JPH0353935A - Preventive method of copper diffusion into polyimide precursor - Google Patents

Preventive method of copper diffusion into polyimide precursor

Info

Publication number
JPH0353935A
JPH0353935A JP19079489A JP19079489A JPH0353935A JP H0353935 A JPH0353935 A JP H0353935A JP 19079489 A JP19079489 A JP 19079489A JP 19079489 A JP19079489 A JP 19079489A JP H0353935 A JPH0353935 A JP H0353935A
Authority
JP
Japan
Prior art keywords
copper
polyimide
polyamic acid
nickel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19079489A
Other languages
Japanese (ja)
Inventor
Ryozo Ushio
亮三 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19079489A priority Critical patent/JPH0353935A/en
Publication of JPH0353935A publication Critical patent/JPH0353935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To prevent almost completely melting/diffusion of copper into a polyimide precursor, by a method wherein after depositing a nickel plated layer whose thickness is specific on the surface of the copper with an electroless plating method, to which the whole aromatic polyamic acid solution is applied. CONSTITUTION:After the whole aromatic polyamic acid solution is applied to a board on which a copper circuit pattern is formed, the same is made into imide by heat-treating and a polyimide layer is added. In this instance, after depositing of a nickel plated layer whose thickness is at least 0.05mum and not exceeding 1.0mum with an electroless plating method, a polyamic acid solution is applied to the same. The whole aromatic polyamic acid solution is obtained by a method wherein aromatic tetracarboxylic acid dianhydride and aromatic diamine are reacted with each other, concentration of which is regulated with an appropriate solvent and polyimide precursor varnish is formed. Formation of an electroless nickel plated layer is performed with a normal method by making use of nickel/boron electroless plating bath or nickel/phosphorus electroless plating bath on the market. However, it is preferable that purity of the nickel deposited with this method is high.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は絶縁性及び誘電特性の優れた銅ポリイミド多層
基板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a copper polyimide multilayer substrate with excellent insulation and dielectric properties.

(従来の技術〉 近年、電子材料の高度化に伴って多層配線の形成技術が
重要な課題となってきており、これに適した種々の材料
を用いた多層配線基板や、それらの製造方法が提案され
ている。これらの中でポリイミドを絶縁体として用いf
s 81IiIポリイミド多)Fr!基板は耐熱性が良
好ではり低誘電率で高絶縁性を右するなど電気特性も優
れているので注目されている。
(Conventional technology) In recent years, with the advancement of electronic materials, technology for forming multilayer wiring has become an important issue, and multilayer wiring boards using various materials suitable for this and their manufacturing methods are being developed. Among these, polyimide is used as an insulator.
s 81IiI polyimide) Fr! The substrate is attracting attention because of its excellent electrical properties, such as good heat resistance, low dielectric constant, and high insulation properties.

銅ポリイミド多層基板の製造方法としては、通常銅箔と
ポリイミドフィルムとを貼り合わせたものを出発材料と
して、表面Gこ配線凹路パターンを形成させた基板を、
基板間0こプリプレグや半硬化性樹脂シートを挟み込ん
で接着することによって積層化する所謂シーケンシャル
積層法が採られているが、この方法によるときは積層工
程における操作上、基板材料として用いられるポリイミ
ドフィルムや銅箔をあまり薄くすることができないので
薄肉の多層基板を得ることが困難であるばかりでなく、
基板の積層化に使用される接着剤の影響によって、ポリ
イミド樹脂の有する優れた耐熱性や電気的特性が低下す
る問題があり、最近ではこれに代わる多層基板の製造方
法として所謂ビルドアップ方式の積層法が提案されてい
る。
The method for producing a copper polyimide multilayer board is usually to use a copper foil and polyimide film bonded together as a starting material, and to produce a board on which a grooved wiring pattern is formed on the surface.
The so-called sequential lamination method is used to laminate the substrates by sandwiching and gluing prepreg or semi-cured resin sheets, but when using this method, the polyimide film used as the substrate material It is not only difficult to obtain a thin multilayer board because it is not possible to make the copper foil very thin.
There is a problem that the excellent heat resistance and electrical properties of polyimide resin deteriorate due to the influence of the adhesive used in laminating the substrates, and recently, an alternative method for producing multilayer substrates is the so-called build-up lamination method. A law is proposed.

このピルドアップ方式による積層法は、二つの単位工程
、即ちポリイミドフィルム上に金属回路パターンを形成
させる工程と、回路パターンを形成した基板表面に熱化
戒処理によってポリイミド絶縁層を形成させる工程とを
繰り返すことによって順次積層化を進めるものであって
、ポリイミド絶縁層の形成にはポリイミド前駆体である
全芳香族ポリアミック酸を有機溶媒で濃度調整した溶液
、即ちポリイミド前駆休フェスを使用して、回路パター
ンを形成した基板面に塗布し、これを加熱することによ
ってポリイミド化するものである。
This pill-up lamination method repeats two unit processes: the process of forming a metal circuit pattern on a polyimide film, and the process of forming a polyimide insulating layer by thermal treatment on the surface of the substrate on which the circuit pattern is formed. In order to form the polyimide insulating layer, a solution prepared by adjusting the concentration of fully aromatic polyamic acid, which is a polyimide precursor, with an organic solvent, that is, a polyimide precursor layer, is used to form the circuit pattern. The polyimide is formed by coating the surface of the substrate on which it has been formed and heating it.

この方法は基板の積層化に際して接着方式を採らないの
で、基板構或材料に薄肉のものが使用出来る上に積層膜
も塗布方式によって薄層に施すことができるので、シー
ケンシャル積層法によるものに比べて、多層基板の薄肉
化がはかることができ、また積層化のために接着剤を使
用することがないので、ポリイミド樹脂に特有の良好な
耐熱性や優れた電気的特性を損なうことがなく、その利
点をそのま〜有効に活用できるため優れた銅ポリイミド
多層基板の製造法として注目さtしている。
This method does not use an adhesive method when laminating the substrates, so thin substrates can be used for the structure or material, and the laminated film can be applied in a thin layer by coating, so it is more efficient than the sequential lamination method. As a result, multilayer boards can be made thinner, and since adhesives are not used for lamination, the good heat resistance and excellent electrical properties characteristic of polyimide resin are not impaired. This method is attracting attention as an excellent method for manufacturing copper-polyimide multilayer substrates because its advantages can be effectively utilized as is.

{発明が解決しようとする課題} しかしながら、このボリイミト前駆休ワニスの塗布によ
るピルトアップ方式を採用した場合において、基板に形
成した銅の薄膜回路パターン上に塗布したポリイミド前
駆体ワニスをポリイミド化ナるためには、通常200℃
以上、400℃以下の温度に加熟処理することによって
イミド環の脱水閉環を施すことによって熱硬化させる必
要があり、この際に銅−ポリイミド前駆体ワニス界面に
おいて、銅の溶解が起こり、溶解した銅イオンかポリイ
ミド層中に拡散することか知られている。
{Problem to be solved by the invention} However, when adopting the pilt-up method by applying the polyimide precursor varnish, it is difficult to convert the polyimide precursor varnish applied onto the copper thin film circuit pattern formed on the substrate into polyimide. Usually 200℃
As mentioned above, it is necessary to perform thermal curing by performing dehydration ring closure of the imide ring by ripening at a temperature of 400°C or less, and at this time, dissolution of copper occurs at the copper-polyimide precursor varnish interface. It is known that copper ions diffuse into the polyimide layer.

この状況を更に詳細に説明すると、銅薄膜上にポリアミ
ック酸を主要戒分とするポリイミド前駆体ワニスを塗布
した後、200℃以上の温度Cこ加熱してポリアミック
酸のイミド化をした場合、得られたポリイミド膜は褐色
化し、ガラス上において同様にしてポリアミック酸のイ
ミド化を行なった?合に得られる色調とは大きく異なる
ものとなる。
To explain this situation in more detail, if a polyimide precursor varnish containing polyamic acid as the main ingredient is applied onto a copper thin film and then heated to a temperature of 200°C or higher to imidize the polyamic acid, the resulting The polyimide film turned brown, and polyamic acid was imidized on the glass in the same way. The color tone will be significantly different from that obtained if the

この時の銅とポリイミド膜との界面を透過電子顕微鏡(
1’DI)によって断面観察すると、界面付近のポリイ
ミド層中に径50nm前後の析出粒子が無数に存在して
おり、一方、ガラス−Lに化成したボリイミド膜中には
このような粒子■の存在がないところから、これらの析
出粒子がポリイミド膜の変色の原因となっていることが
判明している。
The interface between the copper and polyimide film at this time was observed using a transmission electron microscope (
1'DI), there are countless precipitated particles with a diameter of around 50 nm in the polyimide layer near the interface, and on the other hand, the presence of such particles in the polyimide film that has been converted into Glass-L. It has been found that these precipitated particles are the cause of discoloration of the polyimide film.

電子線回折の結果Cこよると、これらの析出粒子は成分
に酸化銅を多く含んでおり、このことがら銅薄膜上での
加熱によるポリアミック酸のイミド化の過程において銅
がフェス中に溶解して、化成されたポリイミド膜中に拡
散する過程においてその一部が酸化されて酸化銅となり
、これが凝集、析出したものであることが考えられる。
According to the electron diffraction results, these precipitated particles contain a large amount of copper oxide, which indicates that copper is dissolved in the face during the process of imidization of polyamic acid by heating on the copper thin film. It is thought that during the process of diffusion into the chemically formed polyimide film, a part of it was oxidized to become copper oxide, which aggregated and precipitated.

以上のような不純物の析出は、当然のことなからポリイ
ミド膜の構造強度や電気的特性に悪影響を及ぼすもので
あることも確認されている。
It has also been confirmed that the precipitation of impurities as described above has an adverse effect on the structural strength and electrical properties of the polyimide film.

基板多層化に際しての、もう一つの工程である金属回路
パターン層の形成の場合については、す5 でにポリイミド化したもの\上に銅を加層する訳である
から、銅がポリイミド膜中に拡散するとしても固相間の
拡故であるからその拡散量は極めて少ない。
Regarding the formation of a metal circuit pattern layer, which is another step in multilayering a board, since copper is added on top of something that has already been made into polyimide, copper is added to the polyimide film. Even if it does diffuse, the amount of diffusion is extremely small because it is between solid phases.

これに対して本発明の対象であるポリイミド前駆体ワニ
スによるポリイミド層の形成工程についでは、銅の拡散
はむしろイミド化前のポリアミック酸溶液に対する銅の
溶解が主要な原因であるために、その拡散量も多くこれ
を防止するための対策を確立することが重要な課題であ
る。
On the other hand, in the process of forming a polyimide layer using a polyimide precursor varnish, which is the subject of the present invention, the main cause of copper diffusion is rather the dissolution of copper in the polyamic acid solution before imidization. Since the amount is large, it is an important issue to establish measures to prevent this.

その対策案の一つとして、これまでは銅の薄膜上にポリ
イミド前駆休フェスとして塗布したポリアミック酸溶液
を加熱し、これをイミト化する際に、空気中の酸素によ
って銅の溶解が促進されるのを防ぐためGこ、加熱を不
活性ガスや還元性ガスの雰囲気中で行なう方法が提案さ
れてきた。しかしながら、これらの方法によっても銅の
ポリイミド膜中への溶解・拡散を十分Cこ防1卜するこ
とはIL;来なかった。
One of the countermeasures has been to heat a polyamic acid solution that has been applied as a polyimide precursor on a copper thin film, and when it is imitated, the dissolution of the copper is accelerated by the oxygen in the air. In order to prevent this, methods have been proposed in which heating is performed in an atmosphere of an inert gas or reducing gas. However, even with these methods, it has not been possible to sufficiently prevent C from dissolving and diffusing copper into a polyimide film.

(課題を解決ずるための手段〉 6 本発明は上記したような課題を解決することを目的とす
るものであって、銅薄膜による回路パターンを形成した
基板上にポリアミック酸を主要戒分として含むポリイミ
ド前駆体ワニスを塗布し、これを加熱してワニス中のポ
リアミック酸をイミド化することによって、基板上にポ
リイミド層を加層する工程を含む銅ポリイミド多層基板
を製造する方法において、銅薄膜上にポリイミド前駆体
ワニスを塗布する段階におけるポリアミック酸溶液中へ
の銅の溶解・拡散を抑制し、加熱処理後にポリアミック
酸のイミド化によって化或されたポリイミド膜中に酸化
銅等による不純物が可及的に含まれず、これによって絶
縁性等の電気特性が損なわれないような、ポリイミド前
駆体への銅の拡散防止法を提供するものである。
(Means for Solving the Problems) 6 The present invention aims to solve the above-mentioned problems, and includes polyamic acid as a main precept on a substrate on which a circuit pattern is formed using a copper thin film. A method for manufacturing a copper polyimide multilayer substrate, which includes a step of adding a polyimide layer on the substrate by applying a polyimide precursor varnish and heating it to imidize the polyamic acid in the varnish. This suppresses the dissolution and diffusion of copper into the polyamic acid solution at the stage of applying polyimide precursor varnish to the polyimide, and prevents impurities such as copper oxide from forming in the polyimide film formed by imidization of polyamic acid after heat treatment. The purpose of the present invention is to provide a method for preventing copper from diffusing into a polyimide precursor in such a way that copper is not contained in the polyimide precursor and electrical properties such as insulation are not impaired thereby.

即ち、上記目的を達或するための本発明は全芳香族ポリ
アミック酸溶液を銅の回路パターンを形成した基板上に
塗布したのちに加熱処理を施すことによって、これをイ
ミド化し基板上にポリイミド層を加層する工程を含む銅
ポリイミド多層基板の製造方法において、無電解めっき
法により銅層表面に厚さ0.05μ…以−E、1.0μ
m以下のニッケルめっき層を析出させた後前記ポリアミ
ック酸溶液を塗布することを特徴とするものである。
That is, in order to achieve the above object, the present invention applies a wholly aromatic polyamic acid solution onto a substrate on which a copper circuit pattern is formed, and then heat-processes the solution to imidize it and form a polyimide layer on the substrate. In the method for manufacturing a copper polyimide multilayer board, which includes the step of adding a layer of
The method is characterized in that the polyamic acid solution is applied after depositing a nickel plating layer having a thickness of less than m.

〈作用〉 本発明をするに当たって、発明者らは表面積が各6−の
等表面積を有する純銀片と純ニッケル片のそれぞれを、
溶剤としてジエチレングリコールジメチルエーテルを使
用して、全芳香族ボ・リアミック酸(PAA)を前記溶
剤中に溶解した各計3mQ.の溶液中に室温において4
00時間浸漬し、その後各ポリアミック酸溶液中に溶け
出した金属量を測定した。その結果を第l表に示ず。
<Function> In making the present invention, the inventors prepared pure silver pieces and pure nickel pieces each having an equal surface area of 6−,
Using diethylene glycol dimethyl ether as a solvent, a total of 3 mQ. 4 at room temperature in a solution of
After immersion for 00 hours, the amount of metal dissolved into each polyamic acid solution was measured. The results are not shown in Table I.

第1表 初期液相成分 PAA十溶剤 PAA十溶剤 溶剤のみ
浸漬金属    N i     Cu     Cu
溶出量μg/■  6    230     <1第
l表の結果より判かるように、ポリアミック酸溶液に対
するニッケルの溶解量は銅に対して約40分の1であっ
た。このことから、ニッケルは銅に較べて全芳香族ポリ
アミック酸中に溶けにくい性質を有しており、従って銅
層を形成した基板上にニッケル層を付加するときはこれ
が銅のポリアミック酸による溶出を防止するためのバリ
ャー層として作用するものであることが確認された。
Table 1 Initial liquid phase components PAA ten solvent PAA ten solvent Metal immersed in solvent only Ni Cu Cu
Elution amount μg/■6 230 <1 As can be seen from the results in Table 1, the amount of nickel dissolved in the polyamic acid solution was about 1/40th that of copper. From this, nickel has the property of being less soluble in fully aromatic polyamic acid than copper, and therefore, when adding a nickel layer to a substrate on which a copper layer has been formed, this prevents the elution of copper by polyamic acid. It was confirmed that it acts as a barrier layer to prevent this.

本発明において、ニッケルバリアー層を施した銅回路パ
ターン形成基板上に塗布する全芳香族ポリアミック酸溶
液とは、芳香族テトラカルボン酸二無水物と芳香族ジア
ミンとを反応させ、適当な溶剤によって濃度調整してポ
リイミド前駆体ワニスを形成させたものである。濃度調
整用の溶剤にはジメチルアセトアミド、ジメチルホルム
アミド、Nメチル2ビロリドン、ジエチレングリコール
ジメチルエーテルなどが使用される。溶液濃度や塗布量
の調整等は所望されるポリイミド層の厚みにより適宜定
められる。また基板への塗布は、スピンコート法、バー
コート法、ロールコート法等従来から行なわれている任
意の塗布法を採用して行9 なえばよい。
In the present invention, the fully aromatic polyamic acid solution to be applied onto the copper circuit pattern forming substrate with a nickel barrier layer is made by reacting an aromatic tetracarboxylic dianhydride with an aromatic diamine and adjusting the concentration using an appropriate solvent. A polyimide precursor varnish is formed by adjusting the polyimide precursor varnish. Dimethylacetamide, dimethylformamide, N-methyl birrolidone, diethylene glycol dimethyl ether, etc. are used as the solvent for concentration adjustment. Adjustment of solution concentration, coating amount, etc. are appropriately determined depending on the desired thickness of the polyimide layer. The coating on the substrate may be performed using any conventional coating method such as spin coating, bar coating, or roll coating.

本発明での銅層上への無電解ニッケルめっき層の形戒は
、市販のニッケル・ホウ素系無電解めっき浴、ニッケル
・りん系無電解めっき浴等を使用し、常法によって行な
う。ただし、この方法で析出させるニッケルの純度は高
いことが望ましい。
In the present invention, the electroless nickel plating layer is formed on the copper layer by a conventional method using a commercially available nickel/boron electroless plating bath, nickel/phosphorous electroless plating bath, or the like. However, it is desirable that the purity of the nickel deposited by this method be high.

このニッケルめっき層の形戊は電解めっき法によって行
なうことも可能であるが、その場合には対象となる銅回
路パターンのすべてにめっきのための給電を行なう必要
があり、回路パターンに孤立部分があるときには、この
部分へのめっきを行なうことができない。このような欠
点があるために、電気めっき法は、この場合には適切な
方法であるとは云えない。
The formation of this nickel plating layer can also be done by electrolytic plating, but in that case, it is necessary to supply power for plating to all of the target copper circuit patterns, and there may be isolated parts in the circuit patterns. Sometimes it is not possible to plate this area. Due to these drawbacks, electroplating is not a suitable method in this case.

本発明におけるニッケルめっき層の厚さについては、バ
リアー層として、銅のポリイミド前駆体への溶解・拡散
を効果的に防止するために、少なくとも0.05μm以
上であることが望ましい。
The thickness of the nickel plating layer in the present invention is desirably at least 0.05 μm or more in order to effectively prevent dissolution and diffusion of copper into the polyimide precursor as a barrier layer.

まためっき層の厚さが増すにつれて、応力上の問題から
析出したニッケル膜が銅表面から剥離し10 やすくなるために、その厚さは1.0μ…以下であるこ
とが必要とされる。
Furthermore, as the thickness of the plating layer increases, the precipitated nickel film tends to peel off from the copper surface due to stress problems, so the thickness is required to be 1.0 μm or less.

一般に電流が導体表面付近のみに流れる所謂表皮効果は
、電流の周波数が高くなるにつれて増大することが知ら
れており、従って導体表面の電気伝導度は高周波回路に
おいては特に重要な要素であると考えられる。その意味
で銅層上へのニッケル層の追加析出は高周波伝導特性の
低下を問題視する場合に重要な事項であり、この場合そ
の対抗策として析出層中のニッケル純度を高めて電気抵
抗の増加を可及的に抑えてやることが考えられるが、む
しろそれよりも析出層の厚さを可及的に薄くすることが
望ましい。何故ならば現在IC回路で主に用いられてい
る100HLlz前後の高周波信号周波数帯においては
、表皮効果により高電流密度が得られる範囲は導体表面
より数μmの深さに及んでいるため、表面のニッケル層
の厚さをこの深さ以下で十分低い値内に留めれば実際上
何等問題を生ずることがないからである。
It is generally known that the so-called skin effect, where current flows only near the conductor surface, increases as the frequency of the current increases, and therefore the electrical conductivity of the conductor surface is considered to be a particularly important factor in high-frequency circuits. It will be done. In this sense, the additional deposition of a nickel layer on the copper layer is an important matter when deterioration of high frequency conduction properties is a problem, and in this case, as a countermeasure, increasing the nickel purity in the deposited layer increases the electrical resistance. Although it is conceivable to suppress this as much as possible, it is more desirable to make the thickness of the precipitated layer as thin as possible. This is because in the high-frequency signal frequency band of around 100HLlz, which is currently mainly used in IC circuits, the range where high current density can be obtained due to the skin effect extends to a depth of several μm below the surface of the conductor. This is because if the thickness of the nickel layer is kept within a sufficiently low value below this depth, no problems will occur in practice.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

11 (実施例〉 実施例1 厚さ50μmのポリイミドフィルム(東レ・テ1ボン社
製「カプトン200HJ)上に常法によりJフさ35μ
mの銅回路パターンを形成させた銅ポリイミド基板の銅
回路パターン表面に対して、ニッケル・ホウ素系無電解
ニッケルめっき浴(h村工業社製rBELニッケル」)
を使用して厚さ0.8μmのNi−BめっきN(Ni 
:約99重量%、B:約1重量%〉を析出させた。
11 (Example) Example 1 A J-thickness of 35 μm was formed on a 50 μm thick polyimide film (“Kapton 200HJ” manufactured by Toray Teibon Co., Ltd.) by a conventional method.
A nickel-boron based electroless nickel plating bath (rBEL Nickel manufactured by Hmura Kogyo Co., Ltd.) was applied to the surface of the copper circuit pattern of the copper polyimide substrate on which the copper circuit pattern of m was formed.
Ni-B plated N (Ni
: about 99% by weight, B: about 1% by weight> was precipitated.

次に無電解めっき層を形戒した基板の回路パターン面に
、ペンゾフェノンテ}〜ラカルボン酸二無水物と、これ
と同モルのジアミノベンゾフエノンとをジエチレングリ
コールジメヂルエーテル中で反応させて得たポリアミッ
ク酸溶液(三井東圧化学社製r Larc TPIワニ
スタイプ−1)に対してジエチレングリコールジメチル
エーテルでさらに濃度調節したポリマー溶液を塗布し、
これを乾燥後加熱処理(最高加熱温度300℃)してイ
ミド化し、厚さ20μ…のポリイミド層を形成させた。
Next, a polyamic acid obtained by reacting penzophenone dianhydride with the same mole of diaminobenzophenone in diethylene glycol dimethyl ether was applied to the circuit pattern surface of the substrate on which the electroless plating layer had been formed. A polymer solution whose concentration was further adjusted with diethylene glycol dimethyl ether was applied to an acid solution (R Larc TPI varnish type-1 manufactured by Mitsui Toatsu Chemical Co., Ltd.),
After drying, this was heat-treated (maximum heating temperature 300° C.) to imidize it to form a polyimide layer with a thickness of 20 μm.

l2 このようにして銅回路パターン上に形成されたポリイミ
ド層には褐色の着色が見られず、また形成されたポリイ
ミド層の銅層との界面及びポリイミド層内部を透過電子
顕微鏡で観察したところ、銅の溶解・拡散に基づく析出
粒子は全く見られなかった。
l2 No brown coloring was observed in the polyimide layer thus formed on the copper circuit pattern, and when the interface between the formed polyimide layer and the copper layer and the inside of the polyimide layer were observed using a transmission electron microscope, No precipitated particles due to copper dissolution/diffusion were observed.

以上の結果より、本発明の方法、即ち銅回路パターンを
形成した基板上に塗布したポリアミック酸溶液のイミド
化によるポリイミド層の形戒に先立って、銅回路パター
ン上にニッケルの無電解めっき層を適正なJフさて形成
させておくことによって、ポリイミド前駆体への銅の溶
解・拡散を未然に防止し得ることが判かる。
From the above results, it is clear that prior to the method of the present invention, that is, forming a polyimide layer by imidizing a polyamic acid solution coated on a substrate on which a copper circuit pattern is formed, an electroless plating layer of nickel is formed on the copper circuit pattern. It can be seen that by forming an appropriate J layer, dissolution and diffusion of copper into the polyimide precursor can be prevented.

実施例2 厚さ25μmのポリイミドフィルム(東レ・デュポン社
製「カプトン100Hr )に厚さ18μmの銅回路パ
ターンを形成した銅ポリイミド基板の銅回路パターン表
面に対し、ニッケル・りん系無電解めっき浴(メルテッ
クス社製「ナイポック1P」〉を使用して、厚さ0.8
μmのNi−P無電解めっき1 3 層(Ni:約98重量%、P:約2重量%)を形成した
。次Gこ、その回路パターン面に対し、ヘンソフエノン
テ1〜ラカルボン酸二無水物と、これと同モルのジアミ
ノベンゾフェノンとをジエチレングリコールジメチルエ
ーデル中で反応させて得ぺれたボリアミック酸溶液(三
井東圧化学社製r.larcTPIワニスタイブ」〉に
対しジエチレングリコールジメチルエーテルでさらに濃
度調節したポリマー溶液を塗布し、これを乾燥後加熱処
理(最高加熱温度300゜CALてイミド化し、厚さ1
5μmのポリイミド層を形成した。
Example 2 A nickel-phosphorous electroless plating bath (nickel-phosphorus electroless plating bath) was applied to the surface of the copper circuit pattern of a copper polyimide substrate, in which a 18-μm-thick copper circuit pattern was formed on a 25-μm-thick polyimide film (Kapton 100Hr manufactured by DuPont-Toray). Using "Naipok 1P" made by Meltex, thickness 0.8
A 13 μm thick Ni-P electroless plating layer (Ni: about 98% by weight, P: about 2% by weight) was formed. Next, on the circuit pattern surface, a boriamic acid solution (Mitsui Toatsu Chemical Co., Ltd. A polymer solution whose concentration was further adjusted with diethylene glycol dimethyl ether was applied to a ``r.larcTPI varnish styve'' manufactured by R.L.A.
A polyimide layer of 5 μm was formed.

このようにして銅回路パターン上に形威されたポリイミ
ド層には褐色の着色は見られず、また形成されたポリイ
ミト層の内面およびポリイミド層の銅層との界面を透過
電子顕微鏡によって観察したところ、銅の溶解・拡散に
基づく析出粒子の存在は全く見られなかった。
No brown coloring was observed in the polyimide layer formed on the copper circuit pattern in this way, and when the inner surface of the formed polyimide layer and the interface between the polyimide layer and the copper layer were observed using a transmission electron microscope. , the presence of precipitated particles due to copper dissolution/diffusion was not observed at all.

比較例 厚さ25)t…のポリイミドフィルム(東レ・デュポン
社製「力7” h ン1001−1 −+ )に厚さ1
87llll (1)銅14 回路パターンを形戒した銅ポリイミド基板の回路パター
ン表面に対し、ペンゾフエノンテトラカルボン酸二無水
物と、これと同モルのジアミノペンゾフエノンとをジエ
チレングリコールジメチルエーテル中で反応させて得た
ポリアミック酸溶液(三井東圧化学社製r l.arc
 1’PIワニスタイプ」〉に対しジエチレングリコー
ルジメチルエーテルでさらに濃度調節をしたポリマー溶
液を塗布し、これを乾燥後、加熱処理(最高加熱温度3
00℃)してイミド化し、厚さ15μmのポリイミド層
を形成させた。
Comparative Example A polyimide film with a thickness of 25) t (manufactured by DuPont-Toray Co., Ltd. "Strength 7" h 1001-1 -+) with a thickness of 1
87llll (1) Copper 14 The surface of the circuit pattern of a copper polyimide substrate with a circuit pattern formed thereon is reacted with penzophenone tetracarboxylic dianhydride and the same mole of diaminopenzophenone in diethylene glycol dimethyl ether. polyamic acid solution (Mitsui Toatsu Chemical Co., Ltd. r l.arc
1'PI varnish type'' was coated with a polymer solution whose concentration was further adjusted with diethylene glycol dimethyl ether, and after drying, heat treatment (maximum heating temperature 3
00° C.) and imidized to form a polyimide layer with a thickness of 15 μm.

このようにして銅回路パターン上に形戒されたポリイミ
ド層を観察したところ、実施例2による場合と異なり、
加熱後の色調に大きな変化が見られ、褐色化が進んでい
た。また形成されたポリイミド層の内部や、これと銅層
との界面を透過電子顕微鏡によって観察したところ、銅
の溶解・拡散に基づくものと思われる粒径10〜50n
mの無数の析出粒子が、界面からポリイミド層中1μm
近くの範囲に亘り、無数に存在していた。
When we observed the polyimide layer formed on the copper circuit pattern in this way, we found that it was different from the case according to Example 2.
A significant change in color tone was observed after heating, and browning was progressing. Furthermore, when we observed the inside of the formed polyimide layer and the interface between it and the copper layer using a transmission electron microscope, we found that the particle size was 10 to 50 nm, which is thought to be due to the dissolution and diffusion of copper.
Innumerable precipitated particles of 1 μm in the polyimide layer from the interface
They existed in countless numbers over a nearby area.

l5 即ち、ポリアミック酸のイミド化によるポリイミド層の
形成に先立って、銅回路パターン上にニッケルの無電解
めっき処理を施さない場合には、ポリイミド層の化成過
程において、銅の溶解・拡散が起り、得られるポリイミ
ド層はこれに基づく析出粒子によって汚染されたものに
なることが判かる。
15 That is, if electroless nickel plating is not performed on the copper circuit pattern prior to forming the polyimide layer by imidizing polyamic acid, dissolution and diffusion of copper will occur during the chemical formation process of the polyimide layer. It can be seen that the resulting polyimide layer becomes contaminated with precipitated particles based thereon.

(発明の効果〉 以上述べたように、本発明によるときは、銅回路パター
ンを形成した基板上にポリアミツク酸を使用したポリイ
ミド前駆体を塗布し、これをイミド化してポリイミド層
を加層ずることによる銅ポリイミド多層基板の製造方法
において、該ポリイミド前駆体への銅の溶解・拡散がほ
ぼ完全に阻止され、健全なポリイミド層を形成すること
が出来るので、効果的な発明であると云える。
(Effects of the Invention) As described above, according to the present invention, a polyimide precursor using polyamic acid is coated on a substrate on which a copper circuit pattern is formed, and this is imidized to add a polyimide layer. In the method for manufacturing a copper polyimide multilayer board according to the present invention, the dissolution and diffusion of copper into the polyimide precursor is almost completely prevented, and a sound polyimide layer can be formed, so it can be said to be an effective invention.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリイミド前駆体としての全芳香族ポリアミック
酸溶液を銅回路パターンの形成された基板上に塗布した
後に加熱することによって、前記全芳香族ポリアミック
酸をイミド化させてポリイミド層として加層する工程を
含む銅ポリイミド多層基板の製造方法において、無電解
めっき法により、銅表面上に厚さ0.05μm以上1.
0μm以下のニッケルめっき層を析出させた後、全芳香
族ポリアミック酸溶液を塗布することを特徴とするポリ
イミド前駆体への銅拡散防止法。
(1) By applying a fully aromatic polyamic acid solution as a polyimide precursor onto a substrate on which a copper circuit pattern is formed and then heating, the fully aromatic polyamic acid is imidized and added as a polyimide layer. In the method for manufacturing a copper polyimide multilayer board including the steps 1.
A method for preventing copper diffusion into a polyimide precursor, which comprises depositing a nickel plating layer of 0 μm or less and then applying a wholly aromatic polyamic acid solution.
JP19079489A 1989-07-24 1989-07-24 Preventive method of copper diffusion into polyimide precursor Pending JPH0353935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19079489A JPH0353935A (en) 1989-07-24 1989-07-24 Preventive method of copper diffusion into polyimide precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19079489A JPH0353935A (en) 1989-07-24 1989-07-24 Preventive method of copper diffusion into polyimide precursor

Publications (1)

Publication Number Publication Date
JPH0353935A true JPH0353935A (en) 1991-03-07

Family

ID=16263852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19079489A Pending JPH0353935A (en) 1989-07-24 1989-07-24 Preventive method of copper diffusion into polyimide precursor

Country Status (1)

Country Link
JP (1) JPH0353935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672026B2 (en) 2003-06-30 2010-03-02 Brother Kogyo Kabushiki Kaisha Sheet presser and image scanner
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672026B2 (en) 2003-06-30 2010-03-02 Brother Kogyo Kabushiki Kaisha Sheet presser and image scanner
JP2020179525A (en) * 2019-04-23 2020-11-05 株式会社シミズ Copper damage prevention membrane, method for manufacturing copper member with copper damage prevention membrane and copper damage prevention method

Similar Documents

Publication Publication Date Title
US5478462A (en) Process for forming polyimide-metal laminates
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
US6596968B2 (en) Method of producing through-hole in aromatic polyimide film
JPS63286580A (en) Metal coated laminate product formed from polyimide film having surface pattern
JP5469578B2 (en) Copper-clad laminate having primer layer and wiring board using the same
JPWO2002034509A1 (en) Laminate
WO2009084533A1 (en) Copper foil with resin and process for producing copper foil with resin
JP4473486B2 (en) Laminated body and multilayer wiring board using the same
WO2002059209A1 (en) Polyimide resin precursor solution, laminates for electronic components made by using the solution and process for production of the laminates
JP2006278371A (en) Manufacturing method of polyimide-metal layer laminate, and the polyimide-metal layer laminate obtained thereby
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
US20080292878A1 (en) Polyimide film with improved adhesion, process for its fabrication and laminated body
US5066545A (en) Process for forming polyimide-metal laminates
JP4160811B2 (en) Flexible copper-clad circuit board
JPH0353935A (en) Preventive method of copper diffusion into polyimide precursor
WO2001038086A1 (en) Member having metallic layer, its manufacturing method, and its application
JP4153704B2 (en) Laminate and printed wiring board manufacturing method
KR20090104288A (en) Flexible circuit clad laminate
JP5051754B2 (en) Conductive layer forming composition, conductive layer forming method, and circuit board manufacturing method
WO2013144992A1 (en) Copper-clad laminate having primer layer and wiring board using same
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP2003264373A (en) Printed wiring board laminate
JP2008258293A (en) Forming method of patterned conductor layer, manufacturing method of circuit board and circuit board
JP2005135985A (en) Manufacturing method for printed wiring board
TWI825562B (en) Copper clad laminate film, electronic device including the same, and method of preparing the copper clad laminate film