JPH0352135B2 - - Google Patents

Info

Publication number
JPH0352135B2
JPH0352135B2 JP57051676A JP5167682A JPH0352135B2 JP H0352135 B2 JPH0352135 B2 JP H0352135B2 JP 57051676 A JP57051676 A JP 57051676A JP 5167682 A JP5167682 A JP 5167682A JP H0352135 B2 JPH0352135 B2 JP H0352135B2
Authority
JP
Japan
Prior art keywords
magnetic
support
thin film
magnetic layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57051676A
Other languages
Japanese (ja)
Other versions
JPS58169333A (en
Inventor
Eisuke Myairi
Takahiro Kawana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5167682A priority Critical patent/JPS58169333A/en
Publication of JPS58169333A publication Critical patent/JPS58169333A/en
Publication of JPH0352135B2 publication Critical patent/JPH0352135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Description

【発明の詳細な説明】 本発明は磁気記録媒体、特に金属磁性薄膜型磁
気記録媒体の製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium, particularly a metal magnetic thin film type magnetic recording medium.

通常一般の磁気記録媒体は、非磁性支持体上に
針状磁性粉とバインダーとが混合された磁性塗膜
より成る磁性層が被着されて成る。
Generally, a general magnetic recording medium consists of a magnetic layer made of a magnetic coating film containing a mixture of acicular magnetic powder and a binder deposited on a non-magnetic support.

これに比し、近時、ポリエチレンテレフタレー
ト等の非磁性支持体上に、Co、Co−Ni合金等の
金属磁性材を真空蒸着、イオンプレーテイング、
スパツタリング等によつて直接的に、何らバイン
ダーを用いることなく被着した金属磁性薄膜より
成る磁性層を形成する金属薄膜型記録媒体が、注
目されている。これは前述したバインダーが混入
使用された磁性層による媒体に比し、高い残留磁
束密度Brを得ることができ、更に薄層に形成で
きて短波長記録に好適である。
In contrast, in recent years, metal magnetic materials such as Co and Co-Ni alloys have been deposited on non-magnetic supports such as polyethylene terephthalate by vacuum evaporation, ion plating, etc.
2. Description of the Related Art A metal thin film type recording medium in which a magnetic layer is formed of a metal magnetic thin film deposited directly by sputtering or the like without using any binder has been attracting attention. This allows a higher residual magnetic flux density Br to be obtained than the above-mentioned medium using a magnetic layer mixed with a binder, and can also be formed into a thin layer, making it suitable for short wavelength recording.

ところが、このような金属薄膜型の記録媒体
は、この非磁性支持体の例えばポリエチレンテレ
フタレートに対する金属磁性薄膜の被着強度にや
や難点がある。
However, such metal thin film type recording media have some drawbacks in the adhesion strength of the metal magnetic thin film to the nonmagnetic support, such as polyethylene terephthalate.

本発明は、この種金属磁性薄膜より成る磁性層
が非磁性支持体上に強固に被着されて成る磁気記
録媒体を確実に得ることができるようにした磁気
記録媒体を提供するものである。
The present invention provides a magnetic recording medium in which a magnetic layer made of such a metal magnetic thin film is firmly adhered to a non-magnetic support.

図面を参照して本発明を説明するに、本発明に
おいては第1図に示すように、ポリエチレンテレ
フタレート、ポリイミド等の例えばフイルム状の
非磁性支持体1上に、Co、Co−Ni等の磁性金属
を蒸着、スパツタリング、イオンブレーテイング
等によつて直接的に被着して金属磁性薄膜より成
る磁性層2を形成し、その後非磁性支持体1を冷
却ロールに接触させつつ磁性層2に対する例えば
0.1〜10W/cm2、0.1〜5秒間位の電子ビーム等の
照射による加熱処理を行つて金属磁性薄膜型磁気
記録媒体3を得る。
The present invention will be explained with reference to the drawings. In the present invention, as shown in FIG. 1, a magnetic material such as Co, Co-Ni, etc. A magnetic layer 2 made of a metal magnetic thin film is formed by directly depositing a metal by vapor deposition, sputtering, ion blating, etc., and then, while the nonmagnetic support 1 is brought into contact with a cooling roll, the magnetic layer 2 is coated, for example.
Heat treatment is performed by irradiation with an electron beam or the like at 0.1 to 10 W/cm 2 for about 0.1 to 5 seconds to obtain a metal magnetic thin film type magnetic recording medium 3.

この本発明製法を実施する装置は、例えば第2
図に示すように、連続した2つの槽4及び5を設
け前段の槽4内において金属磁性薄膜の被着処理
をなし、次段の槽5内においてこれに対する熱処
理を行う。前段の槽4内には非磁性支持体1の供
給ロール6を配し、後段の槽5内にはその巻取ロ
ール7を配し、両ロール6から7に両槽4及び5
の双方に順次非磁性支持体1が移行するようにな
される。そして、一方の槽4内にはCo、Co−Ni
等の磁性金属の蒸着、スパツタリング、イオンプ
レーテイングを行う手段8を配する。この槽4内
には例えば円筒キヤン9とガイドローラ10とを
配し、供給ロール6から繰り出された非磁性支持
体1がこのキヤン9を繞つてガイドローラ10に
よつてガイドされて後段の槽5内に導かれる。図
示の例では手段8が蒸着手段である場合を示し、
キヤン9に対向してCo、Co−Ni等の蒸着源11
が配され、これが加熱手段12によつて加熱され
てシヤツターないしはマスク13を介してキヤン
9の周面を繞る支持体1の一方の面に蒸着源11
よりの金属を蒸着して第1図で説明した金属薄膜
磁性層2を形成する。このように金属薄膜磁性層
2が形成された支持体1は、後段の槽5内に送ら
れる。この槽5内には、例えば水冷、空冷等によ
つて冷却されたクーリングキヤン14、すなわち
冷却ロールが配されこのキヤン14にその支持体
1の磁性層2を有する側とは反対側の面が接触す
るようガイドローラ15を繞り、キヤン14を繞
つて巻取りロール7に巻取られるようにする。ま
た槽5内のキヤン14の周面に支持体1の磁性層
を有する側に対向して加熱手段を設ける。この加
熱手段16は抵抗ヒータによるものを始めとし
て、高周波誘導加熱コイルを配して磁性層中に生
じる誘導電流によつてその加熱を行わせるように
したもの、更に或いは電子ビーム、イオンビー
ム、レーザービーム、赤外線等の照射によるもの
など非接触型加熱方法によるものであるが、その
他種々の非接触型の加熱態様を採り得る。尚17
及び18は、夫々槽4及び5に設けられた排気口
で、図示しないが真空ポンプに連結される。また
19は、例えば槽5内に不活性ガス等の雰囲気ガ
スを送り込む供給口である。
The apparatus for carrying out the manufacturing method of the present invention is, for example, a second
As shown in the figure, two successive tanks 4 and 5 are provided, in which a metal magnetic thin film is deposited in tank 4 at the first stage, and then heat treated in tank 5 at the next stage. A supply roll 6 for the non-magnetic support 1 is arranged in the tank 4 at the front stage, a take-up roll 7 for the non-magnetic support 1 is arranged in the tank 5 at the rear stage, and both rolls 6 and 7 are connected to both tanks 4 and 5.
The non-magnetic support 1 is sequentially transferred to both sides. In one tank 4, Co, Co-Ni
Means 8 for performing evaporation, sputtering, and ion plating of magnetic metals such as the like is provided. For example, a cylindrical can 9 and a guide roller 10 are disposed in this tank 4, and the non-magnetic support 1 fed out from the supply roll 6 is guided by the guide roller 10 around this can 9, and is guided by the guide roller 10 to the subsequent tank. 5. In the illustrated example, the means 8 is a vapor deposition means,
Co, Co-Ni, etc. vapor deposition source 11 facing the can 9
This is heated by the heating means 12, and a vapor deposition source 11 is placed on one side of the support 1 surrounding the circumferential surface of the can 9 via a shutter or a mask 13.
The metal thin film magnetic layer 2 explained in FIG. 1 is formed by vapor-depositing a metal. The support 1 on which the metal thin film magnetic layer 2 has been formed in this manner is sent into the tank 5 at the subsequent stage. Inside this tank 5, a cooling can 14 cooled by water cooling, air cooling, etc., that is, a cooling roll is disposed, and the surface of the support 1 opposite to the side having the magnetic layer 2 is disposed in the can 14. It wraps around the guide roller 15 so as to be in contact with it, and wraps around the can 14 so that it can be wound onto the winding roll 7. Further, a heating means is provided on the circumferential surface of the can 14 in the tank 5, facing the side of the support 1 having the magnetic layer. The heating means 16 may include a resistance heater, a high-frequency induction heating coil arranged so that heating is performed by an induced current generated in the magnetic layer, or an electron beam, an ion beam, or a laser. Although this method uses a non-contact heating method such as irradiation with a beam or infrared rays, various other non-contact heating methods may be employed. Sho 17
and 18 are exhaust ports provided in the tanks 4 and 5, respectively, and are connected to a vacuum pump (not shown). Further, 19 is a supply port through which an atmospheric gas such as an inert gas is sent into the tank 5, for example.

このようにして非磁性支持体1側が冷却されつ
つ金属薄膜磁性層2の熱処理がなされて得た磁気
記録媒体は、磁性層2が支持体1上に強固に被着
される。
In the magnetic recording medium obtained by heat-treating the metal thin film magnetic layer 2 while cooling the non-magnetic support 1 side in this manner, the magnetic layer 2 is firmly adhered to the support 1.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 1 10-5トルの真空中で、12μmの厚さのポリエチ
レンテレフタレートの支持体1上に、Co80−Ni20
の金属を1000Åの厚さに蒸着して磁性層2を形成
した。この時の磁性層2の磁気的特性は、抗磁力
Hcが100Oe、残留磁束密度Brは9000ガウスであ
つた。そしてこのようにして得た媒体を、支持体
1側をクーリングキヤンに接触させて冷却しつつ
10-3〜10-4トルの酸素O2雰囲気中で、磁性層2
に、電子線を0.8W/cm2で2秒間照射してその加
熱処理を行つた。
Example 1 Co 80 -Ni 20 on a 12 μm thick polyethylene terephthalate support 1 in a vacuum of 10 −5 Torr.
The magnetic layer 2 was formed by depositing metal to a thickness of 1000 Å. The magnetic properties of the magnetic layer 2 at this time are coercive force
Hc was 100 Oe, and residual magnetic flux density Br was 9000 Gauss. The medium thus obtained is then cooled by bringing the support 1 side into contact with the cooling can.
In an oxygen O2 atmosphere of 10 -3 to 10 -4 Torr, the magnetic layer 2
Then, a heat treatment was performed by irradiating with an electron beam at 0.8 W/cm 2 for 2 seconds.

このようにして得た磁気記録媒体の磁性層2の
剥離強度を測定した。この剥離強度の測定は、直
径100μmのサフアイヤボールを100mm/minで、
所定の荷重をかけながら擦つた場合に傷がつかな
い最大の荷重を測定したものでこの場合、その最
大荷重は90gであつた。また、実施例1におい
て、その加熱を酸素イオンビーム照射によつたも
のの同様の剥離強度は100g、赤外線照射によつ
たもののそれは70gであつた。このように酸素雰
囲気中で上述した熱処理を行つたものは、剥離強
度をより高め得るが、実施例1における加熱処理
時の雰囲気を、10-5トルの真空中としたときの電
子線照射による加熱をしたものの剥離強度は、80
gであり、同様の真空中でアルゴンイオン照射に
よる加熱によつたものも、同様の剥離強度は80
g、赤外線照射時によつたものは50gであつたに
比し、上述した熱処理をしなかつた場合のそれは
10gに過ぎなかつた。
The peel strength of the magnetic layer 2 of the magnetic recording medium thus obtained was measured. This peel strength measurement was performed using a sapphire ball with a diameter of 100 μm at a speed of 100 mm/min.
The maximum load that would not cause scratches when rubbed while applying a predetermined load was measured, and in this case, the maximum load was 90 g. Further, in Example 1, the peel strength was 100 g when the heating was done by oxygen ion beam irradiation, and it was 70 g when the heating was done by infrared irradiation. In this way, the peel strength can be further increased by performing the above-mentioned heat treatment in an oxygen atmosphere, but when the atmosphere during the heat treatment in Example 1 is in a vacuum of 10 -5 Torr, electron beam irradiation The peel strength of the heated product is 80
The peel strength is 80 g, and the same peel strength when heated by argon ion irradiation in a vacuum is 80 g.
g, the weight of the product when irradiated with infrared rays was 50g, compared to that without the heat treatment mentioned above.
It was only 10g.

尚、本発明製法における加熱時のイオンビーム
としては、アルゴンと酸素の混合ガスを始めとし
てNe、He、Ni、CnHm、CnFmとが、これらや
これらとAr、O2の混合ガスによるイオンビーム
を用いることもできる。また、その熱処理の雰囲
気もこれらガスの雰囲気中で行うことができる。
The ion beam used during heating in the manufacturing method of the present invention includes a mixed gas of argon and oxygen, as well as Ne, He, Ni, CnHm, and CnFm, and a mixed gas of Ar and O2 . It can also be used. Further, the heat treatment can be performed in an atmosphere of these gases.

上述したように本発明においては非磁性支持体
1側を冷却させつつ金属薄膜磁性層2の加熱を行
うものであり、この時この磁性層2の非磁性支持
体1への被着強度が高められるが、この電子線等
の照射エネルギーは、0.1〜10W/cm2、0.1〜5秒
で顕著に金属薄膜磁性層2の膜強度と被着強度の
向上がみられた。そして、この熱処理を支持体1
側の冷却を行わないでなしたときは、この熱によ
つて非磁性支持体1に変形歪が生じ磁性層2の強
化、被着強度の向上はみられなかつた。
As described above, in the present invention, the metal thin film magnetic layer 2 is heated while cooling the non-magnetic support 1 side, and at this time, the adhesion strength of the magnetic layer 2 to the non-magnetic support 1 is increased. However, when the irradiation energy of the electron beam or the like was 0.1 to 10 W/cm 2 for 0.1 to 5 seconds, the film strength and adhesion strength of the metal thin film magnetic layer 2 were significantly improved. Then, this heat treatment is performed on the support 1.
When this was done without side cooling, the nonmagnetic support 1 was deformed and strained by the heat, and no reinforcement of the magnetic layer 2 or improvement in adhesion strength was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製法による磁気記録媒体の断面
図、第2図は本発明製法を実施する装置の一例の
略線的断面図である。 1は非磁性支持体、2は金属薄膜磁性層であ
る。
FIG. 1 is a cross-sectional view of a magnetic recording medium manufactured by the manufacturing method of the present invention, and FIG. 2 is a schematic cross-sectional view of an example of an apparatus for carrying out the manufacturing method of the present invention. 1 is a nonmagnetic support, and 2 is a metal thin film magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性支持体上に、Coを主成分とする金属
磁性薄膜を形成し、上記非磁性支持体を冷却ロー
ルに接触させた状態で、上記金属磁性薄膜を非接
触型加熱手段により、0.1〜10W/cm2のパワーで
0.1〜5sec加熱する磁気記録媒体の製法。
1. A metal magnetic thin film containing Co as a main component is formed on a non-magnetic support, and with the non-magnetic support in contact with a cooling roll, the metal magnetic thin film is heated to a temperature of 0.1 to 0.1 by non-contact heating means. With a power of 10W/ cm2
A method for manufacturing magnetic recording media that heats for 0.1 to 5 seconds.
JP5167682A 1982-03-30 1982-03-30 Manufacture of magnetic recording medium Granted JPS58169333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167682A JPS58169333A (en) 1982-03-30 1982-03-30 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167682A JPS58169333A (en) 1982-03-30 1982-03-30 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58169333A JPS58169333A (en) 1983-10-05
JPH0352135B2 true JPH0352135B2 (en) 1991-08-09

Family

ID=12893477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167682A Granted JPS58169333A (en) 1982-03-30 1982-03-30 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58169333A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165410A (en) * 1983-03-10 1984-09-18 Fuji Photo Film Co Ltd Ferromagnetic thin film forming apparatus
WO2013123997A1 (en) * 2012-02-24 2013-08-29 Applied Materials, Inc. In-situ annealing in roll to roll sputter web coater and method of operating thereof
CN109290740B (en) * 2018-10-18 2021-03-02 重庆文理学院 Technological method for controlling thermal deformation of plunger in heating treatment process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164423A (en) * 1981-04-02 1982-10-09 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164423A (en) * 1981-04-02 1982-10-09 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPS58169333A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
US6852362B2 (en) Film vapor deposition method
JPH0352135B2 (en)
US4539264A (en) Magnetic recording medium
JPH033369B2 (en)
JPH0834001B2 (en) Method of manufacturing magnetic recording medium
JPH01243234A (en) Production of magnetic recording medium
JPS58220244A (en) Magnetic recording medium and its manufacture
JPH0935233A (en) Magnetic recording medium and its production
JPS6057533A (en) Magnetic recording medium
JPS60113330A (en) Production of magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS60237626A (en) Magnetic recording medium
JPH04147435A (en) Vaccum vapor-evaporating method
JPH0562186A (en) Manufacture of magnetic recording medium
JPH11185255A (en) Production of magnetic record medium
JPS61133030A (en) Production of magnetic recording medium
JPS63244412A (en) Production of magnetic recording medium
JPH0516089B2 (en)
JPH0626019B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS5856234A (en) Production of magnetic recording medium
JPH10162356A (en) Production of magnetic recording medium and production device thereof
JPH057767B2 (en)
JPH0416854B2 (en)
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH09204659A (en) Manufacture of magnetic recording medium