JPH0353376B2 - - Google Patents

Info

Publication number
JPH0353376B2
JPH0353376B2 JP57194649A JP19464982A JPH0353376B2 JP H0353376 B2 JPH0353376 B2 JP H0353376B2 JP 57194649 A JP57194649 A JP 57194649A JP 19464982 A JP19464982 A JP 19464982A JP H0353376 B2 JPH0353376 B2 JP H0353376B2
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
temperature
less
jet pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57194649A
Other languages
Japanese (ja)
Other versions
JPS5985834A (en
Inventor
Nobuyuki Takeda
Shuichi Komatsu
Mitsuo Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57194649A priority Critical patent/JPS5985834A/en
Publication of JPS5985834A publication Critical patent/JPS5985834A/en
Publication of JPH0353376B2 publication Critical patent/JPH0353376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は高温高圧の純水中で使用するジエツト
ポンプビームに関する。 〔発明の技術的背景とその問題点〕 原子炉炉内のジエツトポンプビームとして高弾
性率と高温強度を有する析出硬化型Ni基合金で
あるインコネルX−750が従来より使用されてい
る。X−750は所望の耐食性を得るに必要な量の
Cr、析出硬化に必要なNb、Al、Tiを含む析出硬
化型Ni基合金である。 ところでジエツトポンプビームには常に高応力
が作用するとともに、高温、高圧の純水にされさ
れており、同時に他の部材と近接し隙間を形成し
ている。そのためジエツトポンプビームは、高温
高圧の純水によつて腐食されるとともに、隙間並
びに高応力によつて応力腐食割れが生じる可能性
がある。 この応力腐食割れは引張応力の存在、使用環境
条件、および材料自体の特性の3因子が揃つたと
きに発生するものであり、この応力腐食割れを防
止するには材料自体の特性を改善し、応力腐食割
れ感受性を低くすることが最善の方法である。 他方ジエツトポンプビームを成形する場合には
型鍛造によつているが、所望の形状に加工する場
合加工が困難で微小き裂が発生する可能性を有す
る等の欠点があつた。 〔発明の目的〕 本発明の目的は特に原子力プラントの高温高圧
純水環境下においても耐応力腐食割れ性に優れ、
同時に微小き裂のないジエツトポンプビームを提
供するにある。 〔発明の概要〕 本発明は重量%でC0.08%以下、Si0.5%以下、
Mn1.0%以下、Cr14.0〜17.0%、Fe5.0〜10.0%、
Ti2.25〜2.75%、Al0.40〜1.00%、Nb0.7〜1.20
%、Mo2.0〜8.0%、Mg0.003〜0.06%、残部Niよ
りなる耐応力腐食割れ性に優れた微小き裂のない
原子力プラントに適したジエツトポンプビームで
ある。 つまり本発明は、応力腐食割れ感受性及び塑性
加工性に影響を及ぼすNi基合金の成分元素につ
いて種々検討した結果、特にMoを添加すること
によつて応力腐食割れ感受性が著しく低下するこ
と及びMgを添加することにより、塑性加工性が
向上することを見い出し、これにより、応力腐食
割れ感受性が著しく小さく、また微小き裂のない
原子力プラントに適したジエツトポンプビームを
提供するものである。 次に本発明に係るジエツトポンプビームの各組
成の限定理由を説明する。Cは強度を高めるため
に必要な元素であり多量に含有させると耐食性が
劣化するとともに靭性を低め熱間塑性加工も害す
るので0.08%以下とする。Siは脱酸剤として加え
るが、その含有量が0.5%をこれると加工性が劣
化するため0.5%以下の含有とする。MnはSiと同
様に脱酸・脱硫剤として添加するものであり、
1.0%以上になると溶製が困難となるためその含
有量を1.0%以下とする。Crは耐食性を得るのに
重要な元素であり、特に原子炉内で使用される部
材として高温高圧純水に対してその耐食性を確保
するためには14%以上の含有が必要であるが、17
%をこえると加工性が劣化するため14〜17%の含
有とする。Feは熱間加工性を向上するために必
要な元素で、その量が5%未満では十分な加工性
が得られず、また多量含有すると耐食性が低下す
ること、またLaves相などの有害相を生じること
から10%までとした。TiおよびAlは微細なNiと
の金属間化合物を形成し高温強度を高める元素と
して最も好ましいが、それぞれ、Ti:2.25%未満
およびAl:0.40%未満では前記作用に所望の向上
効果が得られず、一方それぞれTi:2.75%および
Al:1.00%をこえて含有させてもより一段の改善
効果が見られないばかりか、好ましくない粗大な
金属間化合物を生成することからそれぞれTi:
2.25〜2.75%、Al0.40〜1.00%の含有とする。Nb
は析出硬化によつて高温強度を高めるのに必要な
元素であり0.7%未満では析出硬化が不十分であ
り、また1.20%をこえて含有してもその効果が飽
和するので、0.7〜1.20%の含有とする。Moは特
に耐応力腐食割れ性を向上させるために添加する
ものであるが、2.0%以上とするのはそれ未満で
は耐応力腐食割れ性の十分な向上は見られないた
めであり、また10%以下とするのはそれをこえて
添加しても効果が飽和してしまうばかりか、加工
性及び熱間鍛造性を劣化させるためである。Mg
は脱酸、脱硫酸として有効であると同時に本発明
において、塑性加工性を向上させるために添加す
るものであり、0.003%未満ではその効果は小さ
く、また多量の添加は逆に加工性を低下させるた
め上限を0.06%とする。 〔発明の実施例〕 通常の真空高周波誘導炉を使用し、通常の溶解
条件にてそれぞれ第1表に示される成分組成をも
つ溶湯を調製し、鋳造してインゴツトを得た。引
続いてこのインゴツトを温度1150℃に24時間保持
し、ソーキングを行ない試料とした。
[Technical Field of the Invention] The present invention relates to a jet pump beam for use in high temperature and high pressure pure water. [Technical background of the invention and its problems] Inconel X-750, a precipitation hardening Ni-based alloy having a high elastic modulus and high temperature strength, has been used as a jet pump beam in a nuclear reactor. X-750 is added in the amount necessary to obtain the desired corrosion resistance.
It is a precipitation hardening type Ni-based alloy containing Cr, Nb, Al, and Ti necessary for precipitation hardening. By the way, the jet pump beam is constantly subjected to high stress and is treated with high-temperature, high-pressure pure water, and at the same time is in close proximity to other members, forming gaps. Therefore, the jet pump beam is corroded by the high-temperature, high-pressure pure water, and there is a possibility that stress corrosion cracking may occur due to the gaps and high stress. Stress corrosion cracking occurs when three factors are present: the presence of tensile stress, the environmental conditions of use, and the properties of the material itself. To prevent this stress corrosion cracking, it is necessary to improve the properties of the material itself. The best approach is to reduce stress corrosion cracking susceptibility. On the other hand, die forging is used to form jet pump beams, but this method has drawbacks such as difficulty in processing it into a desired shape and the possibility of microcracks occurring. [Objective of the Invention] The object of the present invention is to provide a material that has excellent stress corrosion cracking resistance even in the high-temperature, high-pressure pure water environment of a nuclear power plant.
At the same time, the aim is to provide a jet pump beam free of microcracks. [Summary of the Invention] The present invention provides C0.08% or less, Si0.5% or less,
Mn1.0% or less, Cr14.0~17.0%, Fe5.0~10.0%,
Ti2.25~2.75%, Al0.40~1.00%, Nb0.7~1.20
%, Mo2.0~8.0%, Mg0.003~0.06%, and the balance is Ni.This is a jet pump beam that has excellent stress corrosion cracking resistance and is free from microcracks and is suitable for nuclear power plants. In other words, as a result of various studies on the constituent elements of Ni-based alloys that affect stress corrosion cracking susceptibility and plastic workability, the present invention found that the addition of Mo significantly reduces stress corrosion cracking susceptibility, and that the addition of Mo significantly reduces stress corrosion cracking susceptibility. It has been found that plastic workability is improved by adding this material, thereby providing a jet pump beam that has extremely low stress corrosion cracking susceptibility and is free from microcracks and is suitable for nuclear power plants. Next, the reasons for limiting each composition of the jet pump beam according to the present invention will be explained. C is an element necessary to increase strength, and if it is contained in a large amount, corrosion resistance will deteriorate and toughness will also be lowered, impairing hot plastic working, so it should be kept at 0.08% or less. Si is added as a deoxidizing agent, but if the content is less than 0.5%, processability deteriorates, so the content should be 0.5% or less. Like Si, Mn is added as a deoxidizing and desulfurizing agent.
If it exceeds 1.0%, melting becomes difficult, so the content should be kept below 1.0%. Cr is an important element for obtaining corrosion resistance, and in order to ensure corrosion resistance against high-temperature, high-pressure pure water as a component used in nuclear reactors, it is necessary to contain 14% or more.
If the content exceeds 14% to 17%, processability deteriorates. Fe is an element necessary to improve hot workability. If the amount is less than 5%, sufficient workability cannot be obtained, and if it is contained in a large amount, corrosion resistance will decrease, and it may cause harmful phases such as Laves phase. It was set at 10% because of the occurrence of this phenomenon. Ti and Al are the most preferred elements as they form fine intermetallic compounds with Ni and increase high-temperature strength, but if Ti is less than 2.25% and Al is less than 0.40%, the desired effect of improving the above action cannot be obtained. , while Ti: 2.75% and
Al: If the content exceeds 1.00%, not only will no further improvement effect be seen, but also undesirable coarse intermetallic compounds will be formed, so Ti:
The content should be 2.25-2.75% and Al 0.40-1.00%. Nb
is an element necessary to increase high-temperature strength through precipitation hardening, and if it is less than 0.7%, precipitation hardening will be insufficient, and if it is contained above 1.20%, the effect will be saturated, so 0.7 to 1.20% Contains. Mo is added especially to improve stress corrosion cracking resistance, but it is added at 2.0% or more because if it is less than 2.0%, sufficient improvement in stress corrosion cracking resistance cannot be seen. The reason why the amount is set below is that if added in excess of this amount, not only the effect will be saturated, but also the workability and hot forgeability will deteriorate. Mg
is effective as a deoxidizer and desulfurizer, and at the same time is added to improve plastic workability in the present invention.If it is less than 0.003%, the effect will be small, and if it is added in a large amount, the workability will decrease. The upper limit is set at 0.06%. [Examples of the Invention] Molten metals having the respective compositions shown in Table 1 were prepared using an ordinary vacuum high-frequency induction furnace under ordinary melting conditions and cast to obtain ingots. Subsequently, this ingot was kept at a temperature of 1150°C for 24 hours and soaked to prepare a sample.

【表】 ついでこれらの試料より直径7mm、長さ12mmの
丸棒試験片を切出し、この試験片を900℃から25
℃づつ間隔をおいて1350℃まで加熱し、各加熱温
度に加熱された試験片に対して一定の歪速度
(10/sec)で長さ12mmから長さ6mmにすえ込む鍛
造試験を行ない前記試験片に鍛造割れが生じる最
低加熱温度を測定した。 さらに別途各試料について温度1150℃に加熱し
た状態で鍛造比4まで熱間鍛造を施して熱延板と
した。これら鍛造材に対し均質化処理(885℃×
24hr)+時効処理(704℃×20hr)を施した後、
JIS規格に基づく形状の引張試験用丸棒試験片を
作成した。これら試験片に対して、溶存酸素濃度
32ppm、塩素イオン濃度1ppm以下で、温度290
℃、圧力100Kg/cm2の高温高圧純水中で、ひずみ
速度1.0×10-7/secにて低ひずみ速度応力腐食割
れ試験を行なつた。 上記試験結果および各試料の常温における機械
的強度を合わせて第2表に示す。
[Table] Next, a round bar test piece with a diameter of 7 mm and a length of 12 mm was cut from these samples, and this test piece was heated at 900℃ for 25 minutes.
The specimens heated to each heating temperature were heated to 1350°C at intervals of 1350°C, and a forging test was conducted at a constant strain rate (10/sec) from a length of 12 mm to a length of 6 mm. The minimum heating temperature at which forging cracks occurred in the pieces was measured. Furthermore, each sample was separately hot-forged to a forging ratio of 4 while being heated to a temperature of 1150°C to obtain a hot-rolled plate. These forged materials are homogenized (885℃×
24hr) + aging treatment (704℃ x 20hr),
A round bar test piece for tensile testing with a shape based on JIS standards was created. For these test pieces, the dissolved oxygen concentration
32ppm, chlorine ion concentration below 1ppm, temperature 290
A low strain rate stress corrosion cracking test was conducted at a strain rate of 1.0×10 -7 /sec in high temperature, high pressure pure water at a temperature of 100 Kg/cm 2 and a pressure of 100 Kg/cm 2 . The above test results and the mechanical strength of each sample at room temperature are shown in Table 2.

【表】 第2表より明らかなように本発明に係るジエツ
トポンプビームは鍛造性が良好で、微小き裂の発
生が少ない。また従来のものに比べて、その機械
的強度に遜色はなく、同時に低ひずみ速度応力腐
食割れ試験において、500時間以上経過しても破
断することがなく、耐応力腐食割れ性の点でも優
れていることがわかる。 以上の如く本発明に係るジエツトポンプビーム
は耐応力腐食割れ性に優れると同時に微小き裂が
少なく原子力プラント用として適したものであり
工業上有用な特性を有する。
[Table] As is clear from Table 2, the jet pump beam according to the present invention has good forgeability and little occurrence of microcracks. In addition, its mechanical strength is comparable to that of conventional products, and at the same time, it did not break even after more than 500 hours in a low strain rate stress corrosion cracking test, and it has excellent stress corrosion cracking resistance. I know that there is. As described above, the jet pump beam according to the present invention has excellent stress corrosion cracking resistance, has few microcracks, is suitable for use in nuclear power plants, and has industrially useful properties.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でC0.08%以下、Si0.5%以下、Mn1.0
%以下、Cr14.0〜17.0%、Fe5.0〜10.0%、Ti2.25
〜2.75%、Al0.40〜1.00%、Nb0.7〜1.20%、
Mo2.0〜8.0%、Mg0.003〜0.06%残部Niからなる
ことを特徴とするジエツトポンプビーム。
1 Weight% C0.08% or less, Si0.5% or less, Mn1.0
% or less, Cr14.0~17.0%, Fe5.0~10.0%, Ti2.25
~2.75%, Al0.40~1.00%, Nb0.7~1.20%,
A jet pump beam characterized by being composed of Mo2.0~8.0%, Mg0.003~0.06% and the balance Ni.
JP57194649A 1982-11-08 1982-11-08 Beam of jet pump Granted JPS5985834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194649A JPS5985834A (en) 1982-11-08 1982-11-08 Beam of jet pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194649A JPS5985834A (en) 1982-11-08 1982-11-08 Beam of jet pump

Publications (2)

Publication Number Publication Date
JPS5985834A JPS5985834A (en) 1984-05-17
JPH0353376B2 true JPH0353376B2 (en) 1991-08-14

Family

ID=16328017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194649A Granted JPS5985834A (en) 1982-11-08 1982-11-08 Beam of jet pump

Country Status (1)

Country Link
JP (1) JPS5985834A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138476A (en) 2008-12-15 2010-06-24 Toshiba Corp Jet pump beam and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5985834A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
CA2014694C (en) Corrosion- and wear-resistant cobalt-base alloy
KR101698075B1 (en) Nickel-chromium alloy having good processability, creep resistance and corrosion resistance
JPS6358213B2 (en)
Degallaix et al. Mechanical behaviour of high-nitrogen stainless steels
KR20050044557A (en) Super-austenitic stainless steel
KR20190046729A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
RU2282674C2 (en) Duplex stainless steel, method for its preparing and industrial article made of this steel (variants)
CA1038205A (en) Low expansion iron-nickel based alloys
JP6772735B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JPH073369A (en) High ni base alloy excellent in hydrogen embrittlement resistance and production thereof
JPH0353376B2 (en)
JPH07290275A (en) Welding wire for high strength cr-mo steel
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JPS59211552A (en) Martensitic high cr steel with high toughness
JPS6013060B2 (en) Ferritic heat-resistant steel
RU2716922C1 (en) Austenitic corrosion-resistant steel with nitrogen
JP3177555B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JPH0742550B2 (en) Stainless steel with excellent strength and ductility
JPS6353234A (en) Structural member having heat resistance and high strength
Perkins et al. Improving hot-ductility of 310 stainless
JPS62199752A (en) Heat resistant austenitic steel
JPH02138429A (en) High strength beta-series titanium alloy having excellent corrosion resistance and stress corrosion cracking resistance
JPS5831389B2 (en) Steel for pressure vessels of nuclear equipment