JPH0353029A - Method for recycling steel making dusts in electric furnace having scrap preheating furnace - Google Patents

Method for recycling steel making dusts in electric furnace having scrap preheating furnace

Info

Publication number
JPH0353029A
JPH0353029A JP1188250A JP18825089A JPH0353029A JP H0353029 A JPH0353029 A JP H0353029A JP 1188250 A JP1188250 A JP 1188250A JP 18825089 A JP18825089 A JP 18825089A JP H0353029 A JPH0353029 A JP H0353029A
Authority
JP
Japan
Prior art keywords
pellets
dust
curing
weight
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1188250A
Other languages
Japanese (ja)
Other versions
JP2706142B2 (en
Inventor
Nobuyuki Makino
槙野 伸幸
Kazuo Tanaka
和夫 田中
Hideo Ueda
英男 植田
Masakazu Yamaguchi
政和 山口
Takafumi Nagamatsu
永松 孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Nippon Steel Corp filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP18825089A priority Critical patent/JP2706142B2/en
Publication of JPH0353029A publication Critical patent/JPH0353029A/en
Application granted granted Critical
Publication of JP2706142B2 publication Critical patent/JP2706142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To allow the recycling of CaO-contg. steel making dust without pulverizing the dust by adding water to the dust, curing the dust, and pelletizing the same under addition of water glass thereto, then curing the pellets, heating the pellets together with scrap in a preheating furnace and charging the heated pellets into an electric furnace. CONSTITUTION:Water is added at about 3 to 15wt.% to the CaO-contg. steel making dust under agitation and the dust is cured for about 1 to 2 days to prepare the pelletized raw material having about 2 to 10wt.% moisture content. The water glass is added to the pelletized raw material in such a manner that about 3 to 7wt.% water glass is incorporated therein. The raw material is then humidified, kneaded and pelletized to form the pellets having about 10 to 15wt.% moisture and about 3 to 30mm grain size. The pellets are cured for about >=1 days and are thereby hardened. The pellets are charged into the preheating furnace contg. the scrap and are heated up to the preheating temp. of the scrap; thereafter, the pellets are charged together with the scrap into the electric furnace. The effective recycling of the steel making dust is possible in this way without pulverizing the dust.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CaO含有製鋼ダスト及び含油,含水スケー
ル類をスクラップ予熱炉を有する電気炉において再利用
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recycling CaO-containing steelmaking dust and oil- and water-containing scales in an electric furnace having a scrap preheating furnace.

〔従来の技術〕[Conventional technology]

製鉄工場では、その製造工程において、多量の粉塵が発
生し、環境改善のための集塵装置が設置され、それらを
回収している。
In steel factories, a large amount of dust is generated during the manufacturing process, and dust collectors are installed to collect the dust to improve the environment.

回収された粉塵の多くは、Fe,Ni,Cr等の有価成
分を含んでおり、鉄源あるいは副原料として再利用する
ことが図られている。
Most of the collected dust contains valuable components such as Fe, Ni, and Cr, and is intended to be reused as an iron source or auxiliary raw material.

特に、製鋼工程で発生する製鋼ダストは発生量も多く、
その全量を再利用することが求められている。
In particular, the amount of steelmaking dust generated during the steelmaking process is large.
It is required that the entire amount be reused.

その製鋼ダストは、微細粉が多く、ペレットやブリケッ
トに団鉱化することが必要である。そして、団鉱化する
に当たっては、製鋼炉上に設けられた副原料ホッパー等
までのハンドリングに耐える圧膚強度を付与するバイン
ダが必要となる。その圧潰強度はハンドリング条件によ
り異なるが、一殻的には3mの高さから落下させた時の
粉化率10重量%以下が得られる7kg/ペレット以上
あれば実用上充分である。
The steelmaking dust contains a lot of fine powder, and it is necessary to briquette it into pellets or briquettes. In briquetting, a binder is required that provides pressure strength to withstand handling up to the auxiliary raw material hopper provided on the steelmaking furnace. The crushing strength varies depending on the handling conditions, but it is practically sufficient if the crushing strength is 7 kg/pellet or more to obtain a pulverization rate of 10% by weight or less when dropped from a height of 3 m.

しかし、!lgダストはCaOを含有しており、その含
有率が高いと団鉱化を行う時、添加する水との間の永和
反応により、団鉱後膨張崩壊を生じ、その造粒物(ペレ
ット)は再び粉化してしまい、歩留りが低いという問題
があった。
but,! Lg dust contains CaO, and if the content is high, when briquettes are formed, the briquettes expand and collapse due to the permanent reaction with the added water, and the granules (pellets) There was a problem that the product turned into powder again and the yield was low.

そこで、CaOの安定化のために水を添加して、永和反
応によりCaOを消化した後に造粒処理をする方法が、
特開昭56−65670号公報に開示されている。
Therefore, the method of adding water to stabilize CaO and digesting CaO by Eiwa reaction is followed by granulation treatment.
It is disclosed in Japanese Patent Application Laid-Open No. 56-65670.

上記製鋼ダストは、乾式集塵機により捕集された乾燥粉
塵である。
The above-mentioned steelmaking dust is dry dust collected by a dry dust collector.

一方、圧延工程,酸洗工程等において、湿式集塵機によ
り捕集され、シックナー等で分離され、越流側で回収さ
れる微細粉で脱水の困難なBスケールと称する泥状スラ
ッジがある。
On the other hand, in the rolling process, pickling process, etc., there is a muddy sludge called B scale, which is a fine powder and is difficult to dewater, which is collected by a wet dust collector, separated by a thickener, etc., and recovered on the overflow side.

このBスケールも有価戒分を含んでおり、製鋼ダストと
同様の再利用が図られている。しかしながら、このBス
ケールは含水率が高く、再利用のためのハンドリングを
可能とするには、造粒に適する含水率とするために脱水
する必要がある。
This B scale also contains valuable precepts, and is intended to be recycled in the same way as steelmaking dust. However, this B scale has a high moisture content, and in order to make it possible to handle it for reuse, it is necessary to dehydrate it to a moisture content suitable for granulation.

更に、Bスケールは含油率が高いため、造粒時に粉塵粒
子が油膜に覆われ、バインダとの接触を困難にし、強度
不足となるため、その油分を減量させるか、又は影響さ
れないバインダの使用が必要である。
Furthermore, since B scale has a high oil content, the dust particles are covered with an oil film during granulation, making contact with the binder difficult and resulting in insufficient strength. Therefore, it is necessary to reduce the oil content or use a binder that is not affected. is necessary.

そのため、含油含鉄スラッジを天日を利用した耕耘式乾
燥を行った後、予めセメント系バインダと乾燥粉とを混
合したものを供給して造粒する方法や、圧延スラッジを
集積静置して水切りを行ったものと、乾燥粉を混練後、
予め硬化剤と油分を含まない乾燥粉とを混合したものを
供給して造粒する方法が、特公昭57−43622号公
報、特開昭54−107478号公報に開示されている
Therefore, after drying oil-containing iron-containing sludge under the sun, a mixture of cement binder and dry powder is supplied in advance for granulation, or rolled sludge is collected and left to stand and drained. After kneading the dried powder with the
A method of granulating by supplying a mixture of a curing agent and oil-free dry powder in advance is disclosed in Japanese Patent Publication No. 57-43622 and Japanese Patent Application Laid-Open No. 54-107478.

また、天日乾燥以外の脱水乾燥方法として、転炉ダスト
等にはFeOが多いことを利用して、磨砕.混練するこ
とでFeOの酸化反応熱で乾燥した後造拉する方法が、
特開昭58−140328号公報に開示されている。
In addition, as a dehydration drying method other than solar drying, grinding and drying methods are available, taking advantage of the fact that converter dust, etc., contains a large amount of FeO. The method involves kneading, drying with the heat of the oxidation reaction of FeO, and then anealing.
It is disclosed in Japanese Unexamined Patent Publication No. 58-140328.

上記の製鋼ダスト.Bスケール以外に回収される粉塵と
して、たとえば次のようなものがある。
Steelmaking dust mentioned above. Examples of dust collected other than B scale include the following:

精製工程において、乾式集塵機により捕集される粗粒粉
の多いショットスケールがある。
In the refining process, there is shot scale, which contains a lot of coarse powder, which is collected by dry dust collectors.

これにはショットブラスト時に摩滅等により微小粉とな
った金属鉄分であるショット粒が多く含まれている。
This contains many shot grains, which are metallic iron particles that have become fine powder due to abrasion during shot blasting.

また、圧延工程,酸洗工程等において、湿式集塵機によ
り捕集され、シックナー等で分離され沈降側で回収され
る粗粒粉が多く、脱水の容易なAスケールと称されるス
ケールやデスケーリング時のビットスケール等がある。
In addition, in the rolling process, pickling process, etc., there is a large amount of coarse powder that is collected by a wet dust collector, separated by a thickener, etc., and recovered on the settling side. There are bit scales, etc.

上記のスケール類は、取扱いも比較的容易であり、単体
で使用されることが多い。
The above scales are relatively easy to handle and are often used alone.

このようなダスト、スケール類を再利用する場として、
例えば電気炉製鋼がある。
As a place to reuse such dust and scale,
For example, there is electric furnace steelmaking.

この電気炉製鋼においては、例えば特公昭63−491
53号公報に開示されているように、エネルギーコスト
の低減やその有効利用のためのスクラップ予熱が行われ
ている。
In this electric furnace steelmaking, for example,
As disclosed in Japanese Patent No. 53, scrap preheating is being carried out to reduce energy costs and make effective use of them.

そのスクラップ予熱での予熱温度は一般に200〜30
0℃であるが、更に予熱に要する費用と予熱により得ら
れる利益が見合う範囲でスクラップ予熱炉を2基以上設
けて順次加熱することで高温とすることも試みられてい
る。
The preheating temperature in the scrap preheating is generally 200 to 30
Although the temperature is 0° C., attempts have also been made to raise the temperature to a higher temperature by installing two or more scrap preheating furnaces and heating them one after another, as long as the cost required for preheating and the profit obtained from preheating are balanced.

このような電気炉製鋼に、上記ダスト1スケール類を利
用するに際してのべレフトの装入は、電気炉上の副原料
ホッパ等から行うより、スクラップと共にベレフトも予
熱後装入する方が電気炉への投入エネルギーの有効利用
の面から有利であると考えられる。また、このベレット
をスクラップと共に装入することは、ダストの再利用に
際して副原料ホッパ一等のべレフト装入設備が不用とな
る利点がある。ただし、そのためには、常温圧潰強度に
加えて予熱後電気炉への装入に際し、ペレットが粉化し
ない圧潰強度、さらに熱処理後残留強度を保持している
必要がある。
When using the above-mentioned dust 1 scale in such electric furnace steelmaking, it is better to charge the beleft together with the scrap after preheating than to charge it from the auxiliary material hopper on the electric furnace. This is considered to be advantageous in terms of effective use of energy input into the system. Further, charging the pellets together with the scraps has the advantage of eliminating the need for pellet charging equipment such as an auxiliary material hopper when reusing the dust. However, in order to do this, in addition to the crushing strength at room temperature, the pellets must have a crushing strength that does not turn into powder when charged into an electric furnace after preheating, and a residual strength after heat treatment.

従来の造粒方法では、非焼成ベレットとして特開昭56
−65670号公報に記載のようにバインダを添加しな
いものが開示されているが、一般的にはその添加量が少
なくとも充分な養生期間をおけば必要な圧潰強度を得ら
れる水硬性のセメント系バインダが使用されているが、
上記したスクラップ予熱炉を有する電気炉において、水
硬性のセメント系バインダを使用したべレフトを予熱し
た場合、CaO水和物が蒸発し、また予熱中に水分が急
速に消失してセメントの結合力が低下する。その脆くな
ったペレフトは、高温の予熱ガスに吹き曝されて粉化す
るという問題も生じる。
In the conventional granulation method, as non-fired pellets, JP-A-56
As described in Japanese Patent No. 65670, a binder without the addition of a binder is disclosed, but in general, the amount of addition is at least a hydraulic cement-based binder that can obtain the necessary crushing strength after a sufficient curing period. is used, but
When a beleft using a hydraulic cement binder is preheated in an electric furnace equipped with the above-mentioned scrap preheating furnace, CaO hydrate evaporates, and water rapidly disappears during preheating, increasing the bonding strength of the cement. decreases. The problem arises that the brittle pellets become powder when exposed to high-temperature preheated gas.

さらに、水硬性のセメント系バインダを使用する場合に
は、広大な屋内養生ヤードを必要とするという問題もあ
る。
Furthermore, when using a hydraulic cement binder, there is also the problem that a vast indoor curing yard is required.

さらに、含油率が高いBスケールの再利用のため含油分
の影響を除くために、造粒工程において乾燥粉体とバイ
ンダとの混合粉体を添加して2層構造のべレフトとする
方法もある。
Furthermore, in order to reuse the B scale with a high oil content, in order to remove the influence of the oil content, there is a method of adding a mixed powder of dry powder and a binder in the granulation process to create a two-layer structure. be.

ところが、この方法では乾.湿粉それぞれの処理設備を
必要とするため工程、設備が複雑になるという欠点があ
る。
However, with this method, it is dry. There is a drawback that the process and equipment become complicated because processing equipment for each wet powder is required.

また、含Fe○粉体が含有するFe○を活性化して乾燥
する方法もあるが、管理に手間がかかるボールミル等の
磨砕混練機を必要とするうえ、温度管理をしなければな
らない手間がかかる。
There is also a method of activating Fe○ contained in Fe○ powder and drying it, but this requires a grinding and kneading machine such as a ball mill that takes time and effort to manage, and it also requires time and effort to control the temperature. It takes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明において解決すべき課題は、上記従来の製鋼ダス
ト等の有価廃棄物の再利用のための処理に際しての問題
点を解決することにあって、集塵製鋼ダスト類を原料と
して、短時間に必要な常温圧潰強度を発現させ、電気炉
製鋼の予熱工程を利用して、その高温ガスに吹き曝され
ても粉化することなく、更に圧潰強度を増加させ得る非
焼戒ペレットを製造し、スクラップ予熱炉を有する電気
炉において使用できる再利用方法を提供するものである
The problem to be solved by the present invention is to solve the above-mentioned problems in the conventional processing of valuable waste such as steelmaking dust for reuse, and to solve the problem by using collected steelmaking dust as raw material in a short time. Manufacture non-burning pellets that can develop the necessary room temperature crushing strength, use the preheating process of electric furnace steelmaking, do not turn into powder even when exposed to high-temperature gas, and can further increase the crushing strength. The present invention provides a recycling method that can be used in an electric furnace having a scrap preheating furnace.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のスクラップ予熱炉を有する電気炉における製鋼
ダスト類の再利用方法は、CaO含有製鋼ダストを撹拌
しながら水を添加して養生し造粒原料とする工程と、こ
の造粒原料100重量%に対し、3〜7重量%の水ガラ
スを添加し、調湿混棟して造粒し養生する工程と、養生
後の造粒物をスクラップを収納した予熱炉内に投入し、
スクラップ予熱温度まで加熱した後、スクラップと共に
電気炉内に装入する工程とからなるものである。
The method of reusing steelmaking dust in an electric furnace having a scrap preheating furnace according to the present invention includes a step of curing CaO-containing steelmaking dust by adding water while stirring it to make it into a granulation raw material, and a process in which the granulation raw material is 100% by weight. 3 to 7% by weight of water glass is added to the mixture, the mixture is mixed with humidity control, granulated and cured, and the granulated material after curing is placed in a preheating furnace containing scraps.
This process consists of heating the scrap to a preheating temperature and then charging it together with the scrap into an electric furnace.

また、本発明はCaO含有製鋼ダストと共に含水スケー
ルの再利用のために使用することができる。
Further, the present invention can be used together with CaO-containing steelmaking dust for recycling hydrous scale.

すなわち、造粒原料とする工程が、CaO含有製鋼ダス
トに含水率50重量%以下に脱水した含油,含水スケー
ルを混合し養生して造粒原料とする工程とすることがで
きる。
That is, the step of preparing the raw material for granulation can be a step of mixing CaO-containing steelmaking dust with oil-containing and water-containing scales that have been dehydrated to a water content of 50% by weight or less and curing the mixture to obtain a raw material for granulation.

さらに、造粒原料とする工程がCaO含有製鋼ダストと
、含水率50重量%以下に脱水した含油,含水スケール
とを混合し、養生した後、該養生物と乾燥スケールとを
混合することができる。
Further, the step of preparing the raw material for granulation involves mixing CaO-containing steelmaking dust with oil- and water-containing scale that has been dehydrated to a moisture content of 50% by weight or less, curing the mixture, and then mixing the curing agent with the dry scale. .

〔作用〕[Effect]

本発明は、CaO含有製鋼ダストを撹拌しながら水を添
加するか、あるいはこれに含水スケールを混合したもの
を撹拌してダスト中に水分を分散させ、CaO水和反応
を促進させてCaOを消化、安定化させるために1〜2
日間養生して、含水率2〜10重量%の造校原科とする
ことと、造粒時に添加する水ガラスとCaOの永和反応
物との反応を利用して、ペレットの硬化を促進し、更に
これを予熱することでその硬度を大幅に増加し得ること
を可能とする。
In the present invention, water is added to CaO-containing steelmaking dust while stirring, or a mixture of water-containing scale is stirred to disperse water in the dust, thereby promoting the CaO hydration reaction and digesting CaO. , 1-2 to stabilize
The pellets are cured for several days to form a raw material with a moisture content of 2 to 10% by weight, and the hardening of the pellets is promoted by utilizing the reaction between the water glass added during granulation and the permanent reaction product of CaO. Furthermore, preheating it makes it possible to significantly increase its hardness.

上記造粒原料とする工程における含油,含水スケールの
含水率が50重量%を超えると、混線機へのハンドリン
グが困難で、且つこの方法では不経済となるので含水ス
ケールの含水率は50重量%以下に規定される。
If the water content of the oil- and water-containing scale exceeds 50% by weight in the step of making it into a granulation raw material, it will be difficult to handle it in the crosstalk machine, and this method will be uneconomical, so the water content of the water-containing scale should be 50% by weight. Defined below.

また、造粒原料の配合割合は、CaO含有I!!鋼ダス
ト50〜80重量%、含油,含水スケールが20重量%
未満では未消化CaOの含有量が次工程での水ガラスに
よる硬化反応分以上に過大となり、予熱実施中に膨張粉
化を招き、50重量%を超えると含水量が過剰となり、
養生日数が長くなるほか、次工程での水ガラス添加量の
余裕が減少する。
In addition, the blending ratio of the granulation raw materials is as follows: CaO-containing I! ! 50-80% by weight of steel dust, 20% by weight of oil- and water-containing scales
If it is less than 50% by weight, the content of undigested CaO will be too much than that of the curing reaction with water glass in the next step, causing expansion and powdering during preheating, and if it exceeds 50% by weight, the water content will be excessive.
In addition to lengthening the curing period, there is less margin for the amount of water glass added in the next process.

造粒原料とする工程における水の添加量は、3重量%未
満では未消化CaOが残り、造粒後に未消化CaOの永
和反応が起こり、ベレットの膨張粉化を招き、15重量
%を超えると含水量が過剰となり、養生日数が長くなる
ほか、次工程での水ガラス添加量の余裕が減少する。
If the amount of water added in the process of making the raw material for granulation is less than 3% by weight, undigested CaO will remain, and a permanent reaction of undigested CaO will occur after granulation, causing the pellets to expand and turn into powder; if it exceeds 15% by weight, The water content becomes excessive, which lengthens the curing time and reduces the margin for the amount of water glass added in the next process.

この造粒原料をバンペレタイザ等の転勤造粒機に供給し
ながら、その造粒後のペレット水分が10〜l5重量%
となるように調湿混棟して造粒し、粒径3〜30mmの
べレフトとした後、水和したCa (DH) 2及びx
cao, SiC)a・nH20を水ガラスと反応させ
、珪酸ソーダをゲル化させることでベレットを硬化させ
るために1日間以上養生する。熱処理後残留強度及び高
熱の予熱ガスに吹き曝されても粉化しないバインダとし
て水ガラスを用いることにより、処理困難なBスケール
を始め、製鉄工場で発生する種々の性状の異なる集塵粉
体を総合的に一括して造粒処理することができる。
While feeding this granulation raw material to a transfer granulator such as a van pelletizer, the pellet moisture content after granulation is 10 to 15% by weight.
After granulating in a humidity-controlled mixture so that the particle size is 3 to 30 mm, hydrated Ca (DH) 2 and x
cao, SiC) a·nH20 is reacted with water glass, and the pellet is cured for one day or more to harden the pellet by gelling the sodium silicate. By using water glass as a binder that has residual strength after heat treatment and does not turn into powder even when exposed to high-temperature preheating gas, it is possible to collect dust particles with different properties generated in steel factories, including B scale, which is difficult to process. The granulation process can be carried out in a comprehensive manner.

本発明において使用する水ガラスは、2CaO・Sl0
2 を硬化剤とするダイヵル鋳型の形或に利用されてお
り、その硬化機構は次の反応によるとされている。
The water glass used in the present invention is 2CaO・Slo
2 is used as a hardening agent in the form of a dical mold, and its hardening mechanism is said to be based on the following reaction.

CaO+H 2 0 →Ca (0}!) 2Ca(O
HL−Ca”+ 208− このCa2+イオンの存在によって珪酸ソーダのゲル化
が起こり、その反応式は次の通りである。
CaO+H 2 0 →Ca (0}!) 2Ca(O
HL-Ca"+ 208- The presence of this Ca2+ ion causes gelation of sodium silicate, and the reaction formula is as follows.

Naz○,SiO2・nHz○+2CaO.SiO.=
8CaO, Si○2・nH,○+Sl 02 +Na
 O H上記の反応は、温度が高いほど短時間に進行す
るとされている。ところで、製鋼ダストには電気炉の操
業条件等により、かなりの幅で変動するものの9〜20
重量%のCaOを含有し、そのうち、遊離CaOが2〜
10重量%存在している。
Naz○, SiO2・nHz○+2CaO. SiO. =
8CaO, Si○2・nH,○+Sl 02 +Na
OH It is said that the above reaction proceeds in a shorter time as the temperature is higher. By the way, steelmaking dust varies considerably depending on the operating conditions of the electric furnace, etc.
% by weight of CaO, of which free CaO is 2~2% by weight.
It is present in an amount of 10% by weight.

このため、スクラップ予熱炉を有する電気炉への製鋼ダ
スト類の再利用に当たって、そのペレットのバインダと
して水ガラスを用いると、上記硬化機構と同様の反応が
生じる。
Therefore, when water glass is used as a binder for pellets when steelmaking dust is reused in an electric furnace having a scrap preheating furnace, a reaction similar to the hardening mechanism described above occurs.

また、造粒工程における水ガラスの添加量は、3重量%
未満では熱処理後残留強度が不足し、7重量%を超える
と不経済となるほか、上記造粒原料の含水量によっては
水ガラスを加えたときの全含水量が造粒可能水分量を超
え、造粒不能となる。
In addition, the amount of water glass added in the granulation process was 3% by weight.
If it is less than 7% by weight, the residual strength after heat treatment will be insufficient, and if it exceeds 7% by weight, it will be uneconomical, and depending on the water content of the granulation raw material, the total water content when water glass is added will exceed the water content that can be granulated. Granulation becomes impossible.

上記工程により処理したべレフトの常温圧潰強度は、造
粒後5日間養生したもので10kg/ペレット以上、ま
た、900℃での高温予熱後の熱処理後残留強度は10
kg /ペレット以上、その粉化率は5重量%以下のも
のを得ることができる。
The normal temperature crushing strength of Beleft treated by the above process is 10 kg/pellet or more after curing for 5 days after granulation, and the residual strength after heat treatment after high temperature preheating at 900°C is 10 kg/pellet or more.
kg/pellet or more, and the pulverization rate is 5% by weight or less.

(以下、この頁余白) 〔実施例〕 第1表 電気炉ダスト・スケール類の性状 実施例1 第1表中に示すCaO含有量10.5重量%の製鋼ダス トを用いて、 第11!Iに示す工程により造粒処理 し、予熱後電気炉で使用した。CaO含有製鋼ダストを
混合槽長さ2500+++II1のバグミキサに供給し
ながら、該ダスト100重量%に対し7重量%の水を添
加し、分散混合させた後、パレット内にl日間静置し、
自然養生を行った。養生後、その含水率は2重量%であ
った。
(Hereinafter, the margins of this page) [Example] Table 1 Properties of electric furnace dust and scales Example 1 Using steelmaking dust with a CaO content of 10.5% by weight shown in Table 1, No. 11! It was granulated according to the process shown in I, and used in an electric furnace after preheating. While supplying CaO-containing steelmaking dust to a bag mixer with a mixing tank length of 2500+++II1, 7% by weight of water was added to 100% by weight of the dust, dispersed and mixed, and then allowed to stand still in a pallet for 1 day.
I took natural care. After curing, its moisture content was 2% by weight.

上記養生後の造粒原料をパレットからホッパへ移し、振
動フィーダを用いて内径1500mm,深さ250++
us, ’ 回転lit(10 rpmのパンペレタイ
ザへ毎時ITで連続供給しながら、J[33号水ガラス
を造粒原料100重量%に対し6重量%を添加し、造粒
後のべレフト水分が13〜14重量%となるようにI湿
混練し、粒径10〜15InII1のペレットを得た。
After the above curing, the granulated raw material is transferred from the pallet to the hopper, and using a vibration feeder, the inner diameter is 1500mm and the depth is 250++.
us, 'While continuously feeding the rotating lit (10 rpm) pan pelletizer by IT every hour, J [No. The mixture was wet-kneaded to a concentration of 14% by weight to obtain pellets with a particle size of 10 to 15 InII1.

該ペレットをパレット内に5日間静置し自然養生を行っ
た。養生後、その常温圧漬強度は12.8kg/ペレッ
トであった。
The pellets were allowed to stand in a pallet for 5 days for natural curing. After curing, the cold pressure strength was 12.8 kg/pellet.

上記養生後のべレフトをパレットから投入用シュートへ
移し、予熱炉である上部蓋に電気炉からの高温排ガス通
人配管接続部を有する予熱パケットに予め収納されてい
るスクラップ上へペレットを投入した。
After the above-mentioned curing, the pellets were transferred from the pallet to the charging chute, and the pellets were placed on top of the scraps stored in the preheating packet, which had a piping connection for high-temperature exhaust gas from the electric furnace to the upper lid of the preheating furnace. .

ついで、上部蓋を被せ、高温排ガス通人配管を接続して
、そのガスを該パケット内に通人し、スクラップを20
0〜300℃に一次加熱後、高温排ガスの供給を停止し
、電気炉の出鋼後、待機中の電気炉炉口上へ該予熱を行
った予熱パケットを搬送し、ペレット及びスクラップを
その電気炉内へ装入後、700〜900℃に二次加熱し
、ついで溶解作業を行った。
Then, cover the top lid, connect the high temperature exhaust gas passage pipe, let the gas pass through the packet, and collect the scrap for 20 minutes.
After primary heating to 0 to 300°C, the supply of high-temperature exhaust gas is stopped, and after tapping the electric furnace, the preheated packet is transported to the furnace mouth of the waiting electric furnace, and the pellets and scrap are transferred to the furnace. After charging into the interior, it was heated for a second time to 700 to 900°C, and then melted.

また、その溶解作業中において、集塵される製鋼ダスト
は、ベレット未使用時と比べ、特に増加したとは認めら
れなかった。
Furthermore, during the melting process, it was not recognized that the steelmaking dust collected was particularly increased compared to when the pellets were not used.

なお、上記ペレットの一部を取出し、その熱処理後残留
強度及び常温圧潰強度の経日変化を調査した。
A portion of the above pellets was taken out and the changes in residual strength and room temperature crushing strength after heat treatment over time were investigated.

熱処理後残留強度は養生期間5日のペレットを用い、エ
レマ電気炉へ装入し、第6図に示す加熱パターンにより
900℃まで加熱し、それぞれの温度で10分間保持後
、供試ペレットを取出し、万能試験機でその圧潰強度(
熱処理後残留強度)を測定し、上記予熱炉内及び電気炉
内での溶融が始まる前までの加熱中におけるその強度を
推定した。
The residual strength after heat treatment was determined using pellets with a curing period of 5 days, charged into an Elema electric furnace, heated to 900°C according to the heating pattern shown in Figure 6, held at each temperature for 10 minutes, and then removed the test pellets. , its crushing strength (
The residual strength after heat treatment was measured, and the strength during heating up to the start of melting in the preheating furnace and electric furnace was estimated.

その結果を第4図に示す。同図から、熱処理後残留強度
は常温時の12.8kg/ペレットから300℃では2
3. 8kg /ベレットと大幅に増加し、水ガラスの
特性が現れ、700℃で10.2kg/ペレットまで低
下しているが、これはペレットが加熱され高温になると
CaOの水和物が分解蒸発しペレット内部に微細な巣が
できるためと推測される。
The results are shown in FIG. From the same figure, the residual strength after heat treatment is 12.8 kg/pellet at room temperature to 2 at 300°C.
3. The weight increased significantly to 8kg/pellet, and the properties of water glass appeared, and the weight decreased to 10.2kg/pellet at 700℃, but this is because when the pellets are heated to a high temperature, CaO hydrate decomposes and evaporates, resulting in pellets. It is assumed that this is due to the formation of microscopic nests inside.

そして、900℃を超えるとべレフトは焼結されること
で、その強度が増加するものと推測される。
It is presumed that when the temperature exceeds 900°C, the beleft is sintered and its strength increases.

また、常温圧潰強度の経日変化を第5図に示すが、1日
間の養生で8.9kg/ペレットとなり、充分ノ1ンド
リングに耐える強度となっている。
Further, the daily change in the crushing strength at room temperature is shown in Fig. 5, and after one day of curing, the pellet weighed 8.9 kg/pellet, which is strong enough to withstand crushing.

実施例2 第1表中に示すCaO含有量lO.5重量%の製鋼ダス
ト及び含油,含水スケールであるAスケール,Bスケー
ルとビットスケールを用いて、第2図に示す工程により
a粒処理し、パケット予熱後電気炉で使用した。
Example 2 CaO content lO. shown in Table 1. Using 5% by weight of steelmaking dust and oil- and water-containing scales A scale, B scale, and bit scale, A-grain processing was performed according to the process shown in FIG. 2, and the packets were preheated and used in an electric furnace.

Aスケール,Bスケール,ビットスケールヲソれぞれ屋
外ヤードに1ケ月集積し、水切りを行った後、ショベル
付耕耘機により混合集積した後、5日間天日乾燥を行う
と共に、その耕耘機によって混合撹拌し、含水率21重
量%まで脱水した。該脱水した混合原料50重量%、C
aO含有製鋼ダスト50重量%を内径2500mmの高
速撹拌型ミキサーに供給して分散混練させて充分混合し
た後、パレット内に1日間静置し自然養生を行った。養
生後、その含水率は8.3重量%であった。
A scale, B scale, and bit scale were collected in an outdoor yard for one month, and after draining, they were mixed and collected using a tiller with a shovel, dried in the sun for five days, and mixed using the tiller. The mixture was stirred and dehydrated to a water content of 21% by weight. 50% by weight of the dehydrated mixed raw material, C
After 50% by weight of aO-containing steelmaking dust was supplied to a high-speed stirring type mixer with an inner diameter of 2500 mm and thoroughly mixed by dispersion and kneading, the mixture was allowed to stand in a pallet for one day for natural curing. After curing, its moisture content was 8.3% by weight.

上記養生後の造粒原料をパレットからホッパへ移し、テ
ーブルフィーダを用いて内径1500IIII11深さ
250 m ,回転数IQrpmのバンペレタイザーへ
毎時ITで連続供給しながら、JIS3号水ガラスを造
粒原料l00重量%に対し6重量%を添加し、造粒後の
べレフト水分が10〜12重量%となるように調湿混棟
し、粒径10〜15叩のベレットを得た。
The granulated raw material after the above curing is transferred from the pallet to the hopper, and is continuously fed using a table feeder to a van pelletizer with an inner diameter of 1500 m, depth of 250 m, and a rotational speed of IQ rpm. 6% by weight was added to the granulated pellets, and the humidity was controlled and mixed so that the pellet moisture content after granulation was 10 to 12% by weight to obtain pellets with a particle size of 10 to 15%.

該ペレットをパレット内に5日間静置し自然養生を行っ
た。養生後、その常温圧潰強度は14.2kg/ペレッ
トであった。
The pellets were allowed to stand in a pallet for 5 days for natural curing. After curing, the cold crush strength was 14.2 kg/pellet.

上記養生後のベレットをパレットから投入用シュートへ
移し、予熱パケット内の予め収納されているスクラップ
上へ投入した。
The pellets after curing were transferred from the pallet to a charging chute, and placed on top of the scraps stored in advance in the preheating packet.

ついで、上部蓋を被せ、高温排ガス通人配管を接続して
、そのガスを咳パケット内に通人し、スクラップを20
0〜300℃に一次加熱後、高温排ガスの供給を停止し
、該予熱を行った予熱パケットを待機中の電気炉炉口上
へ搬送し、ベレット及びスクラップを該電気炉内に装入
し、700〜900℃に二次加熱し、ついで溶解作業を
行った。
Next, cover the top lid, connect the hot exhaust gas pipe, and pass the gas into the cough packet.
After primary heating to 0 to 300°C, the supply of high-temperature exhaust gas is stopped, the preheated packet is transported to the furnace mouth of a waiting electric furnace, and the pellets and scraps are charged into the electric furnace. Secondary heating was performed to ~900°C, and then a melting operation was performed.

また、その溶解作業中において、集塵される製鋼ダスト
はベレット未使用時と比べ、特に増加したとは認められ
なかった。
Furthermore, during the melting process, no particular increase in collected steelmaking dust was observed compared to when the pellets were not used.

なお、上記ペレットの一部を取出し、その熱処理後残留
強度及び常温圧潰強度の経日変化について、実施例lと
同一の方法で調査した。その結果を第4.第5図に示す
A portion of the above pellets was taken out and the changes in residual strength after heat treatment and crushing strength at room temperature over time were investigated in the same manner as in Example 1. The results are shown in the 4th section. It is shown in FIG.

それらの図から明らかなように、実施例1と同様の傾向
を示している。
As is clear from these figures, the same tendency as in Example 1 is shown.

実施例3 第1表に示すダスト,スケール類を用いて第3図に示す
工程により造粒処理し、予熱後電気炉で使用した。
Example 3 The dust and scale shown in Table 1 were granulated according to the steps shown in FIG. 3, and after preheating, the particles were used in an electric furnace.

含油.含水スケールであるAスケール,Bスケールとビ
ットスケールをそれぞれ屋外ヤードにlヶ月集積し、水
切りを行った後、ショベル付耕耘機により混合集積した
後、5日間天日乾燥を行うと共に、その耕耘機によって
混合撹拌し、含水率22重量%まで脱水した。該脱水し
た混合原料50重量%、CaO含有製鋼ダスト50重量
%を内径2500!+1111の高速撹拌型ミキサーに
供給して分散混練させて充分混合した後、パレット内に
l日間静置し自然養生を行った。養生後、その含水率は
9.4重量%であった。
Contains oil. Water-containing scales A scale, B scale, and bit scale were collected in an outdoor yard for one month, drained, and then mixed and collected using a tiller with a shovel.Then they were dried in the sun for five days, and the tiller The mixture was mixed and stirred to remove water to a moisture content of 22% by weight. 50% by weight of the dehydrated mixed raw material and 50% by weight of CaO-containing steelmaking dust were mixed into an inner diameter of 2500! After supplying the mixture to a high-speed stirring type mixer (+1111) and thoroughly mixing it by dispersing and kneading it, the mixture was allowed to stand in a pallet for 1 day for natural curing. After curing, its moisture content was 9.4% by weight.

上記養生後の混合原料90重量%と乾燥スケールである
ショットスケール10重量%をそれぞれコンベヤにより
混合槽長さ2500mmのバグミキサに供給し、分散混
合することで含水率8.5重量%の造粒原料とし、これ
を内径1500mm,  深さ25(hm,  回転数
1Orpmのバンベレタイザへ毎時IT で連続供給し
ながら、JIS3号水ガラスを造粒原料100重量%に
対し、7重量%を添加し、造粒後のべレフト水分が13
〜l4重量%となるように調湿混棟し、粒径10〜15
mmのべレフトを得た。該ベレットをパレット内に5日
間静置し自然養生を行った。養生後、その常温圧潰強度
は14.7kg/ペレットであった。
90% by weight of the above-mentioned mixed raw material after curing and 10% by weight of shot scale, which is dry scale, are each supplied by a conveyor to a bag mixer with a mixing tank length of 2500 mm, and the granulated raw material has a water content of 8.5% by weight by dispersing and mixing. While continuously feeding this into a van beletizer with an inner diameter of 1500 mm, a depth of 25 (hm), and a rotation speed of 1 rpm, 7% by weight of JIS No. 3 water glass was added to 100% by weight of the granulation raw material, and the mixture was granulated. The left water content after is 13
Humidity control is mixed so that the concentration is ~14% by weight, and the particle size is 10-15.
A bereft of mm was obtained. The pellets were allowed to stand in a pallet for 5 days for natural curing. After curing, the cold crush strength was 14.7 kg/pellet.

上記養生後のべレフトをパレットから役入用シュートへ
移し、予熱パケット内の予め収納されているスクラップ
上へ投入した。
After the above-mentioned curing, the left bereft was transferred from the pallet to a service chute and placed on top of the scraps stored in advance in the preheating packet.

ついで、上部蓋を被せ、高温排ガス通人配管を接続して
、そのガスを該パケット内に通人し、スクラップを20
0〜300℃に一次加熱し、その収納物を該電気炉に装
入後、700〜900℃に二次加熱し、ついで溶解作業
を行った。
Then, cover the top lid, connect the high temperature exhaust gas passage pipe, let the gas pass through the packet, and collect the scrap for 20 minutes.
After primary heating to 0 to 300°C, the stored contents were charged into the electric furnace, secondarily heated to 700 to 900°C, and then a melting operation was performed.

また、その溶解作業中において、集塵される製鋼ダスト
はペレット未使用時と比べ、特に増加したとは認められ
なかった。
Furthermore, during the melting process, no particular increase in collected steelmaking dust was observed compared to when no pellets were used.

なお、上記ペレットの一部を取出し、その熱処理後残留
強度及び常温圧潰強度の経日変化について、実施例lと
同一の方法で調査した。その結果を第4,第5図に示す
A portion of the above pellets was taken out and the changes in residual strength after heat treatment and crushing strength at room temperature over time were investigated in the same manner as in Example 1. The results are shown in Figures 4 and 5.

それらの図から明らかなように、実施例1と同様の傾向
を示している。
As is clear from these figures, the same tendency as in Example 1 is shown.

なお、本実施例においては、乾燥スケールを含油7 含
水スケールとCaO含有製鋼ダストとを混練.養生後に
添加したが、その含油,含水スケールの脱水時に添加し
てもよい。
In this example, the dry scale was mixed with oil-containing 7, and the water-containing scale and CaO-containing steelmaking dust were kneaded. Although it was added after curing, it may also be added during dehydration of the oil- and water-containing scale.

比較例 バインダとして本発明の水ガラスに代え、セメント系バ
インダを用いて本発明の第3実施例の処理工程によりペ
レットを聾造し、予熱後電気炉で使用した。なお、セメ
ント系バインダにはボルトランドセメントを用い、造粒
原料100重量%に対しl5重量%を添加した。
Comparative Example Pellets were molded into pellets according to the processing steps of the third embodiment of the present invention using a cement-based binder instead of the water glass of the present invention as a binder, and were used in an electric furnace after preheating. Note that Boltland cement was used as the cement binder, and 15% by weight was added to 100% by weight of the granulation raw material.

また、本発明の各実施例と同様に、上記ペレットの一部
を取出し、その熱処理後残留強度及び常温圧潰強度の経
日変化について調査した。その結果を第4.第5図に示
す。
In addition, in the same manner as in each of the Examples of the present invention, some of the pellets were taken out and the residual strength after heat treatment and the change in cold crushing strength over time were investigated. The results are shown in the 4th section. It is shown in FIG.

第4図から熱処理後残留強度は常温時5.9kg/ペレ
フトから300℃で8.4kg/ペレットとやや増加す
るものの300℃を超えると1. 9 kg /ペレッ
トと大幅に低下し、900℃でも2.1kg/ベレット
とほば横這いであり、加熱後はハンドリングに耐え得な
い。
Figure 4 shows that the residual strength after heat treatment increases slightly from 5.9 kg/pellet at room temperature to 8.4 kg/pellet at 300°C, but increases to 1. The weight decreased significantly to 9 kg/pellet, and remained almost unchanged at 2.1 kg/pellet even at 900°C, and could not withstand handling after heating.

また、その溶解作業中において、集塵される製鋼ダスト
は、ペレット未使用時と比べ、増加したことが認められ
た。その理由として、加熱されることでセメント系バイ
ンダから急速に水分が消失してその強度を維持できず、
さらに高温ガスに吹き曝されて急激に粉化するためと推
測される。
Additionally, during the melting process, it was observed that the amount of steelmaking dust collected increased compared to when no pellets were used. The reason for this is that water rapidly disappears from the cement binder when heated, making it impossible to maintain its strength.
It is also assumed that this is because it is rapidly pulverized when exposed to high-temperature gas.

マタ、第5図からセメント系バインダは養生日数が長く
なる程常温圧潰強度は増加する傾向があり、これはペレ
ットの強度はセメントの水硬性に大きく依存しているた
めと考えられ、本発明のように造粒原料の戊分と水ガラ
スの反応による硬化機構とは全く異なるものである。
Mata, from Figure 5, the room temperature crushing strength of cement-based binders tends to increase as the curing time increases, and this is thought to be because the strength of the pellets largely depends on the hydraulic properties of cement. The curing mechanism is completely different from the reaction between the granulation raw material and water glass.

〔発明の効果〕〔Effect of the invention〕

本発明によって以下の効果を奏することができる。 The following effects can be achieved by the present invention.

(1)  製鋼ダストに事前に水又は含水スケールを混
合し、その製鋼ダストが含有するCaOを永和反応によ
り消化し安定化すると共に、バインダに水ガラスを用い
ることで永和反応により生戊した水和物が水ガラスの硬
化反応により短時間に必要な圧潰強度を得られる上、そ
れによるペレットは予熱炉内において加熱されることで
圧潰強度が更に増加すると共に、予熱用の熱風に吹き曝
されても粉化しないという相乗効果がある。
(1) Water or water-containing scale is mixed in advance with steelmaking dust, and the CaO contained in the steelmaking dust is digested and stabilized by the Eiwa reaction, and the hydration produced by the Eiwa reaction is achieved by using water glass as a binder. The necessary crushing strength can be obtained in a short time by the hardening reaction of water glass, and the resulting pellets are heated in a preheating furnace to further increase the crushing strength, and are exposed to hot air for preheating. It also has a synergistic effect of not turning into powder.

(2)  早期に必要な圧潰強度が発現するので、造粒
後のペレットの養生スペースを大幅に削減できる。
(2) Since the necessary crushing strength is developed early, the curing space for pellets after granulation can be significantly reduced.

(3)  電気炉製鋼工場等から発生するダスト,スケ
ール類の性状,粒度分布等が異なるものを混合し、造粒
原料としてそれぞれが補完し合うことで、緻密なペレッ
トを得られ、その全量を有効に再利用できる。
(3) Dense pellets can be obtained by mixing dust and scales with different properties, particle size distributions, etc. generated from electric furnace steel plants, etc., and complementing each other as granulation raw materials. Can be effectively reused.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の各実施例における処理工程図
を示す。第4図は各実施例と比較例により処理したべレ
フトの熱処理後残留強度を示す図を示す。第5図は各実
施例と比較例により処理したべレフトの常温圧潰強度の
経日変化を示す図、第6図はペレットの熱処理後残留強
度を調べるためのエレマ電気炉の加熱パターンを示す図
である。
1 to 3 show processing steps in each embodiment of the present invention. FIG. 4 shows a diagram showing the residual strength after heat treatment of the belefts treated according to each example and comparative example. Figure 5 is a diagram showing the change over time in the room temperature crushing strength of pellets treated according to each example and comparative example, and Figure 6 is a diagram showing the heating pattern of the Elema electric furnace for examining the residual strength of pellets after heat treatment. It is.

Claims (1)

【特許請求の範囲】 1、CaO含有製鋼ダストを撹拌しながら水を添加して
養生し、造粒原料とする工程と、該造粒原料100重量
%に対し、3〜7重量%の水ガラスを添加し、調湿混棟
して造粒し、養生する工程と、 該養生後の造粒物をスクラップを収納した予熱炉内に投
入し、スクラップ予熱温度まで加熱した後、スクラップ
と共に電気炉内に装入する工程とからなることを特徴と
するスクラップ予熱炉を有する電気炉における製鋼ダス
ト類の再利用方法。 2、請求項1の記載において、造粒原料とする工程が、
CaO含有製鋼ダストに含水率50重量%以下に脱水し
た含油、含水スケールを混合し養生するスクラップ予熱
炉を有する電気炉における製鋼ダスト類の再利用方法。 3、請求項1の記載において、造粒原料とする工程が、
CaO含有製鋼ダストと、含水率50重量%以下に脱水
した含油、含水スケールとを混合し、養生した後、該養
生物と乾燥スケールとを混合するスクラップ予熱炉を有
する電気炉における製鋼ダスト類の再利用方法。
[Scope of Claims] 1. A step of curing CaO-containing steelmaking dust by adding water while stirring to obtain a granulation raw material, and adding 3 to 7% by weight of water glass based on 100% by weight of the granulation raw material. The granulated material after curing is put into a preheating furnace containing scrap, heated to the scrap preheating temperature, and then put into an electric furnace together with the scrap. 1. A method for reusing steelmaking dust in an electric furnace having a scrap preheating furnace, the method comprising: charging the steelmaking dust into the electric furnace. 2. In the description of claim 1, the step of making the raw material for granulation comprises:
A method for reusing steelmaking dust in an electric furnace having a scrap preheating furnace for mixing and curing oil- and water-containing scale dehydrated to a water content of 50% by weight or less with CaO-containing steelmaking dust. 3. In the description of claim 1, the step of making the raw material for granulation comprises:
After mixing CaO-containing steelmaking dust and oil- and water-containing scale dehydrated to a moisture content of 50% by weight or less and curing, steelmaking dust is mixed in an electric furnace with a scrap preheating furnace that mixes the curing agent and dry scale. How to reuse.
JP18825089A 1989-07-19 1989-07-19 Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace Expired - Lifetime JP2706142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18825089A JP2706142B2 (en) 1989-07-19 1989-07-19 Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18825089A JP2706142B2 (en) 1989-07-19 1989-07-19 Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace

Publications (2)

Publication Number Publication Date
JPH0353029A true JPH0353029A (en) 1991-03-07
JP2706142B2 JP2706142B2 (en) 1998-01-28

Family

ID=16220409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18825089A Expired - Lifetime JP2706142B2 (en) 1989-07-19 1989-07-19 Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace

Country Status (1)

Country Link
JP (1) JP2706142B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282074A (en) * 2004-03-29 2005-10-13 Shin Caterpillar Mitsubishi Ltd Recyclable counterweight and method of manufacturing the same
JP2005282090A (en) * 2004-03-29 2005-10-13 Shin Caterpillar Mitsubishi Ltd Recyclable counterweight and method of manufacturing the same
KR100537665B1 (en) * 2002-05-15 2005-12-19 주식회사 케이.알.티 Method for preparing pellet to recycle byproduct from stainless steel manufacturing processes and pellet prepared therefrom
JP2009007645A (en) * 2007-06-28 2009-01-15 Daido Steel Co Ltd Method for manufacturing granulated material of metal-containing by-product, and granulation equipment
JP2010172812A (en) * 2009-01-28 2010-08-12 Sanyo Special Steel Co Ltd Method for decreasing elution amount of heavy metal of steelmaking dust
CN102628099A (en) * 2012-05-09 2012-08-08 长沙矿冶研究院有限责任公司 Method for forming balls by cooling and solidifying mineral powder by using water glass as bonding agent
CN106148685A (en) * 2016-07-28 2016-11-23 重庆大学 A kind of municipal sludge and iron-containing waste prepare the method for acid pellet
JP2019090095A (en) * 2017-11-16 2019-06-13 株式会社片山化学工業研究所 Method for producing iron-making dust agglomerate, and agglomeration assistant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537665B1 (en) * 2002-05-15 2005-12-19 주식회사 케이.알.티 Method for preparing pellet to recycle byproduct from stainless steel manufacturing processes and pellet prepared therefrom
JP2005282074A (en) * 2004-03-29 2005-10-13 Shin Caterpillar Mitsubishi Ltd Recyclable counterweight and method of manufacturing the same
JP2005282090A (en) * 2004-03-29 2005-10-13 Shin Caterpillar Mitsubishi Ltd Recyclable counterweight and method of manufacturing the same
JP2009007645A (en) * 2007-06-28 2009-01-15 Daido Steel Co Ltd Method for manufacturing granulated material of metal-containing by-product, and granulation equipment
JP2010172812A (en) * 2009-01-28 2010-08-12 Sanyo Special Steel Co Ltd Method for decreasing elution amount of heavy metal of steelmaking dust
CN102628099A (en) * 2012-05-09 2012-08-08 长沙矿冶研究院有限责任公司 Method for forming balls by cooling and solidifying mineral powder by using water glass as bonding agent
CN106148685A (en) * 2016-07-28 2016-11-23 重庆大学 A kind of municipal sludge and iron-containing waste prepare the method for acid pellet
JP2019090095A (en) * 2017-11-16 2019-06-13 株式会社片山化学工業研究所 Method for producing iron-making dust agglomerate, and agglomeration assistant

Also Published As

Publication number Publication date
JP2706142B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US4032352A (en) Binder composition
US3956446A (en) Method of forming discrete pieces or pellets from meltable glass-producing mixtures
KR100303708B1 (en) Manufacturing method of cold molded iron-containing bracket
US4369062A (en) Method of making briquettes and product
WO2011029269A1 (en) Method for innocuously treating chromium residue using metallurgical roasting and blast furnace
US5885328A (en) Method of agglomerating oil-containing steel mill waste
JP2003129142A (en) Method for manufacturing agglomerated product of oxidized metal
EP1579016B1 (en) Cold briquetting and pelletisation of mineral fines using an iron-bearing hydraulic binder
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JPS6223944A (en) Refining method for nickel oxide or the like
JPH0353029A (en) Method for recycling steel making dusts in electric furnace having scrap preheating furnace
EP1772527B1 (en) Method for production of an addition briqutte
JP2003089823A (en) Converter dust recycling method to rotary hearth type reducing furnace
KR101185362B1 (en) A production method of briquette using waste materials of steel making
JP4237965B2 (en) Method for treating Cr-containing sludge and incineration residue, etc. and steelmaking pellets obtained thereby
JP2000192155A (en) Treatment of sludge containing water and oil components
JP3234195B2 (en) Method and apparatus for solidifying and stabilizing molten fly ash
JPS5819729B2 (en) Seikorohekiyoukiyuusuruni Textile Kiyoukakaijiyoutaino Seikomirhaikibutsudustkarano Seizouhou
JP4112827B2 (en) Method for treating Cr-containing sludge
JP6930559B2 (en) Iron-making dust treatment method, iron-making dust recycling method, and iron-making dust granulation manufacturing method
JP2004250780A (en) Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material
EP4001442A1 (en) Method for bricketing dust captured in the desulphurisation and ladle furnace dust collection system
JPH1199372A (en) Molten fly ash solidifying/stabilizing treatment and device therefor
JP5664210B2 (en) Agglomeration method of steelmaking dust
JP2003082418A (en) Method for recycling converter dust to rotary hearth type reducing furnace