurs, There is provided a photovoltaic power generation device characterized in that the inverter is stopped by the gate block means.

【0015】この発明によれば、インバータのゲート制
御信号を遮断するゲートブロック手段を具備して負荷遮
断と認定される状態が起こったとき、ゲートブロックに
よってインバータを停止させるので、安全でかつ信頼性
の高い太陽光発電を実施することができる。
According to the present invention, the gate block means for shutting off the gate control signal of the inverter is provided, and when the condition recognized as load shedding occurs, the inverter is stopped by the gate block, so that it is safe and reliable. High-power solar power generation can be implemented.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】<第1の実施の形態>図1は、この発明の
第1の実施の形態による太陽光発電装置の構成を示すブ
ロック図である。この図において、符号1は太陽電池出
力であり、太陽電池パネル、接続箱および昇圧チョッパ
等を含み、直流電力を出力する。インバータ2は、太陽
電池出力1の直流電力を交流電力に逆変換した後、正弦
化フィルタ4によって波形歪を除去し、負荷6の接続さ
れた電力系統5と連系運転を行う。
<First Embodiment> FIG. 1 is a block diagram showing a structure of a solar power generation apparatus according to a first embodiment of the present invention. In this figure, reference numeral 1 is a solar cell output, which includes a solar cell panel, a connection box, a step-up chopper, and the like, and outputs DC power. The inverter 2 reverse-converts the DC power of the solar cell output 1 into AC power, removes the waveform distortion by the sine filter 4, and performs the interconnection operation with the power system 5 to which the load 6 is connected.

【0018】インバータ2は、電力系統5と連系を行う
ために出力電流を制御する必要があり、電流指令値生成
手段12の出力する信号と電流センサ3の電流信号とを
電流偏差検出手段13において比較し、偏差がゼロにな
るようにインバータゲート制御手段14においてゲート
制御信号を生成し、インバータ2を駆動する。このよう
な構成による太陽光発電装置が連系点付近で電力系統5
との連系が突然絶たれ無負荷となる、いわゆる負荷遮断
が発生すると、今まで流れていた電流が突然ゼロになる
ため、太陽光発電装置の出力電圧が異常上昇してしま
い、装置に悪影響を与える虞があり、速やかにインバー
タ2を停止する必要がある。
The inverter 2 needs to control the output current in order to be connected to the electric power system 5, and the signal output from the current command value generation means 12 and the current signal from the current sensor 3 are used as the current deviation detection means 13. In the inverter gate control means 14, a gate control signal is generated so that the deviation becomes zero, and the inverter 2 is driven. The solar power generation device with such a configuration is connected to the power grid 5 near the interconnection point.
When the so-called load shedding occurs, where the interconnection with and suddenly becomes unloaded, causing a so-called load shedding, the current that has been flowing up to now suddenly becomes zero, causing an abnormal increase in the output voltage of the photovoltaic power generator, which adversely affects the device. Therefore, it is necessary to stop the inverter 2 promptly.

【0019】このため、出力電圧瞬時値検出手段11に
よって連系点の電圧の瞬時値を常時監視しており、電圧
の瞬時値が定格電圧のピーク値の120%を超える状態
が起こると、直ちにゲートブロック手段15に信号を送
出してインバータゲート制御手段14から出力されてい
るゲート制御信号をブロックしてインバータ2を停止さ
せる。
Therefore, the output voltage instantaneous value detecting means 11 constantly monitors the instantaneous value of the voltage at the interconnection point, and immediately when the instantaneous value of the voltage exceeds 120% of the peak value of the rated voltage, it is immediately detected. A signal is sent to the gate block means 15 to block the gate control signal output from the inverter gate control means 14 to stop the inverter 2.

【0020】さらに、電流偏差検出手段13において電
流指令値生成手段12の電流指令値と電流センサ3の電
流信号との偏差を検出し、この偏差が小さくなるように
インバータゲート制御手段14おいてゲート信号を出力
してインバータ2を駆動しているが、負荷遮断が発生す
ると前記偏差が大きくなるので、このときゲートブロッ
ク手段15に信号を送出してインバータゲート制御手段
14から出力されているゲート制御信号をブロックして
インバータ2を停止させる。
Further, the current deviation detecting means 13 detects a deviation between the current command value of the current command value generating means 12 and the current signal of the current sensor 3, and the inverter gate control means 14 gates the deviation so as to reduce the deviation. Although the inverter 2 is driven by outputting a signal, the deviation becomes large when the load is cut off. At this time, therefore, a signal is sent to the gate block means 15 to output the gate control from the inverter gate control means 14. The signal is blocked and the inverter 2 is stopped.

【0021】この実施の形態では、出力電圧が上昇した
場合、および指令値との電流偏差が大きくなった場合の
どちらでもインバータを停止するので、出力電圧のピー
ク値を150%以下に抑えることができ、きわめて安全
度の高い保護方式とすることができる。
In this embodiment, since the inverter is stopped both when the output voltage rises and when the current deviation from the command value becomes large, the peak value of the output voltage can be suppressed to 150% or less. Therefore, the protection method can be made extremely safe.

【0022】<第2の実施の形態>図2は、この発明の
第2の実施の形態による太陽光発電装置の構成を示すブ
ロック図である。この図において、符号1は太陽電池出
力であり、太陽電池パネル、接続箱および昇圧チョッパ
等を含み、直流電力を出力する。インバータ2は、太陽
電池出力1の直流電力を交流電力に逆変換した後、正弦
化フィルタ4によって波形歪を除去し、負荷6の接続さ
れた電力系統5と連系運転を行う。
<Second Embodiment> FIG. 2 is a block diagram showing the configuration of a photovoltaic power generator according to a second embodiment of the present invention. In this figure, reference numeral 1 is a solar cell output, which includes a solar cell panel, a connection box, a step-up chopper, and the like, and outputs DC power. The inverter 2 reverse-converts the DC power of the solar cell output 1 into AC power, removes the waveform distortion by the sine filter 4, and performs the interconnection operation with the power system 5 to which the load 6 is connected.

【0023】インバータ2は、電力系統5と連系を行う
ために出力電流を制御する必要があり、電流指令値生成
手段12の出力する信号と電流センサ3の電流信号とを
電流偏差検出手段13において比較し、偏差がゼロにな
るようにインバータゲート制御手段14においてゲート
制御信号を生成し、インバータ2を駆動する。このよう
な構成による太陽光発電装置が連系点付近で電力系統5
との連系が突然絶たれ無負荷となる、いわゆる負荷遮断
が発生すると、今まで流れていた電流が突然ゼロになる
ため、太陽光発電装置の出力電圧が異常上昇してしま
い、装置に悪影響を与える虞があり、速やかにインバー
タ2を停止する必要がある。
The inverter 2 needs to control the output current in order to connect with the power system 5, and the signal output from the current command value generating means 12 and the current signal from the current sensor 3 are used as the current deviation detecting means 13. In the inverter gate control means 14, a gate control signal is generated so that the deviation becomes zero, and the inverter 2 is driven. The solar power generation device with such a configuration is connected to the power grid 5 near the interconnection point.
When the so-called load shedding occurs, where the interconnection with and suddenly becomes unloaded, causing a so-called load shedding, the current that has been flowing up to now suddenly becomes zero, causing an abnormal increase in the output voltage of the photovoltaic power generator, which adversely affects the device. Therefore, it is necessary to stop the inverter 2 promptly.

【0024】このため、出力電圧瞬時値検出手段11に
よって連系点の電圧の瞬時値を常時監視しており、電圧
の瞬時値が定格電圧のピーク値の120%を超える状態
が起こると、直ちに論理積回路16に信号を送出する。
さらに、電流偏差検出手段13において電流指令値生成
手段12の電流指令値と電流センサ3の電流信号との偏
差を検出し、この偏差が小さくなるようにインバータゲ
ート制御手段14おいてゲート信号を出力してインバー
タ2を駆動しているが、負荷遮断が発生すると前記偏差
が大きくなるので、このとき論理積回路16に信号を送
出する。
For this reason, the output voltage instantaneous value detecting means 11 constantly monitors the instantaneous value of the voltage at the interconnection point, and when the instantaneous value of the voltage exceeds 120% of the peak value of the rated voltage, it immediately occurs. A signal is sent to the AND circuit 16.
Further, the current deviation detecting means 13 detects a deviation between the current command value of the current command value generating means 12 and the current signal of the current sensor 3, and outputs a gate signal in the inverter gate control means 14 so as to reduce the deviation. Then, the inverter 2 is driven, but when the load is cut off, the deviation becomes large. Therefore, at this time, a signal is sent to the AND circuit 16.

【0025】出力電圧瞬時値検出手段11の信号、およ
び電流偏差検出手段13からの偏差値大の信号の両方の
信号が論理積回路16に与えられたとき、ゲートブロッ
ク手段15に信号を送出してインバータゲート制御手段
14から出力されているゲート制御信号をブロックして
インバータ2を停止させる。この実施の形態では、出力
電圧が上昇し、且つ、電流指令値との電流偏差が大きく
なった場合にインバータを停止するのできわめて信頼度
の高い保護方式とすることができる。
When both the signal of the output voltage instantaneous value detecting means 11 and the signal of the large deviation value from the current deviation detecting means 13 are given to the AND circuit 16, the signal is sent to the gate block means 15. The gate control signal output from the inverter gate control means 14 is blocked to stop the inverter 2. In this embodiment, since the inverter is stopped when the output voltage rises and the current deviation from the current command value becomes large, a highly reliable protection system can be provided.

【0026】<第3の実施の形態>図2は、この発明の
第3の実施の形態による太陽光発電装置の構成を示すブ
ロック図であり、上述の第2の実施の形態と同一の構成
である。図2のような構成による太陽光発電装置が連系
点付近で電力系統5との連系が突然絶たれ無負荷とな
る、いわゆる負荷遮断が発生すると、今まで流れていた
電流が突然ゼロになるため、太陽光発電装置の出力電圧
が異常上昇してしまい、装置に悪影響を与える虞があ
り、速やかにインバータ2を停止する必要がある。
<Third Embodiment> FIG. 2 is a block diagram showing the structure of a photovoltaic power generator according to a third embodiment of the present invention, which has the same structure as that of the second embodiment. Is. When the so-called load shedding occurs, in which the photovoltaic power generator configured as shown in FIG. 2 is suddenly disconnected from the interconnection with the power system 5 near the interconnection point, resulting in no load, the current that has been flowing up to now suddenly becomes zero. Therefore, the output voltage of the photovoltaic power generator abnormally rises, which may adversely affect the device. Therefore, it is necessary to stop the inverter 2 promptly.

【0027】このため、出力電圧瞬時値検出手段11に
よって連系点の電圧の瞬時値を常時監視しており、電圧
の瞬時値が定格電圧のピーク値の120%を超える状態
が起こると、直ちに論理積回路16に信号を送出する。
さらに、電流偏差検出手段13において電流指令値生成
手段12の電流指令値と電流センサ3の電流信号との偏
差を検出し、この偏差が小さくなるようにインバータゲ
ート制御手段14おいてゲート信号を出力してインバー
タ2を駆動しているが、電流指令値がゼロでないのに電
流センサ3の信号がゼロになったとき負荷遮断と判断し
て論理積回路16に信号を送出する。
Therefore, the output voltage instantaneous value detection means 11 constantly monitors the instantaneous value of the voltage at the interconnection point, and immediately when the instantaneous value of the voltage exceeds 120% of the peak value of the rated voltage, it is immediately detected. A signal is sent to the AND circuit 16.
Further, the current deviation detecting means 13 detects a deviation between the current command value of the current command value generating means 12 and the current signal of the current sensor 3, and outputs a gate signal in the inverter gate control means 14 so as to reduce the deviation. Then, the inverter 2 is driven, but when the signal of the current sensor 3 becomes zero even though the current command value is not zero, it is judged that the load is cut off and the signal is sent to the AND circuit 16.

【0028】出力電圧瞬時値検出手段11の信号、およ
び電流偏差検出手段13からの偏差値大の信号の両方の
信号が論理積回路16に与えられたとき、ゲートブロッ
ク手段15に信号を送出してインバータゲート制御手段
14から出力されているゲート制御信号をブロックして
インバータ2を停止させる。この実施の形態では、出力
電圧が上昇し、且つ、電流指令値がゼロでないのに実際
の電流値がゼロであった場合にインバータを停止するの
で、きわめて信頼度の高い保護方式とすることができ
る。
When both the signal of the output voltage instantaneous value detecting means 11 and the signal of the large deviation value from the current deviation detecting means 13 are given to the AND circuit 16, the signal is sent to the gate block means 15. The gate control signal output from the inverter gate control means 14 is blocked to stop the inverter 2. In this embodiment, since the inverter is stopped when the output voltage rises and the actual current value is zero even though the current command value is not zero, a very reliable protection method can be provided. it can.

【0029】以上、本発明の実施の形態の動作を図面を
参照して詳述してきたが、本発明はこの実施の形態に限
られるものではなく、本発明の要旨を逸脱しない範囲の
設計変更等があっても本発明に含まれる。
The operation of the embodiment of the present invention has been described above in detail with reference to the drawings. However, the present invention is not limited to this embodiment, and design changes within the scope not departing from the gist of the present invention. Etc. are included in the present invention.

【0030】[0030]

【発明の効果】これまでに説明したように、本発明によ
れば以下に示す効果が得られる。請求項1の発明によれ
ば、太陽光発電装置の出力電圧の瞬時値を監視し、定格
電圧に対して所定の比率以上に上昇したとき異常を検出
する手段と、電流の指令値に対する実際の電流の偏差が
所定以上の大きさになったとき異常を検出する手段とを
備えて負荷遮断の検出を行うので、どのようなタイミン
グで負荷遮断が発生しても高速で検出を行うことができ
る。
As described above, according to the present invention, the following effects can be obtained. According to the invention of claim 1, means for monitoring the instantaneous value of the output voltage of the photovoltaic power generator and detecting an abnormality when the output voltage rises above a predetermined ratio with respect to the rated voltage, and an actual value for the command value of the current. Since the load shedding is detected by including means for detecting an abnormality when the deviation of the current exceeds a predetermined value, it is possible to detect the load shedding at any timing at high speed. .

【0031】請求項2の発明によれば、出力電圧の瞬時
値が所定レベルを超えたとき、および、電流の指令値と
インバータ出力電流との偏差を検出し、この偏差が所定
値を超えたときのどちらの場合も負荷遮断と認定して装
置保護を行うので、出力電圧のピークをある値以下に抑
えることができ、安全性を高めることができる。
According to the second aspect of the invention, when the instantaneous value of the output voltage exceeds the predetermined level, and when the deviation between the command value of the current and the inverter output current is detected, the deviation exceeds the predetermined value. In both cases, since the device protection is performed by recognizing that the load is cut off, the peak of the output voltage can be suppressed to a certain value or less, and the safety can be improved.

【0032】請求項3の発明によれば、出力電圧の瞬時
値が所定レベルを超え、且つ、電流の指令値とインバー
タ出力電流との検出偏差が所定値を超えたとき、負荷遮
断と認定して装置保護を行うので、信頼性を高めること
ができる。
According to the third aspect of the present invention, when the instantaneous value of the output voltage exceeds the predetermined level and the detection deviation between the current command value and the inverter output current exceeds the predetermined value, it is determined that the load is cut off. Since the device is protected by the device, the reliability can be improved.

【0033】請求項4の発明によれば、出力電圧の瞬時
値が所定レベルを超え、且つ、電流の指令値がゼロでな
いにもかかわらず流れる電流がゼロであったとき、負荷
遮断と認定して装置保護を行うので、信頼性を高めるこ
とができる。
According to the invention of claim 4, when the instantaneous value of the output voltage exceeds a predetermined level and the flowing current is zero even though the command value of the current is not zero, it is determined that the load is cut off. Since the device is protected by the device, the reliability can be improved.

【0034】請求項5の発明によれば、インバータのゲ
ート制御信号を遮断するゲートブロック手段を具備して
負荷遮断と認定される状態が起こったとき、ゲートブロ
ックによってインバータを停止させるので、安全でかつ
信頼性の高い太陽光発電を実施することができる。
According to the fifth aspect of the present invention, the gate block means for shutting off the gate control signal of the inverter is provided, and when the state recognized as the load shedding occurs, the inverter is stopped by the gate block. In addition, highly reliable solar power generation can be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態による太陽光発電
装置の構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a solar power generation device according to a first embodiment of the present invention.

【図2】 本発明の第2または第3の実施の形態による
太陽光発電装置の構成を示すブロック図。
FIG. 2 is a block diagram showing a configuration of a solar power generation device according to a second or third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…太陽電池出力 2…インバータ 3…電流センサ 4…正弦化フィルタ 5…電力系統 6…負荷 11…出力電圧瞬時値検出手段 12…電流指令値生成手段 13…電流偏差検出手段 14…インバータゲート制御手段 15…ゲートブロック手段 16…論理積回路 1 ... Solar cell output 2 ... Inverter 3 ... Current sensor 4 ... Sine filter 5 ... Power system 6 ... load 11 ... Output voltage instantaneous value detection means 12 ... Current command value generating means 13 ... Current deviation detecting means 14 ... Inverter gate control means 15 ... Gate block means 16 ... AND circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 KA05 KA08 KA10 5G053 AA07 AA09 BA01 BA04 CA02 EB01 FA01 5G066 HA13 HB06 5H420 BB13 CC03 DD03 DD09 DD10 FF03 FF04 FF25 LL02 LL05   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F051 KA05 KA08 KA10                 5G053 AA07 AA09 BA01 BA04 CA02                       EB01 FA01                 5G066 HA13 HB06                 5H420 BB13 CC03 DD03 DD09 DD10                       FF03 FF04 FF25 LL02 LL05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力系統と連系運転を行う太陽光発電装
置における負荷遮断検出装置であって、 太陽光発電装置の出力電圧の瞬時値を検出する出力電圧
瞬時値検出手段と、 前記太陽光発電装置の電流の指令値に対する偏差を検出
する電流偏差検出手段とを具備することを特徴とする負
荷遮断検出装置。
1. A load shedding detection device in a photovoltaic power generation device that is interconnected with an electric power system, the output voltage instantaneous value detection means detecting an instantaneous value of an output voltage of the photovoltaic power generation device; A load-disconnection detecting device, comprising: a current deviation detecting means for detecting a deviation of a current of the power generator from a command value.
【請求項2】 前記出力電圧の瞬時値が所定のレベルを
超えるか、または前記電流の指令値に対する偏差が所定
のレベルを超えたとき、前記太陽光発電装置の負荷遮断
と認定することを特徴とする請求項1記載の負荷遮断検
出装置。
2. When the instantaneous value of the output voltage exceeds a predetermined level or the deviation of the current from a command value exceeds a predetermined level, it is determined that the load of the photovoltaic power generation device is cut off. The load shedding detection device according to claim 1.
【請求項3】 前記出力電圧の瞬時値が所定のレベルを
超え、且つ、前記電流の指令値に対する偏差が所定のレ
ベルを超えたとき、前記太陽光発電装置の負荷遮断と認
定することを特徴とする請求項1記載の負荷遮断検出装
置。
3. When the instantaneous value of the output voltage exceeds a predetermined level and the deviation of the current from a command value exceeds a predetermined level, it is determined that the load on the photovoltaic power generator is cut off. The load shedding detection device according to claim 1.
【請求項4】 前記出力電圧の瞬時値が所定のレベルを
超え、且つ、前記電流の指令値がゼロでないにもかかわ
らず流れる電流がゼロであったとき、前記太陽光発電装
置の負荷遮断と認定する検出手段を具備することを特徴
とする請求項1記載の負荷遮断検出装置。
4. When the instantaneous value of the output voltage exceeds a predetermined level and the flowing current is zero even though the command value of the current is not zero, the load of the photovoltaic power generator is cut off. The load shedding detection device according to claim 1, further comprising a detection unit that certifies the load.
【請求項5】 請求項1から4のいずれか記載の負荷遮
断検出装置と、太陽電池出力を交流電力に逆変換するイ
ンバータのゲート制御信号を遮断するゲートブロック手
段とを具備し、 前記負荷遮断と認定される状態が起こったとき、前記ゲ
ートブロック手段によって前記インバータを停止するこ
とを特徴とする太陽光発電装置。
5. The load cutoff detection device according to claim 1, and a gate block means for cutting off a gate control signal of an inverter for inversely converting the output of the solar cell into AC power. A photovoltaic power generation device characterized in that the inverter is stopped by the gate block means when a condition that is recognized as occurs.
JP2001319571A 2001-10-17 2001-10-17 Load interruption detecting device and photovoltaic power generator Pending JP2003134661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319571A JP2003134661A (en) 2001-10-17 2001-10-17 Load interruption detecting device and photovoltaic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319571A JP2003134661A (en) 2001-10-17 2001-10-17 Load interruption detecting device and photovoltaic power generator

Publications (1)

Publication Number Publication Date
JP2003134661A true JP2003134661A (en) 2003-05-09

Family

ID=19137101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319571A Pending JP2003134661A (en) 2001-10-17 2001-10-17 Load interruption detecting device and photovoltaic power generator

Country Status (1)

Country Link
JP (1) JP2003134661A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089500A (en) * 2007-09-28 2009-04-23 Sansha Electric Mfg Co Ltd Power converter
US7807919B2 (en) 2007-11-02 2010-10-05 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
KR101022205B1 (en) 2009-02-19 2011-03-16 전남대학교산학협력단 Simulation system for electric power generation having a circuit for limitting maximum output voltage
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
CN102338851A (en) * 2011-09-28 2012-02-01 东北大学 Plug and play detecting device for photovoltaic power generation grid-connected system
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9397612B2 (en) 2007-11-02 2016-07-19 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11228278B2 (en) 2007-11-02 2022-01-18 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
JP2009089500A (en) * 2007-09-28 2009-04-23 Sansha Electric Mfg Co Ltd Power converter
US9813021B2 (en) 2007-11-02 2017-11-07 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7884278B2 (en) * 2007-11-02 2011-02-08 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US11228278B2 (en) 2007-11-02 2022-01-18 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US9397612B2 (en) 2007-11-02 2016-07-19 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10256770B2 (en) 2007-11-02 2019-04-09 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11855578B2 (en) 2007-11-02 2023-12-26 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10686403B2 (en) 2007-11-02 2020-06-16 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11646695B2 (en) 2007-11-02 2023-05-09 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7807919B2 (en) 2007-11-02 2010-10-05 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
KR101022205B1 (en) 2009-02-19 2011-03-16 전남대학교산학협력단 Simulation system for electric power generation having a circuit for limitting maximum output voltage
US8884465B2 (en) 2009-04-17 2014-11-11 National Semiconductor Corporation System and method for over-voltage protection in a photovoltaic system
US8810068B2 (en) 2009-04-17 2014-08-19 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
WO2010121211A3 (en) * 2009-04-17 2011-03-10 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
US10523013B2 (en) 2009-12-29 2019-12-31 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US11728443B2 (en) 2009-12-29 2023-08-15 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US11081889B2 (en) 2009-12-29 2021-08-03 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US10063056B2 (en) 2009-12-29 2018-08-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US9377765B2 (en) 2009-12-29 2016-06-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
CN102338851A (en) * 2011-09-28 2012-02-01 东北大学 Plug and play detecting device for photovoltaic power generation grid-connected system
CN102338851B (en) * 2011-09-28 2013-06-26 东北大学 Plug and play detecting device for photovoltaic power generation grid-connected system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Similar Documents

Publication Publication Date Title
JP2003134661A (en) Load interruption detecting device and photovoltaic power generator
JP7250842B2 (en) Activation method, application device and system for photovoltaic rapid shutdown system
CN102403888B (en) Photovoltaic grid connected inverter with reverse connection prevention function and control method therefor
JP2002204531A (en) Ac-interconnecting device and control method thereof
WO2006033143A1 (en) Solar photovoltaic power generation system and booster unit thereof
US9509231B2 (en) Power converter system, damping system, and method of operating a power converter system
TWI441402B (en) Power generation system and switch device thereof
US10797485B2 (en) Power conditioner, power supply system, and current control method
CN215498288U (en) But short-circuit protection&#39;s power optimizer and photovoltaic power generation system
KR20090129775A (en) Dc feeder groundfault detector
CN201674714U (en) Electronic ballast with MCU intelligent protection
KR101863028B1 (en) The Grid-connected Photovoltaic Generator capable of Blocking Ground Current
JP2014007909A (en) Power conversion apparatus
CN105826952A (en) Power supply access device and protection method thereof
JP2015006074A (en) Power conversion device
US20230378765A1 (en) Islanding detection method and apparatus
JP2003153433A (en) Instantaneous voltage drop detection device for power system
CN107395120B (en) Fault detection method of safety device and photovoltaic power generation system
TWM636645U (en) Solar energy monitoring shutoff device with high-voltage DC input capability and one-to-many connecting function
JP2006345679A (en) Solar energy power generation system
KR20170120954A (en) Apparatus for fault detection in photovoltaic inverter system
JP2001333536A (en) Non-utility generating facility
KR100635480B1 (en) A protection method of grid-connected dispersed storage and generating system based on operation characteristics of a recloser
JPWO2020174657A1 (en) Solar power system
KR20170093653A (en) Apparatus and method of Grid-connected photovoltaic system which is available for detecting ground overcurrent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523