JPH0353170Y2 - - Google Patents

Info

Publication number
JPH0353170Y2
JPH0353170Y2 JP1984160843U JP16084384U JPH0353170Y2 JP H0353170 Y2 JPH0353170 Y2 JP H0353170Y2 JP 1984160843 U JP1984160843 U JP 1984160843U JP 16084384 U JP16084384 U JP 16084384U JP H0353170 Y2 JPH0353170 Y2 JP H0353170Y2
Authority
JP
Japan
Prior art keywords
sample
chamber
molten metal
collection container
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984160843U
Other languages
Japanese (ja)
Other versions
JPS6176356U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984160843U priority Critical patent/JPH0353170Y2/ja
Publication of JPS6176356U publication Critical patent/JPS6176356U/ja
Application granted granted Critical
Publication of JPH0353170Y2 publication Critical patent/JPH0353170Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) この考案は溶融金属用試料採取容器に関するも
のである。 (従来の技術) 従来の溶融金属用試料採取容器の一例を第2図
に示す。この図は試料採取容器の拡大図であり、
試料採取容器1は押湯室2を形成する有蓋円筒状
容器、試料室4を形成する有底円筒状容器5およ
び両室間に介在する仕切板6で構成されこれらが
肉厚紙管7先端内に内蔵される。肉厚紙管7と試
料採取容器1の間隙はセメントの如き耐火物8で
充填される。一般に、有蓋円筒状容器3と仕切板
6の材質はセラミツクまたは金属製であり、有底
円筒状容器5は金属製の金型である。 仕切板6の孔径dと試料室4の径Dの比は0.4
<d/D<0.6である。また有底円筒状容器5の
肉厚は底、側壁とも等しい。 サンプリング時は、試料採取容器1がスラグ層
を通過し溶融金属中に浸漬されると、まずスラグ
流入防止紙管9が焼失を開始し、流入孔10を通
して溶融金属が容器1内に流入し、押湯室2を経
て試料室4に流入する。試料室4に入つた溶融金
属は、試料室4を構成する有底円筒状容器5によ
つて冷却され凝固する。このようにしてサンプリ
ングを行うことが出来る。 この試料採取容器で採取した試料の垂直断面マ
クロを第3図に示す。試料の表層部は凝固初期に
生成する柱状晶、内部は等軸晶からなる。この試
料では横方向と高さ方向の凝固がほぼ同じ速度で
進みかつ遅いため、最終凝固位置が試料の中心部
となり、該中心部に収縮孔が発生する。また仕切
板6の孔径が小さいため押湯効果を阻害し、収縮
孔を発生し易くしている。 この試料採取容器を自動サンプリング装置に使
用した場合、試料中心部分が未凝固の状態で試料
採取容器が揺動するため第3図に示したように収
縮孔がランダムに試料中心部に発生し、試料断面
での分析が不可能な不良試料が多発する。このた
め迅速分析が出来ず、しかも分析精度も低いため
精錬操業に支障をきたし、手動サンプリングを余
儀なくされ、サンプリングの省力化が図れなかつ
た。 試料内の収縮孔発生防止対策として従来からい
くつかの考案がなされている。その代表的なもの
は特公昭49−13359号公報記載の技術のように押
湯室の内面に耐熱材を張付けるか、或いは周壁を
薄肉厚として外側の耐熱材を厚くして押湯室に保
温効果を持たせ、押湯室内の溶融金属の凝固を試
料室内より遅くする方法である。 (考案が解決しようとする問題点) しかし、この対策では試料室内の溶融金属の凝
固速度は変わらないため、自動サンプリング装置
のようにサンプリング後試料採取容器が揺動する
場合は、試料中心部分が未凝固の状態で振動を受
けるため該中心部に収縮孔が多発する。したがつ
て押湯室に保温性を持たせる方法では、試料内の
収縮孔の発生を十分に防止出来なかつた。本考案
は、この従来の技術の欠点を解決する事のできる
溶融金属用の試料採取容器を提供することを目的
とする。 (問題点を解決するための手段、作用) 前述の目的を達成するための本考案の要旨は、
試料室、押湯室および該試料室と該押湯室との間
に介在する仕切板からなる試料採取容器におい
て、該試料室を形成する有底円筒状容器の底の肉
厚Tと側壁の肉厚tをT/t≧2とし、仕切板の
孔径dと試料室の径Dは0.6≦d/D≦0.8とし、
押湯室に空気抜孔を設けたことを特徴とする試料
採取容器である。 以下、本考案を第1図に示す実施例によつて説
明する。同図において第2図と同一符号は同一名
称を示す。 有底円筒状容器5の側壁の肉厚tと底の肉厚T
の比T/tは2以上に形成されている。T/t≧
2となるように試料室4を形成する有底円筒状容
器5の底厚を厚くすることにより、試料底部側の
抜熱速度を増し、高さ方向に優先凝固させて最終
凝固位置を上方に移行させ、試料中心部での収縮
孔の発生を防止することができる。 試料容器内での凝固シエル厚Sは一般に、 S=k√+C ……(1) S:シエル厚み[mm] t:経過時間[min] C:定数 k:凝固係数 20〜30mm・min で表わされる。ここでkは脱酸度、成分(特に
[C%])、鋳型厚、鋳込温度に影響されるとされ
ている。つまり、鋳型厚を増せば鋳型の熱容量が
増すため抜熱速度が上昇し、その結果kが増加す
るため同一時間でシエル厚Sが厚くなるのであ
る。 第4図は、凝固が試料の底部から上向きに優先
して起きるよう底厚Tを種々変えて、収縮孔発生
率(収縮孔が発生して分析が不可能な試料数/全
試料数)との関係を調査した結果を示す。これか
らT/t≧2にすれば収縮孔の発生率が著しく低
下することが分かつた。これより有底円筒状容器
5の底厚を例えば従来の4.5mmから14.5mmにし、
T/t≧2を満足するように設定した場合、凝固
係数kは約3倍となるため、試料ボトム部の柱状
晶厚も約3倍となることが予測される。 仕切板6の孔径dと試料室4の径Dの比は0.6
≦d/D≦0.8に形成されている。これにより溶
融金属凝固時、仕切板6の孔からの溶融金属の供
給がスムーズとなり、押湯効果を十分に発揮する
ことが可能となる。 第5図には、収縮孔を出来る限り小さくするた
めに仕切板6の孔径dを種々変えて収縮孔発生率
との関係を調査した結果を示す。これより0.6≦
d/D≦0.8に設定すれば収縮孔発生率が低下す
ることが分かつた。 第1図の11は空気抜孔であり、押湯室2の溶
融金属凝固に支障のない位置に設けてあり、該孔
11により試料室内への溶融金属の流入が容易と
なり、流入不良に起因する収縮孔の発生をなくす
ことができる。また、溶融金属を試料室4内に迅
速に導入することができるので試料採取容器の浸
漬時間が短くてよく、肉厚紙管7を薄くできる。 押湯室2を形成する有蓋円筒状容器3に空気抜
孔11を設け、溶融金属の流入不良による収縮孔
発生率との関係を調査した結果を第6図に示す。
これから空気抜孔11を設けた試料採取容器の方
が溶融金属が流入し易くなり、収縮孔発生率が低
下することが分かつた。従つて、押湯室2に空気
抜孔11を設けることにより溶融金属の流入を容
易にすることができる。 (実施例) 本考案に係る溶融金属の試料採取容器により採
取した試料の垂直断面マクロを第7図に示した。
この図より試料底部から上向方向へ優先凝固が起
こり、かつ試料上部の形状より押湯効果が十分に
現れていることが分かる。 本考案に係る溶融金属の試料採取容器を用いる
ことにより、試料内の収縮孔発生による分析不可
率およびサンプリング失敗率は表1に示すように
低減した。
(Industrial Application Field) This invention relates to a sample collection container for molten metal. (Prior Art) An example of a conventional sample collection container for molten metal is shown in FIG. This figure is an enlarged view of the sample collection container;
The sample collection container 1 is composed of a cylindrical container with a lid forming a feeder chamber 2, a cylindrical container 5 with a bottom forming a sample chamber 4, and a partition plate 6 interposed between the two chambers. Built-in. The gap between the thick paper tube 7 and the sample collection container 1 is filled with a refractory material 8 such as cement. In general, the cylindrical container 3 with a lid and the partition plate 6 are made of ceramic or metal, and the cylindrical container 5 with a bottom is a metal mold. The ratio of the hole diameter d of the partition plate 6 and the diameter D of the sample chamber 4 is 0.4.
<d/D<0.6. Further, the wall thickness of the bottomed cylindrical container 5 is equal to that of the bottom and the side wall. During sampling, when the sample collection container 1 passes through the slag layer and is immersed in the molten metal, the slag inflow prevention paper tube 9 starts to burn out, and the molten metal flows into the container 1 through the inflow hole 10. It flows into the sample chamber 4 via the feeder chamber 2. The molten metal that has entered the sample chamber 4 is cooled and solidified by the bottomed cylindrical container 5 that constitutes the sample chamber 4 . Sampling can be performed in this way. FIG. 3 shows a macroscopic vertical cross section of the sample collected with this sample collection container. The surface layer of the sample consists of columnar crystals formed in the initial stage of solidification, and the interior consists of equiaxed crystals. In this sample, solidification in the lateral and vertical directions progresses at approximately the same speed and is slow, so the final solidification position is at the center of the sample, and shrinkage pores are generated in the center. Further, since the pore diameter of the partition plate 6 is small, the feeder effect is inhibited and shrinkage pores are likely to occur. When this sample collection container is used in an automatic sampling device, shrinkage holes randomly occur in the center of the sample as shown in Figure 3 because the sample collection container swings while the center of the sample is not solidified. There are many defective samples that cannot be analyzed on the cross section of the sample. As a result, rapid analysis was not possible and analysis accuracy was low, which hindered refining operations and forced manual sampling, making it impossible to save labor in sampling. Several ideas have been made in the past as measures to prevent the occurrence of shrinkage pores within a sample. Typical methods include applying a heat-resistant material to the inner surface of the feeder chamber as described in Japanese Patent Publication No. 49-13359, or making the peripheral wall thinner and thickening the heat-resistant material on the outside. This method provides a heat-insulating effect and allows the molten metal in the feeder chamber to solidify more slowly than in the sample chamber. (Problem that the invention aims to solve) However, this measure does not change the solidification rate of the molten metal in the sample chamber, so if the sample collection container swings after sampling, as in an automatic sampling device, the center of the sample may Since it is subjected to vibration in an unsolidified state, many shrinkage holes occur in the center. Therefore, the method of providing heat retention to the feeder chamber was not able to sufficiently prevent the formation of shrinkage pores within the sample. The object of the present invention is to provide a sampling container for molten metal that can overcome the drawbacks of the prior art. (Means and actions for solving the problem) The gist of the present invention to achieve the above-mentioned purpose is as follows:
In a sample collection container consisting of a sample chamber, a feeder chamber, and a partition plate interposed between the sample chamber and the feeder chamber, the wall thickness T of the bottom and the side wall of the bottomed cylindrical container forming the sample chamber are The wall thickness t is T/t≧2, the hole diameter d of the partition plate and the diameter D of the sample chamber are 0.6≦d/D≦0.8,
This is a sample collection container characterized by having an air vent hole in the feeder chamber. The present invention will be explained below with reference to an embodiment shown in FIG. In this figure, the same reference numerals as in FIG. 2 indicate the same names. Side wall thickness t and bottom wall thickness T of the bottomed cylindrical container 5
The ratio T/t is set to 2 or more. T/t≧
2, by increasing the bottom thickness of the bottomed cylindrical container 5 that forms the sample chamber 4, the rate of heat removal from the bottom side of the sample is increased, solidification is preferentially performed in the height direction, and the final solidification position is moved upward. It is possible to prevent shrinkage pores from occurring at the center of the sample. The solidification shell thickness S in the sample container is generally expressed as: S=k√+C...(1) S: Shell thickness [mm] t: Elapsed time [min] C: Constant k: Solidification coefficient 20 to 30 mm・min It can be done. Here, k is said to be influenced by the degree of deoxidation, components (particularly [C%]), mold thickness, and casting temperature. In other words, when the mold thickness is increased, the heat capacity of the mold increases, so the heat removal rate increases, and as a result, k increases, so that the shell thickness S increases in the same amount of time. Figure 4 shows the shrinkage pore occurrence rate (number of samples for which analysis is impossible due to shrinkage pores/total number of samples) by varying the bottom thickness T so that solidification occurs preferentially from the bottom of the sample upward. The results of an investigation into the relationship between It has been found that when T/t≧2, the incidence of shrinkage pores is significantly reduced. From this, the bottom thickness of the bottomed cylindrical container 5 is changed from the conventional 4.5 mm to 14.5 mm, for example.
When the setting is made to satisfy T/t≧2, the coagulation coefficient k becomes about 3 times, and therefore it is predicted that the thickness of the columnar crystals at the bottom of the sample also becomes about 3 times as large. The ratio of the hole diameter d of the partition plate 6 and the diameter D of the sample chamber 4 is 0.6.
≦d/D≦0.8. As a result, when the molten metal solidifies, the molten metal can be smoothly supplied from the holes in the partition plate 6, and the feeder effect can be fully exerted. FIG. 5 shows the results of investigating the relationship between various changes in the hole diameter d of the partition plate 6 and the incidence of shrinkage holes in order to make the shrinkage holes as small as possible. From this 0.6≦
It was found that the shrinkage pore occurrence rate was reduced by setting d/D≦0.8. Reference numeral 11 in FIG. 1 is an air vent hole, which is provided at a position that does not interfere with the solidification of the molten metal in the feeder chamber 2. The hole 11 facilitates the flow of molten metal into the sample chamber, and prevents the molten metal from flowing into the feeder chamber 2 due to poor flow. It is possible to eliminate the occurrence of shrinkage pores. Furthermore, since the molten metal can be rapidly introduced into the sample chamber 4, the immersion time of the sample collection container can be shortened, and the thick paper tube 7 can be made thinner. FIG. 6 shows the results of an investigation into the relationship between air vent holes 11 provided in the covered cylindrical container 3 forming the feeder chamber 2 and the incidence of shrinkage holes due to poor inflow of molten metal.
It was found that the sample collection container provided with the air vent hole 11 allows the molten metal to flow more easily, and the incidence of shrinkage holes decreases. Therefore, by providing the air vent hole 11 in the feeder chamber 2, it is possible to facilitate the inflow of molten metal. (Example) FIG. 7 shows a macroscopic vertical cross section of a sample collected by the molten metal sample collection container according to the present invention.
From this figure, it can be seen that preferential solidification occurs from the bottom of the sample upwards, and that the feeder effect is fully evident from the shape of the top of the sample. By using the molten metal sample collection container according to the present invention, the analysis failure rate and sampling failure rate due to the occurrence of shrinkage pores in the sample were reduced as shown in Table 1.

【表】 試料底部の柱状晶厚さは従来品の約3倍となつ
ており、ほぼ予想通りの効果が得られた。これに
よりサンプル内の最終凝固位置が約15mm上方へ移
行した。 また仕切板の孔径を0.6≦d/D≦0.8にするこ
とにより、柱状晶が孔をふさぎ押湯効果を阻害す
ることがなくなつた。さらに、押湯室を形成する
容器に空気抜孔を設けることにより溶融金属の流
入不良がなくなり、収縮孔発生率は飛躍的に低下
した。 (考案の効果) 本考案により、溶融金属成分の分析精度が向上
し、操業が安定して生産性が向上する。また自動
サンプリング装置が使用可能となり、省力化を図
ることができる。
[Table] The thickness of the columnar crystals at the bottom of the sample was approximately three times that of the conventional product, and the effect was almost as expected. This shifted the final solidification position within the sample upward by approximately 15 mm. Furthermore, by setting the pore diameter of the partition plate to 0.6≦d/D≦0.8, the columnar crystals no longer block the pores and impede the hot water feed effect. Furthermore, by providing an air vent hole in the container forming the feeder chamber, there was no problem with the inflow of molten metal, and the incidence of shrinkage holes was dramatically reduced. (Effects of the invention) The invention improves the accuracy of analyzing molten metal components, stabilizes operations, and improves productivity. Furthermore, an automatic sampling device can be used, which can save labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す図、第2図a,
bは従来の試料採取容器を示す図、第3図は従来
の試料採取容器で採取した試料の垂直断面マクロ
を示す図、第4図は収縮孔発生率とT/tとの関
係を示す図、第5図は収縮孔発生率とd/Dとの
関係を示す図、第6図は溶融金属流入不良率と空
気抜孔の有無の関係を示す図、第7図は本考案に
係る試料採取容器で採取した試料の垂直断面マク
ロを示す図である。 1は試料採取容器、2は押湯室、3は有蓋円筒
状容器、4は試料室、5は有底円筒状容器、6は
仕切板、7は肉厚紙管、8は耐火物、11は空気
抜孔である。
Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 a,
b is a diagram showing a conventional sample collection container, FIG. 3 is a diagram showing a vertical cross-sectional macro view of a sample collected with a conventional sample collection container, and FIG. 4 is a diagram showing the relationship between shrinkage hole occurrence rate and T/t. , Fig. 5 is a diagram showing the relationship between the shrinkage hole occurrence rate and d/D, Fig. 6 is a diagram showing the relationship between the molten metal inflow defect rate and the presence or absence of air vent holes, and Fig. 7 is a diagram showing the sample collection according to the present invention. FIG. 3 is a diagram showing a vertical cross-section macro of a sample collected in a container. 1 is a sample collection container, 2 is a feeder chamber, 3 is a cylindrical container with a lid, 4 is a sample chamber, 5 is a cylindrical container with a bottom, 6 is a partition plate, 7 is a thick paper tube, 8 is a refractory material, 11 is a It is an air vent.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料室、押湯室および該試料室と押湯室との間
に介在する仕切板からなる試料採取容器におい
て、該試料室を形成する有底円筒状容器の底の肉
厚Tと側壁の肉厚tをT/t≧2とし、仕切板の
孔径dと試料室の径Dを0.6≦d/D≦0.8とし、
押湯室に空気抜孔を設けたことを特徴とする試料
採取容器。
In a sample collection container consisting of a sample chamber, a feeder chamber, and a partition plate interposed between the sample chamber and the feeder chamber, the bottom wall thickness T and side wall thickness of the bottomed cylindrical container forming the sample chamber are as follows: The thickness t is T/t≧2, the hole diameter d of the partition plate and the diameter D of the sample chamber are 0.6≦d/D≦0.8,
A sample collection container characterized by having an air vent in the feeder chamber.
JP1984160843U 1984-10-24 1984-10-24 Expired JPH0353170Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984160843U JPH0353170Y2 (en) 1984-10-24 1984-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984160843U JPH0353170Y2 (en) 1984-10-24 1984-10-24

Publications (2)

Publication Number Publication Date
JPS6176356U JPS6176356U (en) 1986-05-22
JPH0353170Y2 true JPH0353170Y2 (en) 1991-11-20

Family

ID=30718757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984160843U Expired JPH0353170Y2 (en) 1984-10-24 1984-10-24

Country Status (1)

Country Link
JP (1) JPH0353170Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714888Y2 (en) * 1989-06-09 1995-04-10 川惣電機工業株式会社 Bath molten metal sampling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216981B2 (en) * 1975-02-05 1977-05-12
JPS59160760A (en) * 1983-03-04 1984-09-11 Toyota Motor Corp Method for analyzing alcohol in gasoline

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054184U (en) * 1973-09-11 1975-05-23
JPS5195387U (en) * 1975-01-29 1976-07-30
JPS5216981U (en) * 1975-07-24 1977-02-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216981B2 (en) * 1975-02-05 1977-05-12
JPS59160760A (en) * 1983-03-04 1984-09-11 Toyota Motor Corp Method for analyzing alcohol in gasoline

Also Published As

Publication number Publication date
JPS6176356U (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US944370A (en) Process and apparatus for making metal ingots.
JP3247265B2 (en) Metal casting method and apparatus
US2897555A (en) Steel ingot making composition, method and apparatus
US1678976A (en) Method of and apparatus for casting ingots
JPH0353170Y2 (en)
US3295171A (en) Frangible ceramic test mold
EP0249897A1 (en) Process for the degassing, refining or filtering treatment of liquid metals or alloys and related apparatus
JPS5928832B2 (en) Molten metal sampling equipment
JPS5847554A (en) Production of metal hollow ingot
GB2080714A (en) Tilting mould in casting
RU97114953A (en) METHOD FOR MANUFACTURING CAST DETAILS MOLD IN THE FORM OF ONE ITEM HAVING ADJUSTABLE CHANGES OF CAST IRON AND SEALED CAST IRON
CN207239067U (en) A kind of unidirectional solidification mould of electroslag remelting electrode billet
SU1694317A1 (en) Sampling mould to determine the alloys volume shrinkage
SU1660832A1 (en) Mould
JPH1096722A (en) Sampling device for analytical specimen from molten metal and sampling method
JPS645648A (en) Pouring nozzle for metal strip continuous casting apparatus
US2264456A (en) Method of casting metals
US2264457A (en) Method of casting composite metals
JPS6142457A (en) Casting method using tundish
JPH05273197A (en) Fused metal sample collecting device
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
RU2025213C1 (en) Ingot manufacturing method
SU863172A1 (en) Method of producing porous castings
JPH0119088Y2 (en)
JP2002243723A (en) Sampler for molten steel, and method of conditioning analytical sample