JPH0354160A - Refractory - Google Patents
RefractoryInfo
- Publication number
- JPH0354160A JPH0354160A JP1190289A JP19028989A JPH0354160A JP H0354160 A JPH0354160 A JP H0354160A JP 1190289 A JP1190289 A JP 1190289A JP 19028989 A JP19028989 A JP 19028989A JP H0354160 A JPH0354160 A JP H0354160A
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- magnesia
- chromium
- metal aluminum
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 56
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 28
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 21
- 239000011651 chromium Substances 0.000 claims abstract description 21
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011819 refractory material Substances 0.000 claims description 16
- 229910052596 spinel Inorganic materials 0.000 claims description 11
- 239000011029 spinel Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 24
- 239000002184 metal Substances 0.000 abstract description 24
- 239000011449 brick Substances 0.000 abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 abstract description 11
- 230000007797 corrosion Effects 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 11
- 239000002075 main ingredient Substances 0.000 abstract description 4
- 239000007800 oxidant agent Substances 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000011230 binding agent Substances 0.000 abstract description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract 2
- NACUKFIFISCLOQ-UHFFFAOYSA-N [Mg].[Cr] Chemical compound [Mg].[Cr] NACUKFIFISCLOQ-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011823 monolithic refractory Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011451 fired brick Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、溶融金属容器、とくに、真空容器の内張り材
として好適な耐火材に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refractory material suitable as a lining material for molten metal containers, particularly vacuum containers.
製鋼プロセスにおいて、転炉で精錬した後の不純物除去
のために、DH,RH設備で脱ガス処理している。これ
らの真空容器の内張り用耐火物としては、高温真空下で
とくに安定な材質であることが要求される。In the steelmaking process, degassing is performed using DH and RH equipment to remove impurities after refining in a converter. The refractory for lining these vacuum containers is required to be a material that is particularly stable under high-temperature vacuum conditions.
一般にシリカを主成分とする耐火物は、高温真空下で解
離し易いために、この用途には不向きであるが、マグネ
シア,スピネル,クロムm等は安定でありこの用途に好
適とされている。その中でも、溶鋼流に対する耐摩耗性
の観点から焼戊タイプのマグネシア,マグネシア・スピ
ネル,マグネシア・クロム鉱耐火物がとくに適している
。In general, refractories containing silica as a main component are unsuitable for this purpose because they tend to dissociate under high-temperature vacuum conditions, but magnesia, spinel, chromium m, and the like are stable and suitable for this purpose. Among these, burnt-out type magnesia, magnesia spinel, and magnesia chromite refractories are particularly suitable from the viewpoint of wear resistance against molten steel flow.
その中でも、マグネシア・クロム質れんがは、スラグ・
溶鋼との反応による化学的侵食,温度変化による熱衝撃
に強い耐スポール性に優れたものである。Among them, magnesia chromium bricks are slag and
It has excellent spalling resistance and is resistant to chemical attack due to reaction with molten steel and thermal shock due to temperature changes.
マグネシア・クロム質耐火材は、その原料構戊からダイ
レクトボンドとりボンドの2種類に大別できる。Magnesia chromium refractory materials can be roughly divided into two types, direct bond and bond, based on their raw material structure.
ダイレクトボンドは、マグネシア源として高純度のマグ
ネシアクリンカーが、またクロム源としては天然クロム
鉱が使用されており、これらの配合物をブレス或形し、
1800℃以上の高温で焼或したものである。Direct Bond uses high-purity magnesia clinker as the magnesia source and natural chromite as the chromium source, and presses or shapes these compounds.
It is fired at a high temperature of 1800°C or higher.
一方、リボンドは、マグネシアクリンカーと、マグネシ
アクリンカーとクロム鉱を事前に電気炉で融解冷却後粉
砕した低不純物の電融マグクロを配合戒形し、焼戊した
ものである。On the other hand, Ribondo is a mixture of magnesia clinker and low-impurity electrofused maguro, which is obtained by melting and cooling the magnesia clinker and chromium ore in an electric furnace and then pulverizing them, followed by burning.
ところで、耐食性を左右する因子の一つとして気孔率が
ある。すなわち、気孔を介してスラグ・溶鋼等の外来戒
分がれんが内に侵入し、更にれんが或分と反応すること
によって低融物を生威し、更にスラグ流1 溶解流によ
って容易に摩耗損傷する。By the way, porosity is one of the factors that influences corrosion resistance. In other words, foreign substances such as slag and molten steel enter the bricks through the pores, and react with some of the bricks to produce low-melting materials, and are easily worn and damaged by the slag flow. .
マグネシア・クロム質れんがの場合、ダイレクトボンド
,リボンドにかかわらず、気孔率制御の手段としては、
従来より粒度構戒の調整により最密充填となる粒度配合
とし、また高圧プレスによって充填し、更に焼結を促進
するために超高温で焼戊するのが普通である。In the case of magnesia chromium bricks, regardless of direct bonding or ribbon bonding, as a means of controlling porosity,
Conventionally, it has been customary to adjust the particle size composition to obtain a close-packed particle size composition, fill it using a high-pressure press, and then sinter it at an extremely high temperature to promote sintering.
その際、気孔を充填し、焼結を促進し、気孔率低減を図
るために、酸化クロム粉末と金属クロムを併用すること
が特開昭62−207757号公報に開示され、また、
アルミナ粉末を添加することも行われているが、気孔率
はダイレクトボンドの場合で14%、リボンドの場合で
12%が下限となっているのが現状である。At that time, in order to fill the pores, promote sintering, and reduce the porosity, it is disclosed in JP-A-62-207757 that chromium oxide powder and metallic chromium are used together.
Addition of alumina powder has also been carried out, but the current lower limit of porosity is 14% in the case of direct bonding and 12% in the case of ribbon bonding.
さらには.れんが組織内の気孔率を低減させるために戒
形時のプレス能力向上、さらには超高温焼戊もあるが、
何れも経済的に限界がある。Furthermore. In order to reduce the porosity within the brick structure, there is an improvement in the pressing ability when forming bricks, and even ultra-high temperature burning.
Both have economic limits.
本発明において解決すべき課題は、溶融金属用容器、と
くに、真空容器の内張り用のマグネシア・クロム質耐火
物の低気孔率化のための経済的手段の確立である。The problem to be solved by the present invention is to establish an economical means for reducing the porosity of magnesia-chromium refractories for lining containers for molten metal, especially vacuum containers.
本発明の耐火材は、基本的には、マグネシア.電融マグ
クロ,スピネル,クロム鉱のうちマグネンアあるいは電
融マグクロを含む1種あるいは2種以上を混合した主成
分に金属アルミニウム粉末を1〜20重量%添加するこ
とによって上記課題を達成した。The fireproof material of the present invention is basically composed of magnesia. The above object was achieved by adding 1 to 20% by weight of metallic aluminum powder to the main component, which is a mixture of one or more of electrofused maguro, spinel, and chromite, including magnia or electrofused maguro.
本発明の耐火材は、金属アルミニウムを均一に配合した
素材を酸化雰囲気下で焼戊、あるいは不焼戊で施工して
使用中に金属を酸化させ、更にマグネシアと反応させ、
その際の体積膨張を利用して気孔を充填することにより
低気孔率化を図ろうとするものである。The refractory material of the present invention is produced by constructing a material uniformly mixed with metallic aluminum in an oxidizing atmosphere by burning or unburning, oxidizing the metal during use, and then reacting with magnesia.
The aim is to lower the porosity by filling the pores by utilizing the volumetric expansion at that time.
他方、マグネシアカーボン系にアルミニウム粉末を配合
することが特公昭60−2269号公報に記載されてい
るが、これはカーボンの酸化を抑制するために入れてい
るもので、酸化による膨張で気孔を充填し緻密化を図る
本発明とは根本的に異なる。On the other hand, it is described in Japanese Patent Publication No. 60-2269 that aluminum powder is blended with magnesia carbon, but this is added to suppress carbon oxidation, and the expansion caused by oxidation fills the pores. This is fundamentally different from the present invention, which aims at densification.
金属アルミニウム添加マグネシア・クロム質ダイレクト
ボンドれんがの気孔率低減を模式として示す添付図に基
づいて説明する。The reduction in porosity of magnesia/chromium direct bonded bricks containing aluminum metal will be explained based on the attached diagram that schematically shows the reduction in porosity.
第1図は本発明素材をプレス或形した後の充填状況を示
し、第2図は同素材を焼戊した後の状態を示す図である
。Fig. 1 shows the filling state after the material of the present invention has been pressed and shaped, and Fig. 2 shows the state after the material has been burned.
第1図に示すように、プレス成形した後においては、マ
グネシアrL1と、クロム鉱2の間には細粒の金属アル
ミニウム粉末3が均一に分散されている。As shown in FIG. 1, after press molding, fine grained metal aluminum powder 3 is uniformly dispersed between magnesia rL1 and chromite 2.
この素材を大気雰囲気下で焼或することにより、金属ア
ルミニウム粉末3は酸化し、新たに酸化クロムを固溶し
た細粒のスピネル4が生或される(第2図〉。この際、
約1.3倍の体積膨張を伴うため、気孔5は充填される
。また気孔5が充填されるため全体の強度も向上する。By firing this material in an air atmosphere, the metal aluminum powder 3 is oxidized, and fine-grained spinel 4 containing chromium oxide as a solid solution is newly produced (Fig. 2). At this time,
Since the volume is expanded by about 1.3 times, the pores 5 are filled. Furthermore, since the pores 5 are filled, the overall strength is also improved.
上記はマグネシア・クロム質焼或れんがの場合を説明し
たが、金属アルミニウムの酸化、更にマグネシアとの反
応に伴う体積膨張により、気孔率の低減は他の焼戊耐大
物の場合も同様に達或できる。Although the case of magnesia-chromium burnt bricks has been explained above, the reduction of porosity can be similarly achieved in the case of other large burnt-resistant materials due to the oxidation of metal aluminum and the volume expansion caused by the reaction with magnesia. can.
また本発明の耐火材は、プレス戊形後焼成すれば焼成れ
んがとして、プレス成形のみならば不焼戒れんがとして
使用でき、そのまま、あるいは適当なバインダーを加え
れば不定形耐火物として使用できる。不焼或れんがある
いは不定形耐火物として使用した場合、使用中に一連の
反応が起こり、気孔率は低減する。Further, the refractory material of the present invention can be used as a fired brick if it is press-shaped and then fired, or as an unburnt brick if only press-formed, and can be used as it is or as a monolithic refractory by adding a suitable binder. When unburnt bricks or monolithic refractories are used, a series of reactions occur during use, reducing the porosity.
ところで、このように金属アルミニウムを含有した耐火
材を焼戊すると、焼戊条件によっては中心部では金属ア
ルミニウムが焼戊申に充分酸化されない場合がある。こ
の部分では金属アルミニウムは金属のままの形になって
おり、組織は粗く耐食性は低く、また強度も低くなる。By the way, when a refractory material containing metallic aluminum is burned in this way, depending on the burning conditions, the metallic aluminum may not be sufficiently oxidized in the central part during burning. In this part, aluminum metal remains in the form of metal, with a coarse structure, low corrosion resistance, and low strength.
未酸化部分をなくすためには、酸化剤を焼戒前に添加し
ておけばよい。酸化剤としては、焼或前では安定で、焼
戊時には金属を酸化させ、かつ耐火物の耐食性に大きな
悪影響を与えず、また焼戊炉に害を及ぼさないものであ
る必要がある。これらの点に適合するのがFe20sと
Fe30,である。In order to eliminate unoxidized parts, an oxidizing agent can be added before burning. The oxidizing agent needs to be stable before firing, oxidize the metal during firing, and not have a large adverse effect on the corrosion resistance of the refractory, nor cause any harm to the firing furnace. Fe20s and Fe30 meet these points.
これらは、焼戊時に他の金属を酸化させ、また自身はF
e○の形となり、マグネシア中等に拡散し添加量の制御
を行えば耐火物の耐食性に大きな悪影響を及ぼすことは
少ない。また、焼或炉に悪影響を及ぼすこともない。These oxidize other metals during annealing, and themselves are F
It takes the form of e○ and diffuses into magnesia, etc. If the amount added is controlled, it is unlikely to have a major adverse effect on the corrosion resistance of refractories. Moreover, it does not have any adverse effect on the kiln.
金属アルミニウム粉末の添加量は、20%を超えた場合
、焼成中あるいは使用中に体積膨張に起因する割れが生
じ、場合によっては加熱時に溶融した金属アルミニウム
が滲み出すことがある。また添加量1%未満の場合、金
属アルミニウム粉末を均一に分敗させることは困難で、
かつ緻密化の効果が少ない。ゆえに適正添加量は1〜2
0%である。If the amount of metal aluminum powder added exceeds 20%, cracks may occur due to volumetric expansion during firing or use, and in some cases, molten metal aluminum may ooze out during heating. In addition, if the amount added is less than 1%, it is difficult to separate the metal aluminum powder uniformly.
And the effect of densification is small. Therefore, the appropriate amount to add is 1 to 2
It is 0%.
また、金属アルミニウム粉末の粒度は、反応を低下させ
ない範囲の500μm程度以下が望ましい。Further, the particle size of the metal aluminum powder is preferably about 500 μm or less, which does not reduce the reaction.
主成分となるマグネシア,スピネル.クロム鉱あるいは
電融マグクロは、通常使用される範囲の品質のもので差
し支えない。すなわち、マグネシアの場合Mg○〉90
%、スピネルの場合IJg○・Al20,〉90%、ク
ロム鉱の場合Mg○・Crz○3〉50%、電融マグク
ロの場合Mg○、Cr203以外の不純物30%以下で
ある。酸化クロム粉末,アルミナ粉末については、それ
ぞれ純度80%以上、粒度は500μm以下であること
が望ましい。The main ingredients are magnesia and spinel. The chrome ore or electrofused maguro may be of a quality within the range normally used. In other words, in the case of magnesia, Mg○〉90
%, in the case of spinel, IJg○・Al20,>90%, in the case of chromite, Mg○・Crz○3>50%, and in the case of fused maguro, impurities other than Mg○ and Cr203 are 30% or less. It is desirable that the chromium oxide powder and the alumina powder each have a purity of 80% or more and a particle size of 500 μm or less.
金属アルミニウム粉末は、均一に分散させるための希釈
材の役割を果たすアルミニウム以外の金属〈たとえば、
鉄.マグネシウム,クロム等)を含有した合金あるいは
混合物でもよい。Metallic aluminum powder can be used as a diluent for uniform dispersion of metals other than aluminum (e.g.
iron. An alloy or mixture containing magnesium, chromium, etc.) may also be used.
Fear3とFe3C)+粒の添加量は1%以下では効
果はなく、また50%を超えて添加すると耐火物の耐食
性に悪影響を与える。このため適正添加量は1〜50%
である。また、その粒度は、金属と効率よく反応する必
要性があるので、500μm以下が望ましい。純度に関
しては、不要な低融点物質生戊防止の観点から、鉄酸化
物以外の不純物が20%以下程度であることが望ましい
。If the amount of Fear3 and Fe3C)+ grains added is less than 1%, there will be no effect, and if it is added in excess of 50%, it will adversely affect the corrosion resistance of the refractory. Therefore, the appropriate amount to add is 1 to 50%.
It is. Further, the particle size is desirably 500 μm or less since it is necessary to react efficiently with the metal. Regarding purity, it is desirable that impurities other than iron oxides be about 20% or less from the viewpoint of preventing the formation of unnecessary low melting point substances.
実施例1
第1表は、マグネシア・クロム質ダイレクトボンドれん
がに金属アルミニウムを添加したときの効果を示す。Example 1 Table 1 shows the effect of adding metallic aluminum to magnesia-chromium direct bond bricks.
同表から、アルミニウムの添加量が1〜20重量%の場
合に気孔率の低減、熱間強度の向上、耐食性の向上が可
能であることが判る。From the same table, it can be seen that when the amount of aluminum added is 1 to 20% by weight, it is possible to reduce the porosity, improve the hot strength, and improve the corrosion resistance.
第
1
表
実施例2
第2表は、マグネシア・スピネルれんがへノ金属アルミ
ニウム添加の効果を示す。Table 1 Example 2 Table 2 shows the effect of adding metal aluminum to magnesia spinel bricks.
同表から、アルミニウムの添加量が1〜20重量%の場
合に気孔率の低減、熱間強度の向上、耐食性の向上が可
能であることが判る。From the same table, it can be seen that when the amount of aluminum added is 1 to 20% by weight, it is possible to reduce the porosity, improve the hot strength, and improve the corrosion resistance.
第
2
表
実施例3
第3表に、金属アルミニウムを20重量%配合したマグ
ネシア・クロム質ダイレクトボンドれんがへFe20コ
を添加した場合の効果を示す。Table 2 Example 3 Table 3 shows the effect of adding 20 Fe to magnesia-chromium direct bond bricks containing 20% by weight of metallic aluminum.
同表から、Peso3の添加量が1〜50重量%の場合
に耐食性の低下なく、金属アルミニウムを充分酸化させ
、良好な品質を得ることが可能であることが判る。From the same table, it can be seen that when the amount of Peso3 added is 1 to 50% by weight, it is possible to sufficiently oxidize metal aluminum and obtain good quality without deteriorating corrosion resistance.
第
3
表
実施例4
第4表は金属アルミニウムを20重量%配合したマグネ
シア・スピネルれんがへFe2O3を添加した場合の効
果を示す。Table 3 Example 4 Table 4 shows the effect of adding Fe2O3 to magnesia spinel bricks containing 20% by weight of metallic aluminum.
同表から、Few○3の添加量が1〜50重量%の場合
に耐食性の低下なく、金属アルミニウムを充分酸化させ
、良好な品質を得ることが可能であることが判る。From the same table, it can be seen that when the amount of Few○3 added is 1 to 50% by weight, metal aluminum can be sufficiently oxidized and good quality can be obtained without deterioration of corrosion resistance.
第
4
表
〔発明の効果〕
本発明の耐火物素材は以下の効果を奏することができる
。Table 4 [Effects of the Invention] The refractory material of the present invention can exhibit the following effects.
(1) マグネシア・クロムその他の耐火物に配合し
その特性を何等害することなく、耐火物の気孔率を著し
く低減できる。(1) When mixed with magnesia, chromium, and other refractories, the porosity of the refractories can be significantly reduced without impairing their properties.
(2) 非常に緻密な組織が得られ、熱間強度が著し
く向上する。(2) A very dense structure is obtained, and the hot strength is significantly improved.
(3) 気孔率の低減および結果として粒界に生威し
たスピネルの効果によりスラグ侵人が抑制され、耐食性
が著しく向上する。(3) Slag encroachment is suppressed due to the reduction in porosity and the resulting effect of spinel growing in the grain boundaries, and corrosion resistance is significantly improved.
図面は金属アルミニウム添加マグネシア・クロム質ダイ
レクトボンドれんがの気孔率低減模式図で、第1図はブ
レス戊形後、第2図は焼或後を表す。
1:マグネシア粒 2:クロム鉱3:アルミニウ
ム扮末 4:スピネル5:気孔The drawings are schematic diagrams of porosity reduction of magnesia/chromium direct bonded bricks containing aluminum metal, with Figure 1 showing the bricks after press forming and Figure 2 after firing. 1: Magnesia grains 2: Chromite 3: Aluminum powder 4: Spinel 5: Pores
Claims (4)
ウム粉末を1〜20重量%添加してなることを特徴とす
る耐火材。1. A refractory material characterized by adding 1 to 20% by weight of metallic aluminum powder to a magnesia/chromium refractory main component.
耐火主成分に、Fe_2O_3粒,Fe_3O_4粒の
うち1種あるいは2種の混合物を1〜50重量%添加し
た耐火材。2. A refractory material in which 1 to 50% by weight of one or a mixture of two of Fe_2O_3 grains and Fe_3O_4 grains is added to the magnesia-chromium refractory main component according to claim 1.
質耐火主成分が電融マグクロ,スピネル,クロム鉱のう
ちの1種あるいは2種以上を混合した耐火材。3. A refractory material in which the magnesia-chromium refractory main component according to claim 1 is a mixture of one or more of fused magna, spinel, and chromite.
質耐火主成分がアルミナ粉末を1〜20重量%添加して
なる耐火材。4. A refractory material in which the magnesia-chromium refractory main component according to claim 1 is added with 1 to 20% by weight of alumina powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1190289A JP2968542B2 (en) | 1989-07-20 | 1989-07-20 | Refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1190289A JP2968542B2 (en) | 1989-07-20 | 1989-07-20 | Refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0354160A true JPH0354160A (en) | 1991-03-08 |
JP2968542B2 JP2968542B2 (en) | 1999-10-25 |
Family
ID=16255695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1190289A Expired - Fee Related JP2968542B2 (en) | 1989-07-20 | 1989-07-20 | Refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2968542B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52110713A (en) * | 1976-03-16 | 1977-09-17 | Harima Refractories Co Ltd | Manufacture of magnesia chromium refractory bricks |
JPS5727972A (en) * | 1980-07-22 | 1982-02-15 | Kurosaki Refractories Co | Plate brick for sliding nozzle |
JPS59190257A (en) * | 1983-04-12 | 1984-10-29 | ハリマセラミック株式会社 | Magnesia chrome baked refractory brick |
JPS63151660A (en) * | 1986-12-16 | 1988-06-24 | ハリマセラミック株式会社 | Lining brick for vacuum degassing furnace |
-
1989
- 1989-07-20 JP JP1190289A patent/JP2968542B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52110713A (en) * | 1976-03-16 | 1977-09-17 | Harima Refractories Co Ltd | Manufacture of magnesia chromium refractory bricks |
JPS5727972A (en) * | 1980-07-22 | 1982-02-15 | Kurosaki Refractories Co | Plate brick for sliding nozzle |
JPS59190257A (en) * | 1983-04-12 | 1984-10-29 | ハリマセラミック株式会社 | Magnesia chrome baked refractory brick |
JPS63151660A (en) * | 1986-12-16 | 1988-06-24 | ハリマセラミック株式会社 | Lining brick for vacuum degassing furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2968542B2 (en) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0476112B1 (en) | Magnesite-carbon refractories | |
US4280844A (en) | Refractory brick for molding molten steel | |
US3687437A (en) | Metallurgical furnaces or vessels | |
US5888586A (en) | Use of a water-containing fire-resistant ceramic casting material | |
US3340076A (en) | Fused refractory castings | |
JPH0354160A (en) | Refractory | |
JP2540214B2 (en) | Refractory material | |
CN113943149A (en) | Preparation method of scouring-resistant high-performance carbon-free brick | |
EP0171253A2 (en) | Refractory cement | |
US3272490A (en) | Steelmaking furnace | |
JP2000178074A (en) | Castable refractory for blast furnace tapping spout | |
JP2604820B2 (en) | Refractory material | |
KR930009349B1 (en) | Refractory brick of mgo-c matrix | |
JPH03228860A (en) | Production of magnesia-chrome firebrick | |
RU2148049C1 (en) | Spinel-periclase-carbonic refractory material | |
JPH03228866A (en) | Basic refractory material | |
JP2518559B2 (en) | Refractory materials and their preparation method | |
JPH0725668A (en) | Refractory for casting work | |
US2753612A (en) | Process of forming magnesia refractory | |
JPH09183674A (en) | Monolithic refractory for flowing-in working | |
JPH07291716A (en) | Basic refractory | |
GB1564927A (en) | Bonds for refractory materials | |
JPH107455A (en) | Shaped refractory of magnesia-chromium | |
JPS6127350B2 (en) | ||
JPH0735295B2 (en) | Magnesia chrome refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |