JPH0352644A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH0352644A
JPH0352644A JP1185663A JP18566389A JPH0352644A JP H0352644 A JPH0352644 A JP H0352644A JP 1185663 A JP1185663 A JP 1185663A JP 18566389 A JP18566389 A JP 18566389A JP H0352644 A JPH0352644 A JP H0352644A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
alkaline earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1185663A
Other languages
Japanese (ja)
Inventor
Shiro Kondo
近藤 四郎
Shinichi Matsumoto
伸一 松本
Kazunobu Ishibashi
一伸 石橋
Senji Kasahara
泉司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tosoh Corp
Priority to JP1185663A priority Critical patent/JPH0352644A/en
Publication of JPH0352644A publication Critical patent/JPH0352644A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst which can efficiently removes NOx in exhaust gas in an environment of excessive oxygen by allowing zeolite to carry alkaline earth metal. CONSTITUTION:A catalyst which efficiently reduces and removes NOx in exhaust gas in as environment of excessive oxygen with presence of hydrocarbon can be obtained by allowing zeolite to carry alkaline earth metal such as Ca, etc. By this method, the alkaline earth metal is introduced to an ion-exchange point to eliminate excess strong acid points where hydrocarbon deposites, and therefore, production of cokes and deterioration of catalyst can be prevented. The obtd. catalyst shows no decrease in the activity after used for a long time in an atmosphere of excessive oxygen in a wide temp. range below about 800 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等の内燃機関、硝酸製造工場等から排
出される排気ガス中の窒素酸化物を効率よく除去する触
媒に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a catalyst that efficiently removes nitrogen oxides from exhaust gas discharged from internal combustion engines such as automobiles, nitric acid manufacturing plants, etc.

(従来技術の説明) 近年、自動車等の内燃機関、硝酸製造工場等より排出さ
れる排気ガス中には、有害戊分である窒素酸化物(NO
x)が含まれており、大気汚染の原因となっている。そ
のため、この排気ガス中の窒素酸化物の除去が種々の方
面で検討されている。
(Description of Prior Art) In recent years, exhaust gases emitted from internal combustion engines such as automobiles, nitric acid manufacturing factories, etc. contain nitrogen oxides (NOx), which are harmful substances.
x) and cause air pollution. Therefore, removal of nitrogen oxides from this exhaust gas is being studied in various fields.

また、自動車の低燃費化から希薄燃焼が考えられている
。この場合空燃比がリーン側の酸素過剰雰囲気となり、
従来用いられてきた貴金属をA120,等の担体に担持
した三元触媒では排気ガス中の有害成分のうちHC,C
oを酸化除去できても、NOxは排気中に還元物質が存
在しないため浄化できない欠点があった。この問題を解
決する触媒としてゼオライトにイオン交換したCu触媒
(特開昭6 3−2 8 3 7 2 7)がある。
Lean burn is also being considered in order to improve the fuel efficiency of automobiles. In this case, the air-fuel ratio becomes a lean oxygen-rich atmosphere,
Conventionally used three-way catalysts in which noble metals are supported on carriers such as A120, remove HC and C among the harmful components in exhaust gas.
Even if NOx can be removed by oxidation, NOx cannot be purified because there is no reducing substance in the exhaust gas. As a catalyst that solves this problem, there is a Cu catalyst ion-exchanged with zeolite (Japanese Patent Application Laid-Open No. 63-283-727).

このCuを担持したゼオライト触媒による、酸素過剰雰
囲気におけるNOx除去の基本原理は、NOxを排気ガ
ス中に含まれる還元性の未燃焼炭化水素によってN2ま
で還元することにある。該触媒は200℃以上において
NOx浄化能を示すが、以下のような問題点があった。
The basic principle of NOx removal in an oxygen-rich atmosphere using this Cu-supported zeolite catalyst is to reduce NOx to N2 by reducing unburned hydrocarbons contained in exhaust gas. Although this catalyst exhibits NOx purification ability at temperatures above 200°C, it has the following problems.

(従来技術の問題点) Cu担持ゼオライト触媒は耐久性、特に高温での耐久性
に問題があり、より耐久性に優れた触媒の開発が望まれ
ていた。耐久性に劣る原因は約600℃以上の温度にお
いて銅がゼオライト中を移動、凝集し、触媒としての作
用が減少すること、さらにゼオライト構造の安定性が低
下し長時間使用後にその構造が部分的に破壊されやすい
ことによるものである。また200℃以下ではNOxの
還元除去能力が小さいという問題があった。この原因は
Noエが200℃以下の酸素過剰下では一部NO2とし
て存在し、Cu担持ゼオライト触媒がNO2をN2にま
で還元しにくいためである。
(Problems with Prior Art) Cu-supported zeolite catalysts have problems with durability, particularly durability at high temperatures, and there has been a desire to develop a catalyst with even greater durability. The reason for poor durability is that copper moves and aggregates in the zeolite at temperatures above 600°C, reducing its catalytic effect, and the stability of the zeolite structure decreases, causing the structure to partially change after long-term use. This is because they are easily destroyed. Further, there is a problem that the ability to reduce and remove NOx is low at temperatures below 200°C. The reason for this is that part of Noe exists as NO2 under an excess of oxygen at 200° C. or lower, and it is difficult for the Cu-supported zeolite catalyst to reduce NO2 to N2.

(発明の目的) 本発明は前記従来技術の問題点を解決するためになされ
たもので、酸素過剰雰囲気下において、800℃以下の
広範囲の温度域において、長時間使用しても触媒活性が
低下しない優れた耐久性を有するN O x除去用の新
規な触媒を提供することである。
(Object of the Invention) The present invention was made to solve the problems of the prior art described above, and the catalyst activity decreases even when used for a long time in an oxygen-rich atmosphere and in a wide temperature range of 800°C or less. An object of the present invention is to provide a novel catalyst for removing NOx, which has excellent durability.

(第l発明の説明) 本第1発明は排気ガス中のNOxを、酸素過剰雰囲気中
で、炭化水素等の存在下で還元除去するための触媒であ
って、ゼオライトにアルカリ土類金属の1種以上を担持
したことを特徴とする排気ガス浄化用触媒に関するもの
である。
(Description of the first invention) The first invention is a catalyst for reducing and removing NOx in exhaust gas in an oxygen-rich atmosphere in the presence of hydrocarbons, etc. The present invention relates to an exhaust gas purifying catalyst characterized in that it supports at least one species.

本発明に係る触媒は上記構成とすることにより、酸素過
剰下において効率良くNOx、すなわち、NO2、NO
を除去することができる。排気ガス中のNO2あるいは
Noはアルカリ土類金属上に吸着される。本触媒はこれ
らNO2等を直接窒素と酸素に分解するのではなく排気
ガス中に含有される微量の未燃焼の炭化水素等の低級有
機化合物あるいは部分的に燃焼して生成した含酸素有機
化合物によりNO2等を次式によって還元除去するもの
である。
By having the above-mentioned structure, the catalyst according to the present invention can efficiently reduce NOx, that is, NO2, NO
can be removed. NO2 or No in the exhaust gas is adsorbed onto the alkaline earth metal. This catalyst does not directly decompose these NO2 etc. into nitrogen and oxygen, but instead uses lower organic compounds such as trace amounts of unburned hydrocarbons contained in the exhaust gas or oxygen-containing organic compounds produced by partial combustion. NO2 etc. are reduced and removed using the following formula.

u H C + v N O 2  −一→wHt o
十yCO2 +zN2 また、アルカリ土類金属のイオン、例えばCa0は、C
aOの状態で酸素と共有して触媒表面部に存在しており
、Caに還元されにくい特性を有している。したがって
、還元され移動凝集し、触媒活性が低下することもなく
、本発明に係る触媒は600°C〜800℃といった高
温でも極めて優れた耐久性を示す。また、ゼオライト中
のイオン交換点である強酸点は炭化水素の分解によって
生成したグラファイトが多数結合したコーク生成の要因
となり、コークによる細孔閉塞さらにはゼオライトの構
造破壊にもつながる。アルカリ土類金属はイオン交換点
に導入されることにより炭化水素の付着点となる余分の
強酸点を消失させ、コークの生成を防止し、触媒の劣化
を防ぐことができる。また、NOxは酸素過剰下の20
0℃以下ではNO2として存在し、200°Cより高温
になるとNoとして存在する。本触媒は、200℃以下
では、NO2をHCによって還元する触媒としての能力
を有していないが、NO2を吸着保持する能力があり、
触媒の温度が200℃以上に上昇し、NO2がNoに変
わった時点でHCによりNoをN2に還元でき、200
℃以下の低温でもNO2浄化能を有している。従来のC
u含有ゼオライト触媒が200℃以下において、NO2
を吸着する能力、NO2をN2へ還元する触媒能が小さ
くNO2浄化力が弱いのに対し本発明に係る触媒は80
0℃以下の広範囲の温度においてN O xの浄化が可
能である。
u H C + v N O 2 −1→wHto
10yCO2 +zN2 In addition, alkaline earth metal ions, such as Ca0, are C
It exists on the surface of the catalyst in the form of aO, sharing it with oxygen, and has the property of being difficult to be reduced to Ca. Therefore, the catalyst according to the present invention exhibits extremely excellent durability even at high temperatures of 600° C. to 800° C. without reducing and migrating agglomeration and reducing catalyst activity. In addition, strong acid sites, which are ion exchange points in zeolite, are a factor in the formation of coke in which a large number of graphites bonded together are generated by decomposition of hydrocarbons, leading to pore clogging by coke and structural destruction of the zeolite. By introducing the alkaline earth metal into the ion exchange point, it can eliminate excess strong acid sites that serve as attachment points for hydrocarbons, prevent the formation of coke, and prevent deterioration of the catalyst. In addition, NOx is 20% under oxygen excess.
At temperatures below 0°C, it exists as NO2, and at temperatures above 200°C, it exists as No. Although this catalyst does not have the ability to reduce NO2 with HC at temperatures below 200°C, it does have the ability to adsorb and retain NO2.
When the temperature of the catalyst rises to 200℃ or more and NO2 changes to No, No can be reduced to N2 by HC, and 200℃
It has NO2 purification ability even at low temperatures below ℃. Conventional C
When u-containing zeolite catalyst is below 200℃, NO2
The catalyst according to the present invention has a small catalytic ability to adsorb NO2 and a catalytic ability to reduce NO2 to N2, and its NO2 purification ability is weak.
Purification of NOx is possible over a wide range of temperatures below 0°C.

(第2発明の説明) 以下、本第l発明を具体化した発明(第2発明とする)
を説明する。
(Description of the second invention) Hereinafter, an invention embodying the first invention (hereinafter referred to as the second invention)
Explain.

本第2発明において、ゼオライトとは、Singおよび
Al20sの四面体網状構造から構成され、個々の四面
体構造はその隅を介して酸素の架橋により互いに結合し
ており、通路および空洞が貫通した三次元の網状構造を
つくっている。格子の負の電荷を有するイオン交換点(
強酸点)には交換可能な陽イオン(H+,Na+等)が
導入されている。S io2 /Af20aのモル比は
l〜200が望ましい。lより少ないと600℃以上の
高温において熱安定性が悪くなる。また、200より多
くなるとAj2zOs量が減ってイオン交換点が減少す
るためイオン交換量の減少すなわち、触媒活性が低下す
るようになる。熱劣化はアルミニウム周辺の構造変化が
主因と推定されるので、特に高温での耐久性を確保した
い場合には、Sin2/A l 2 03のモル比をA
jll203量の少ない20以上としたゼオライトを用
いる。また、ゼオライト表面の細孔は4〜10人程度と
小さいことが望ましい。細孔がベンゼン環程度の大きさ
だとコークが生成しにくく、細孔閉塞による構造破壊や
触媒活性低下も防止できる。
In the second invention, zeolite is composed of a tetrahedral network structure of Sing and Al20s, the individual tetrahedral structures are connected to each other through oxygen bridges through their corners, and the zeolite is a 3-dimensional structure with passages and cavities passing through it. It creates the original network structure. Ion exchange points with negative charges in the lattice (
Exchangeable cations (H+, Na+, etc.) are introduced into the strong acid sites. The molar ratio of S io2 /Af20a is desirably 1 to 200. If the amount is less than 1, thermal stability will deteriorate at high temperatures of 600° C. or higher. Moreover, when it exceeds 200, the amount of Aj2zOs decreases and the number of ion exchange points decreases, resulting in a decrease in the amount of ion exchange, that is, a decrease in catalytic activity. It is assumed that the main cause of thermal deterioration is structural changes around aluminum, so if you want to ensure durability especially at high temperatures, the molar ratio of Sin2/Al203 should be changed to A.
A zeolite with a low amount of jll203 of 20 or more is used. Further, it is desirable that the pores on the zeolite surface be as small as about 4 to 10 pores. If the pores are about the same size as a benzene ring, coke is less likely to form, and structure destruction and catalyst activity reduction due to pore clogging can be prevented.

このようなゼオライトのうちS i 02 /AI!2
03のモル比が30〜50であるZSM−5、Yあるい
はモルデナイト構造のものが特に望ましい。
Among these zeolites, S i 02 /AI! 2
Particularly desirable are ZSM-5, Y, or mordenite structures in which the molar ratio of 03 is 30 to 50.

これらはイオン交換能が大きく、熱的にも安定である。These have a large ion exchange capacity and are thermally stable.

また、NOxのHCによる還元反応における適度な酸点
、酸量を保有しているためである。
This is also because it has an appropriate acid site and acid amount for the reduction reaction of NOx by HC.

アルカリ土類金属は1種以上を担持して用いる。One or more types of alkaline earth metals are supported and used.

その中でもM g SC a XS r −, B a
が好ましい。
Among them, M g SC a XS r −, B a
is preferred.

前記アルカリ土類金属は活性低下の原因となる炭素の析
出にかかわる不要な酸点を消滅させ、ゼオライトからの
脱アルミニウムを防ぐ作用をなす。
The alkaline earth metal functions to eliminate unnecessary acid sites involved in carbon precipitation, which causes a decrease in activity, and to prevent dealumination from zeolite.

アルカリ土類金属の担持量は0.05〜2Wt%が望ま
しい。十分な効果を得るには0.1’wt%以上が良い
。しかし2wt%より多くなっても触媒活性の向上はな
い。アルカリ土類金属の担持は通常イオン交換法または
含浸法によって行なう。イオン交換は、ゼオライトの格
子の負の電荷を有するイオン交換点に導入されているN
a+やH+等がアルカリ土類金属のイオンと交換して行
なわれる。
The amount of alkaline earth metal supported is preferably 0.05 to 2 wt%. In order to obtain a sufficient effect, the content is preferably 0.1'wt% or more. However, even if the amount exceeds 2 wt%, there is no improvement in catalyst activity. The alkaline earth metal is usually supported by an ion exchange method or an impregnation method. Ion exchange involves introducing N into the negatively charged ion exchange points of the zeolite lattice.
This is done by exchanging a+, H+, etc. with alkaline earth metal ions.

イオン交換法による担持は以下の工程によって行なう。Supporting by ion exchange method is carried out by the following steps.

アルカリ土類金属の酢酸塩や硝酸塩などの水溶液中にゼ
オライトをl昼夜浸漬するイオン交換工程と、100〜
120℃で約lO時間加熱する乾燥工程、500〜70
0°Cの温度に数時間保持する焼成工程からなる。また
、含浸法は前記塩の水溶液中に1〜2時間浸漬後、大気
中で乾燥して担持するものである。イオン交換法はアル
カリ土類金属のイオンがゼオライト中のカチオンとイオ
ン交換するものでアルカリ土類金属の付着力が強い。
An ion exchange process in which zeolite is immersed day and night in an aqueous solution of alkaline earth metal acetate or nitrate, and
Drying step of heating at 120° C. for about 10 hours, 500-700
It consists of a firing step held at a temperature of 0°C for several hours. Further, in the impregnation method, the salt is immersed in an aqueous solution of the salt for 1 to 2 hours and then dried in the air to be supported. In the ion exchange method, alkaline earth metal ions are ion exchanged with cations in zeolite, and alkaline earth metals have strong adhesion.

本第2発明に係るアルカリ土類金属を担持した触媒は粉
状体、ペレット状体、/”tニカム状体等その形状、構
造は問わない。
The alkaline earth metal-supported catalyst according to the second invention may have any shape or structure, such as powder, pellet, or nickel.

また、粉末状の触媒にアルミナゾルやシリ力ゾル等のバ
インダーを添加して、所定の形状に成形したり、水を加
えてスラリー状としてハニカム等の形状のアルミナ等の
耐火性基体上に塗布して用いてもよい。
In addition, a binder such as alumina sol or silica sol may be added to a powdered catalyst and molded into a specified shape, or water may be added to form a slurry and applied onto a refractory substrate such as alumina in the shape of a honeycomb. It may also be used.

本第2発明に係る触媒は排気ガス中のN O xを未燃
焼の炭化水素等の02〜C8の低級有機化合物あるいは
部分的に燃焼して生成した含酸素有機化合物と反応させ
て浄化するものである。
The catalyst according to the second invention purifies N O x in exhaust gas by reacting it with 02 to C8 lower organic compounds such as unburned hydrocarbons or oxygen-containing organic compounds produced by partial combustion. It is.

この炭化水素等は、排気ガス中に残留するものでよいが
、炭化水素等が反応を行なわせるのに必要な量よりも不
足している場合には、排気中に外部より炭化水素等を添
加するのが良い。
This hydrocarbon, etc. may remain in the exhaust gas, but if the amount of hydrocarbon, etc. is insufficient than the amount necessary for the reaction to occur, add hydrocarbon, etc. from the outside to the exhaust gas. It's good to do that.

(実施例) 以下、本発明の実施例を説明する。(Example) Examples of the present invention will be described below.

実施例1 本発明に係る触媒を調製し、該触媒について酸素過剰の
リーン状態のモデルガスを用いたNOに対する浄化活性
評価を行なった。また、比較触媒についても同様の活性
評価を行なった。
Example 1 A catalyst according to the present invention was prepared, and its NO purification activity was evaluated using a model gas in a lean state with excess oxygen. Similar activity evaluations were also conducted for comparative catalysts.

本実施例 媒(No. 1 )の調製 ZSM−5構造のゼオライト(SiO2/AAiO,モ
ル比40)を0.02Mの酢酸カルシウム水溶液中で3
0°Cに1昼夜保持して、イオン交換を行なった。この
場合のイオン交換率は43%であった。イオン交換後1
10℃に10時間加熱して乾燥した後、さらに500°
Cに3時間焼成し、カルシウムを担持したゼオライト触
媒No. 1を得た。
This example: Preparation of medium (No. 1) ZSM-5 structure zeolite (SiO2/AAiO, molar ratio 40) was dissolved in a 0.02M calcium acetate aqueous solution for 3 hours.
Ion exchange was performed by holding at 0°C for one day and night. The ion exchange rate in this case was 43%. After ion exchange 1
After heating to 10℃ for 10 hours and drying, further heating to 500℃
Zeolite catalyst No. 3 was calcined for 3 hours to support calcium. I got 1.

カルシウムの担持量は触媒全量に対し0.73重量(w
t)%であった。
The amount of calcium supported is 0.73 weight (w) based on the total amount of catalyst.
t)%.

比較  (No.C1)の調製 実施例lと同一構造・組成のゼオライトを用いて、0.
1M酢酸銅水溶液を使用した以外は実施例lと同様な条
件で銅を担持したゼオライト触媒NαC1を得た。銅の
担持量は触媒全量の1. 9 w t%であった。
Comparison Using zeolite with the same structure and composition as in Preparation Example 1 of (No. C1), 0.
A zeolite catalyst NαC1 carrying copper was obtained under the same conditions as in Example 1 except that a 1M aqueous copper acetate solution was used. The amount of copper supported is 1.5% of the total amount of catalyst. It was 9 wt%.

色生亘注狂堡 前記本実施例触媒No.l、比較触媒N(LCIの粉末
を酸素過剰のリーン状態(空燃比(A/F) l 8相
等)のモデルガス雰囲気中でNOx浄化率を測定し、夫
々の触媒の初期性能を求めた。次に前記モデルガス雰囲
気中で700°C、5時間の加熱処理を行い、耐久性を
評価した。該モデルガスの組成はNO:670ppm,
HC: 1 180ppm,H2  :330ppm,
Co: lo00ppm,CO2 :lO%,02 :
4%,H20:3%f Nt: balanceからな
る。
Catalyst No. of this example mentioned above. The NOx purification rate of Comparative Catalyst N (LCI powder) was measured in a model gas atmosphere in a lean state with excess oxygen (air-fuel ratio (A/F) l 8 phase, etc.), and the initial performance of each catalyst was determined. Next, a heat treatment was performed at 700°C for 5 hours in the model gas atmosphere to evaluate durability.The composition of the model gas was NO: 670 ppm,
HC: 1 180ppm, H2: 330ppm,
Co: lo00ppm, CO2: lO%, 02:
4%, H20:3%fNt: balance.

第1表に各触媒の初期ならびに耐久試験後のNOx浄化
率を示す。No浄化率は金属l原子当たりl分間に浄化
するNo量(not/min/atom)で表示した。
Table 1 shows the NOx purification rate of each catalyst at the initial stage and after the durability test. The No purification rate was expressed as the amount of No purified per l metal atom per l minute (not/min/atom).

本実施例に係る触媒は初期性能は比較触媒と同等である
が700℃における耐久性に著しく優れていることが分
かる。
It can be seen that the catalyst according to this example has the same initial performance as the comparative catalyst, but is significantly superior in durability at 700°C.

実施例2 本実施例では実際のエンジンの排気ガスに対する活性評
価を行なった。
Example 2 In this example, activity evaluation for actual engine exhaust gas was performed.

本実施   No. 2および比較触 NG.C2の調
製実施例lで製造したCa担持ZSM−5構造のゼオラ
イト60部、シリカ含有量2 0wt%のシリカゾル7
0部、市販の硝酸アルミニウム40wt%の水溶液8部
および純水130部を混合し、攪拌することにより。ウ
ォッシュコートスラリーを調製した。このウォッシュコ
ートスラリー中に断面積lm当たり400の流路を有す
る0.7L(1 0 7mmφ,78mmL)のコージ
エライト質の一体性担体を浸漬した後、引き上げた。次
いで圧縮空気で一体性担体の流路内の過剰スラリーを吹
き払い乾燥した後、500℃、3時間焼成し触媒No.
2とした。カルシウムの担持量は触媒の容積ll当たり
2g(カルシウム担持量0.43wt%)である。比較
のために触媒N(L2と同様にCu担持ZSM−5構造
のゼオライトを含むスラリーをウォッシュコートした触
媒N(LC2を調製した。
This implementation No. 2 and comparative touch NG. Preparation of C2 60 parts of Ca-supported ZSM-5 structure zeolite produced in Example 1, silica sol 7 with a silica content of 20 wt%
0 parts, 8 parts of a commercially available aqueous solution of 40 wt% aluminum nitrate, and 130 parts of pure water were mixed and stirred. A washcoat slurry was prepared. A 0.7 L (107 mmφ, 78 mm L) monolithic cordierite carrier having 400 channels per 1 m cross-sectional area was immersed in this washcoat slurry and then pulled out. Next, the excess slurry in the channel of the monolithic carrier was blown away with compressed air and dried, and then calcined at 500°C for 3 hours to obtain catalyst No.
It was set as 2. The amount of calcium supported is 2 g per 1 liter of catalyst volume (0.43 wt % of calcium supported). For comparison, Catalyst N (LC2) was prepared by wash-coating a slurry containing Cu-supported ZSM-5 structure zeolite in the same way as Catalyst N (L2).

色化這豊延翌 前記、本実施例触媒Nα2、比較触媒Nへ02のウォシ
ュコートモノリスをエンジンの排気マニホールドからl
m離れた排気管に設置し、触媒活性を評価した。エンジ
ンの運転条件は、エンジン:2000CC(EFI)、
回転数:1600rpm,マニホールド負圧: 4 4
0mmHg、空燃比(A/F):20であり、触媒コン
バータへの排気ガスの流入温度は400℃、NOx ,
HC,Coの濃度は夫々500,2000.900pp
mである。このような条件で約12時間運転した後の各
戊分の浄化率を第2表に示した。
The following day, washcoat monolith 02 was applied to catalyst Nα2 of this example and comparison catalyst N from the exhaust manifold of the engine.
The catalytic activity was evaluated by installing the catalytic converter in an exhaust pipe separated by m. Engine operating conditions are: Engine: 2000CC (EFI),
Rotation speed: 1600 rpm, manifold negative pressure: 4 4
0 mmHg, air-fuel ratio (A/F): 20, exhaust gas inflow temperature to the catalytic converter is 400°C, NOx,
The concentrations of HC and Co are 500 and 2000.900 pp, respectively.
It is m. Table 2 shows the purification rate of each batch after operating for about 12 hours under these conditions.

第2表から明らかなように本実施例に係る触媒は比較触
媒に比べて特にNoに対し長時間にわたり高い浄化率を
維持し得ることが分かる。
As is clear from Table 2, it can be seen that the catalyst according to this example can maintain a high purification rate over a long period of time, especially for No, compared to the comparative catalyst.

実施例3 実施例lと同様の酸素過剰のリーン状態のモデルガスを
用い、ゼオライトにMgを担持した触媒についてNoの
浄化特性を評価した。
Example 3 Using the same lean model gas with excess oxygen as in Example 1, the No purification characteristics of a catalyst with Mg supported on zeolite were evaluated.

施伊触媒(N(13)の;。製 ZSM−5構造のゼオライト(St.2/Al20,モ
ル比40)を0.02Mの酢酸マグネシウム溶液中で3
0℃で一昼夜保持し、イオン交換を行なった。この場合
のイオン交換率は30%であった。イオン交換後110
℃でlO時間加熱乾燥した後さらに500℃で3時間焼
成し、マグネシウムを担持し、触媒N(L3を得た。マ
グネシウムの担持量は触媒全量に対し、0.26重量(
wt)%であった。
ZSM-5 structure zeolite (St.2/Al20, molar ratio 40) of Shii catalyst (N(13)) was dissolved in 0.02M magnesium acetate solution.
The mixture was kept at 0°C overnight to perform ion exchange. The ion exchange rate in this case was 30%. 110 after ion exchange
After heating and drying at ℃ for 10 hours, it was further calcined at 500℃ for 3 hours to support magnesium and obtain catalyst N (L3).The amount of magnesium supported was 0.26 weight (
wt)%.

比較触媒は実施例1で調製した比較触媒No.C1を用
いた。また浄化活性評価方法および比較方法については
実施例lの場合と同様である。
The comparative catalyst was Comparative Catalyst No. prepared in Example 1. C1 was used. Furthermore, the purification activity evaluation method and comparison method are the same as in Example 1.

その結果を第3表に示す。The results are shown in Table 3.

本実施例に係る触媒は初期性能は比較触媒と同等である
が、700°Cにおける耐久性能は著しく優れているこ
とが分かる。
It can be seen that the initial performance of the catalyst according to this example is equivalent to that of the comparative catalyst, but the durability performance at 700°C is significantly superior.

Claims (2)

【特許請求の範囲】[Claims] (1)排気ガス中の窒素酸化物を、酸素過剰雰囲気下、
炭化水素等の低級有機化合物あるいは含酸素有機化合物
の存在下で除去するための触媒であって、ゼオライトに
アルカリ土類金属の1種以上を担持したことを特徴とす
る排気ガス浄化用触媒。
(1) Remove nitrogen oxides from exhaust gas under an oxygen-rich atmosphere.
1. A catalyst for exhaust gas purification, which is a catalyst for removing lower organic compounds such as hydrocarbons or oxygen-containing organic compounds in the presence of the organic compounds, and is characterized by having one or more alkaline earth metals supported on zeolite.
(2)アルカリ土類金属はCa、Sr、Mg、Baであ
る請求項(1)記載の排気ガス浄化用触媒。
(2) The exhaust gas purifying catalyst according to claim 1, wherein the alkaline earth metal is Ca, Sr, Mg, or Ba.
JP1185663A 1989-07-18 1989-07-18 Catalyst for purifying exhaust gas Pending JPH0352644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1185663A JPH0352644A (en) 1989-07-18 1989-07-18 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1185663A JPH0352644A (en) 1989-07-18 1989-07-18 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH0352644A true JPH0352644A (en) 1991-03-06

Family

ID=16174693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1185663A Pending JPH0352644A (en) 1989-07-18 1989-07-18 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH0352644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440238A (en) * 1990-06-06 1992-02-10 Mitsubishi Heavy Ind Ltd Preparation of exhaust gas treatment catalyst
US5149511A (en) * 1991-10-07 1992-09-22 Ford Motor Company Method of selectively reducing NOx
US5279997A (en) * 1991-10-07 1994-01-18 Ford Motor Company Selective reduction of NOx

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440238A (en) * 1990-06-06 1992-02-10 Mitsubishi Heavy Ind Ltd Preparation of exhaust gas treatment catalyst
US5149511A (en) * 1991-10-07 1992-09-22 Ford Motor Company Method of selectively reducing NOx
US5279997A (en) * 1991-10-07 1994-01-18 Ford Motor Company Selective reduction of NOx

Similar Documents

Publication Publication Date Title
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
JP3086015B2 (en) Exhaust gas purification catalyst
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
KR20180129946A (en) Particle filter with SCR active coating
US5807528A (en) Catalyst for purifying exhaust gas
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH0352644A (en) Catalyst for purifying exhaust gas
JP2001120952A (en) Method for adsorbing and desorbing nitrogen oxide
JP2851444B2 (en) Exhaust gas purification method
JP2562702B2 (en) Exhaust gas purification catalyst
JP3044622B2 (en) Exhaust gas purification method
JP2621998B2 (en) Exhaust gas purification catalyst
JPH04260441A (en) Catalyst and method for purifying exhaust gas
JPH03135437A (en) Catalyst for purifying exhaust gas
JPH04219147A (en) Exhaust gas purification catalyst
JP3197711B2 (en) Exhaust gas purification catalyst
JP3362401B2 (en) Exhaust gas purification catalyst
JP2921130B2 (en) Exhaust gas purification catalyst
JPH04219143A (en) Exhaust gas purification catalyst
JP3111491B2 (en) Exhaust gas purification catalyst
JPH0655076A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH04219146A (en) Exhaust gas purification catalyst
JP3026355B2 (en) Exhaust gas purification catalyst
JPH05208138A (en) Production of zeolite containing cobalt and palladium and method for purifying exhaust gas
JP3087320B2 (en) Exhaust gas purification method