JPH0353601A - Sinusoidal wave oscillation circuit - Google Patents

Sinusoidal wave oscillation circuit

Info

Publication number
JPH0353601A
JPH0353601A JP18911289A JP18911289A JPH0353601A JP H0353601 A JPH0353601 A JP H0353601A JP 18911289 A JP18911289 A JP 18911289A JP 18911289 A JP18911289 A JP 18911289A JP H0353601 A JPH0353601 A JP H0353601A
Authority
JP
Japan
Prior art keywords
circuit
output
value
sine wave
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18911289A
Other languages
Japanese (ja)
Inventor
Takami Suzuki
鈴木 貴巳
Katsumi Ishihara
勝己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
NEC Corp
Original Assignee
NEC Corp
NEC AccessTechnica Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC AccessTechnica Ltd filed Critical NEC Corp
Priority to JP18911289A priority Critical patent/JPH0353601A/en
Publication of JPH0353601A publication Critical patent/JPH0353601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sinusoidal wave with high accuracy by correcting a sample of a sinusoidal wave signal obtained by a delay circuit and a complex number multiplier circuit and inputting the result to a delay circuit. CONSTITUTION:An output of a complex number multiplier circuit 2 is expressed on a coordinate (Xn, Yn) on a real coordinate X and an imaginary number coordinate Y and correction is applied to the power of the output so as to be expressed on a setting power (on a circle). A real part (Xn) and an imaginary part (Yn) of an output value of the complex number multiplier circuit 2 and an output of a correction value generating circuit 5 are multiplied by a multiplier 6 to correct the output of the complex number multiplier circuit 2 to comes on a value of the circle in figure. A delay circuit 1 retards an output of the multiplier 8 and the result is used as the succeeding input to the complex number multiplier circuit 2. Thus, a sinusoidal wave is oscillated with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は正弦波発振回路に関し、特に変様調装置等に用
いる正弦波発振回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sine wave oscillation circuit, and more particularly to a sine wave oscillation circuit used in modulation modulation devices and the like.

〔従来の技衝〕[Traditional technique]

従来、この棟の正弦波発振回路としては、アナログ処理
で正弦t&を発振する回路と、ティジタル処理で正弦波
を発振する回路がある。
Conventionally, the sine wave oscillation circuits in this building include circuits that oscillate sine t& using analog processing and circuits that oscillate sine waves using digital processing.

アナログ処理では発振器を用いて正弦波を発振する。Analog processing uses an oscillator to oscillate a sine wave.

ディジタル処理では変復調時のサンプリングレイトで処
理を行う。例えば,CCITT勧告のV33での変復調
装置では、ボーレイト2400baud,サンプリング
レイト9600Hzの処理である。この変復調装置の正
弦波発信回路は、サンプリングレイト9600Hzであ
るのでl/9600叔ごとのキャリア周波数の正弦波サ
ンプル値を求める事になる。
Digital processing is performed at the sampling rate during modulation and demodulation. For example, a modulation/demodulation device based on V33 of the CCITT recommendation processes a baud rate of 2400 baud and a sampling rate of 9600 Hz. Since the sine wave oscillation circuit of this modulator/demodulator has a sampling rate of 9600 Hz, sine wave sample values of the carrier frequency are obtained every 1/9600 Hz.

ディジタル処理で正弦波を発振する方法には主に三柚類
の方法がある。その1番目の方法は正弦波をデータとし
てメモリーに持ちサンプリングレイト毎にデータを取シ
出す方法、2番目の方法は正弦波を級数展開して計算す
る方法(式−1参照)、3番目の方法は複素領域で直接
的に正弦波の振幅値を計具する方法(式−2参照)であ
る(情報・血信に釦けるディジタル信号処理 昭晃堂 
村野他p25〜p27参照)。
There are three main methods for oscillating sine waves using digital processing. The first method is to store the sine wave as data in memory and extract the data at each sampling rate.The second method is to expand the sine wave into a series and calculate it (see formula-1). The method is to directly measure the amplitude value of the sine wave in the complex domain (see formula-2).
(See Murano et al. p.25-p.27).

s in (X)=X−X” /3 1 +X’ /5
 1 −X’ /7 1    (1)s in(X)
=Re (− jexp(X) )         
  (2)X=2xnfH/fs   rlは整数fi
Fiキャリア周波数 f5はサンプリング周波数 Re (・)は実数部分である。
s in (X)=X-X"/3 1 +X'/5
1 -X' /7 1 (1) sin(X)
=Re(-jexp(X))
(2) X=2xnfH/fs rl is an integer fi
Fi carrier frequency f5 is sampling frequency Re (.) is the real number part.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の正弦波発振回路は,デイジタル信号処理
で実現するとなると、データをメモ17一に持つ方法は
、メモリーを大量に必要とする為他の処理でメモリーを
使用する際に制限が生じる。
If the conventional sine wave oscillation circuit described above is realized by digital signal processing, the method of storing data in the memory 17 requires a large amount of memory, which imposes restrictions on the use of the memory for other processing.

次に、級数展−する方法ではXの値が大きくなるに連れ
乗算数が多くなってしまう為他の処理時間が間に合わな
くなる恐れがある。1た、複素演算で直接的に正弦波を
発振する方法は,(式−2)よシ(式−3)の演算をす
ることになるが、初期値t−1として位相変移量(ex
p(jJθi)〕を乗ずる複素乗算を何回か繰シ返し乗
算するうちに、位相変移前のデータがビット精度に゜よ
シ誤差を含み,絶対誤差が次第に大きくなるという欠点
がある。
Next, in the series expansion method, the number of multiplications increases as the value of X increases, so there is a risk that other processing times will not be in time. 1. In addition, the method of directly oscillating a sine wave using complex operations involves calculating (Equation 2) and (Equation 3), but the phase shift amount (ex
p(jJθi)] is repeated several times, the data before the phase shift includes an error in bit precision, and the absolute error gradually increases.

exp(X)==exp ( j n jθl)=ex
p(j(n−l)jθi) ・exp(j”i)   
(3)〔課題を解決するための手段〕 本発明の正弦波発振回路は、正弦波信号のサンプル値を
一時遅延する遅延回路と、この遅延回路の出力と複素数
で示すあらかじめ定めた位相変化量とを入力とする複素
米算回路と、この複素乗算回路の出力を補正して前記正
弦波信号のサンプル値を出力する補正手段とを備えてい
る。
exp(X)==exp(j n jθl)=ex
p(j(n-l)jθi) ・exp(j”i)
(3) [Means for solving the problem] The sine wave oscillation circuit of the present invention includes a delay circuit that temporarily delays a sample value of a sine wave signal, and an output of the delay circuit and a predetermined phase change amount expressed by a complex number. and a correction means for correcting the output of the complex multiplication circuit and outputting a sample value of the sine wave signal.

前記補正手段を、前記&累乗算回路の出力のパワーを求
めるパワー検出器と、このパワー挽出器の出力とあらか
じめ定めた設定{Il1バワーとを比べる補正他検出回
路と、この補正値検出回路の出力を入力とする補正仏生
威回路と、この補正イ直生成回路の出力と前記複素gl
!算回鮎の出力他とを乗算する乗算器とからst欣して
もよい。
The correction means includes a power detector that obtains the power of the output of the &accumulator multiplication circuit, a correction detection circuit that compares the output of the power extractor with a predetermined setting {Il1 power, and the correction value detection circuit. A corrected Buddha-generating circuit which inputs the output of
! It is also possible to obtain the output from a multiplier that multiplies the output of the calculation program and other outputs.

筐た、前記補正手段を、前記&累乗jIIil2l路の
出力を入力とする葡正値生成回路と、前記複素乗算lg
J鮎の出力b実鉄部,虚数部各々の符号を判定する符号
判定器と、この符号判定器の出力とniJ記補正値生戒
回路の出力との乗算を行う乗算器と、この乗算器の出力
値と前記複素乗算回路の出力とを加算する加算器とから
樽威してもよい。
The correction means includes a positive value generation circuit inputting the output of the & exponentiation jIIil2l path, and the complex multiplication lg
A sign determiner that determines the sign of each of the real iron part and the imaginary part of the output b of J Ayu; a multiplier that multiplies the output of this sign determiner by the output of the niJ correction value circuit; and this multiplier. and an adder that adds the output value of the complex multiplication circuit and the output of the complex multiplication circuit.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例のプbyク図中ある。FIG. 1 is a schematic diagram of a first embodiment of the present invention.

複素乗算回路2は位相変移量ej′と遅延回路1出力と
の複素乗算を行う(ここで、Aはサンフリングレイトで
変化する位相量)。この処理を繰b返し行うことで正弦
波が求められる。ここまでは従来の正弦波発振回路と等
しい。
The complex multiplication circuit 2 performs complex multiplication of the phase shift amount ej' and the output of the delay circuit 1 (here, A is the phase amount that changes with the sunfling rate). By repeating this process b, a sine wave is obtained. Up to this point, it is the same as a conventional sine wave oscillation circuit.

パワー検出器3は複素乗算回路2の出力値のパワーを求
やる回路である。補正値検出一路4はパワー検出器3の
出力値と設定値パワーとを比較する回路である。補正値
生成回WI5は補正値検出回lN14の出力によって順
次補正仏(実数)を可変して行くもので,複素乗算回路
2の出力伽を設定値に戻すための補正飯を生或する回路
である。例えば、第2図に於で実数座標X,虚数座標Y
とし、複素乗算回路2の出力をい筐座標(Xn,Yn)
とする。このパワーが設定値パワー(円上)になるよう
補正値を求める。乗算器6は複素乗算回路2の出力値の
実数部(Xn).虚数部(Yn)と補正値生成回路5の
出力値との乗算を行う。これによシ複素乗算回路2の出
力はfpJz図の円上に補正される。
The power detector 3 is a circuit that calculates the power of the output value of the complex multiplication circuit 2. The correction value detection circuit 4 is a circuit that compares the output value of the power detector 3 and the set value power. The correction value generation circuit WI5 sequentially varies the correction value (real number) according to the output of the correction value detection circuit 1N14, and is a circuit that generates a correction value to return the output value of the complex multiplier circuit 2 to the set value. be. For example, in Figure 2, the real coordinate X and the imaginary coordinate Y
Let the output of the complex multiplication circuit 2 be the housing coordinates (Xn, Yn)
shall be. A correction value is determined so that this power becomes the set value power (on a circle). The multiplier 6 receives the real part (Xn) of the output value of the complex multiplication circuit 2. The imaginary part (Yn) is multiplied by the output value of the correction value generation circuit 5. As a result, the output of the complex multiplication circuit 2 is corrected to be on the circle of the fpJz diagram.

遅延回路1は乗算器6の出力値を遅延し次回の複素乗算
回路20入力とする。
The delay circuit 1 delays the output value of the multiplier 6 and uses it as input to the next complex multiplication circuit 20.

第3図は本発明の第2の実施例のブロック図である。FIG. 3 is a block diagram of a second embodiment of the invention.

複素乗算回路2は位相変移量ej″と遅延回路1出力と
の複素乗算を行・う(ここで、Aはサンプリングレイト
で変化する位相量)。この処理を繰シ返し行うことで正
弦波が求められる。ここ1では従来の正弦波発振回路と
等しい。
The complex multiplication circuit 2 performs complex multiplication of the phase shift amount ej'' and the output of the delay circuit 1 (here, A is the phase amount that changes with the sampling rate). By repeating this process, the sine wave is Here, 1 is equivalent to a conventional sine wave oscillation circuit.

補正他生戒回路7は複素乗算回路2の出力飯を第4図の
理想値に戻すため、内内と外円との間k入る様に実数部
の補正位と虚数部の補正値を生成する所である。例えば
、第4図に於で複素乗算回路2の出力がいま座標(Xn
 = Yn )とすると、これを内内と外円との間に入
れるよう出力値の二乗から理相値の二乗を減算して補正
値を求める。
In order to return the output of the complex multiplier circuit 2 to the ideal value shown in FIG. 4, the correction circuit 7 generates a correction value for the real part and a correction value for the imaginary part so that it falls between the inner and outer circles. This is the place to do it. For example, in Fig. 4, the output of the complex multiplication circuit 2 is now at the coordinates (Xn
= Yn ), a correction value is obtained by subtracting the square of the rational value from the square of the output value so that it is placed between the inner and outer circles.

符号判定器8は複素乗算回路2の出力値の実数部(Xn
),虚数部(Yn)の符号を判定し、その符号の反転値
(マイナス値であったらプラスl)を出力とする。
The sign determiner 8 detects the real part (Xn
), the sign of the imaginary part (Yn) is determined, and the inverted value of the sign (plus l if it is a negative value) is output.

乗算器9は補正値生成回路7の出力伽と符号判定器8の
出力値との乗算を行う事によう符号処理付き補正値とす
る。
The multiplier 9 multiplies the output value of the correction value generation circuit 7 and the output value of the sign determination device 8 to generate a correction value with sign processing.

加算器10は複素乗算回路2の出力値と乗算器9の出力
値との加算を行う。これにより、複素乗算回路2の出力
は第4図の内円と外円との中間に補正される。
Adder 10 adds the output value of complex multiplication circuit 2 and the output value of multiplier 9. As a result, the output of the complex multiplication circuit 2 is corrected to be intermediate between the inner circle and the outer circle in FIG.

遅延回路1は加算器10の出力値を遅延し次回の複素乗
算回路20入力とする。
The delay circuit 1 delays the output value of the adder 10 and uses it as input to the next complex multiplication circuit 20.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、遅延回路及び複素乗算回
路によって求められた正弦波信号のサンプル値を補正手
段で補正してから遅延回路に入力することにより、ディ
ジタル信号処理で振幅が安定し精度の良い正弦波を得ら
れるという効果かある。
As explained above, the present invention corrects the sample value of the sine wave signal obtained by the delay circuit and the complex multiplier circuit using the correction means and then inputs it to the delay circuit, thereby stabilizing the amplitude through digital signal processing and increasing the accuracy. This has the effect of obtaining a good sine wave.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のブロック図、第2図は
第1図に示す実施例の動作を説明するための図、第3図
は本発明の第2の実施例のブロック図、第4図は第3図
に示す実施例の動作を説明するための図である。 l・・・遅延回路、2・・・複素乗算回路、3・・・パ
ワー検出器、4・・・補正値検出回路、5・・・補正値
生成回路、6・・・乗算器、7・・・補正値生成回路、
8・・・符号判定器、9・・・乗算器、10・・・加算
器。
FIG. 1 is a block diagram of the first embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a block diagram of the second embodiment of the present invention. 4 are diagrams for explaining the operation of the embodiment shown in FIG. 3. l... Delay circuit, 2... Complex multiplication circuit, 3... Power detector, 4... Correction value detection circuit, 5... Correction value generation circuit, 6... Multiplier, 7...・・Correction value generation circuit,
8... Sign determiner, 9... Multiplier, 10... Adder.

Claims (1)

【特許請求の範囲】[Claims] 正弦波信号のサンプル値を一時遅延する遅延回路と、こ
の遅延回路の出力と複素数で示すあらかじめ定めた位相
変化量とを入力とする複素乗算回路と、この複素乗算回
路の出力を補正して前記正弦波信号のサンプル値を出力
する補正手段とを備えたことを特徴とする正弦波発振回
路。
a delay circuit that temporarily delays a sample value of a sine wave signal; a complex multiplication circuit that receives the output of this delay circuit and a predetermined amount of phase change represented by a complex number; and a complex multiplication circuit that corrects the output of this complex multiplication circuit to A sine wave oscillation circuit comprising: a correction means for outputting a sample value of a sine wave signal.
JP18911289A 1989-07-20 1989-07-20 Sinusoidal wave oscillation circuit Pending JPH0353601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18911289A JPH0353601A (en) 1989-07-20 1989-07-20 Sinusoidal wave oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18911289A JPH0353601A (en) 1989-07-20 1989-07-20 Sinusoidal wave oscillation circuit

Publications (1)

Publication Number Publication Date
JPH0353601A true JPH0353601A (en) 1991-03-07

Family

ID=16235577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18911289A Pending JPH0353601A (en) 1989-07-20 1989-07-20 Sinusoidal wave oscillation circuit

Country Status (1)

Country Link
JP (1) JPH0353601A (en)

Similar Documents

Publication Publication Date Title
US4285044A (en) Digital generator for producing a sinewave
JPS60230705A (en) Digital circuit for generating time change signal and methodtherefor
JPH0353601A (en) Sinusoidal wave oscillation circuit
US20100132462A1 (en) Angular Velocity Detecting Apparatus
JPH03101405A (en) Sinusoidal wave oscillating circuit
CN103544134A (en) Transfer function estimation apparatus, method and program
JPH01170105A (en) Sine wave oscillator
JPH0432306A (en) Sinusoidal wave oscillation circuit
JPH03283706A (en) Sinusoidal wave oscillation circuit
JPS6156975A (en) Harmonic analyzer
JPH0440006A (en) Sine-wave generating system for modem
JPH0955646A (en) Pulse width modulator
JPH10135742A (en) Signal waveform generation device
JP3218486B2 (en) Sine wave generator
JPH0420005A (en) Sinusoidal wave oscillating circuit
JP3870274B1 (en) Trigonometric function computing device and trigonometric function computing method
JPH0923117A (en) Method and device for generating sine wave
JPH11214931A (en) Fm detection system
JPS61154317A (en) Frequency and phase estimating device
SU938266A1 (en) Device for dynamic characteristic determination
JPH09260949A (en) Signal generator
JP2006086681A (en) Data corrector and correction method of a-d converter
JPH04302511A (en) Sine wave generator
SU934512A1 (en) Graphic information readout device
JPH05334448A (en) Device for forming bezier curve