JPH0351373B2 - - Google Patents

Info

Publication number
JPH0351373B2
JPH0351373B2 JP63233481A JP23348188A JPH0351373B2 JP H0351373 B2 JPH0351373 B2 JP H0351373B2 JP 63233481 A JP63233481 A JP 63233481A JP 23348188 A JP23348188 A JP 23348188A JP H0351373 B2 JPH0351373 B2 JP H0351373B2
Authority
JP
Japan
Prior art keywords
water
pressure
negative pressure
porous
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63233481A
Other languages
Japanese (ja)
Other versions
JPH0284117A (en
Inventor
Tooru Kubota
Hidenori Iwama
Hidetaka Kato
Seiko Osozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORINSUISANSHO NOGYO KANKYO GIJUTSU KENKYUSHOCHO
Original Assignee
NORINSUISANSHO NOGYO KANKYO GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORINSUISANSHO NOGYO KANKYO GIJUTSU KENKYUSHOCHO filed Critical NORINSUISANSHO NOGYO KANKYO GIJUTSU KENKYUSHOCHO
Priority to JP63233481A priority Critical patent/JPH0284117A/en
Publication of JPH0284117A publication Critical patent/JPH0284117A/en
Publication of JPH0351373B2 publication Critical patent/JPH0351373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02P60/216

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、農耕地および植物栽培施設における
植物生育培地の水分状態を自動的に制御する方法
に関する。ここで植物生育培地とは、例えば農耕
地土壌、施設栽培土壌、微生物培養培地、ロツク
ウール等の栽培施設・植物工場の多孔質培地など
の植物を成育させるための土壌または他の多孔質
体を言う。 従来の技術および発明が解決しようとする問題点 植物が生育できる培地は、水稲などの湿性植物
の場合を除けば、一般に気相を含んでおり、培地
中に存在する水は孔隙によつて吸引拘束され、大
気圧に対して負の圧力をもつ。この気相をもつ孔
隙の水に作用する圧力は水分ポテンシヤルと呼ば
れ、気圧やpF等の単位で数量化されている。よ
り乾いた土壌の水は、より湿つた土壌の水よりも
小さい水分ポテンシヤルをもち、水分ポテンシヤ
ルは含水率と密接な関係を有する。 農耕地や植物栽培施設では、降雨、蒸発散、重
力排水などの自然営力と、かんがい、排水施工な
どの人為的管理によつて、植物生育培地中の水は
時々刻々供給、消費され、水分状態は常に変動し
ている。この植物生育培地の水分状態、特に含水
率と水分ポテンシヤルを人為的に制御できるなら
ば、植物の湿害排除、生育制御、品質向上が容易
になり、また栽培施設のオートメーシヨン化や経
済的水利用技術の開発も可能になり、益するとこ
ろは大きい。 しかしながら、従来植物生育培地の水分制御は
その重要性が認識されながらも、潅漑水量の調節
などの間接的方法に頼つており、物理的原理に立
脚した自動制御法は研究段階にとどまり、実用の
域に至つていない。 例えば、ポーラスカツプ内の水を空気を排除し
た状態で、接続管を介して大気圧下の自由水面に
接続し、ポーラスカツプと自由水面の位置の高低
差を設けることにより、カツプ内の水に負圧(cm
H2O)をかける落差法や真空ポンプを用いる圧
力調整方法によつて水の負圧を調整し、多孔質管
を介して土壌に負圧水を供給する試みはこれまで
いくつか行われてはいる。しかしながら、これら
従来の水静止型の給水法では多孔質管外より空気
が侵入して気泡を発生するために、給水能率が低
下したり、負圧伝達が不能になるため、長時間培
地水分を一定に保つことができない。また、負圧
制御も、マイナス0.03気圧以上の範囲にとどま
り、培地に十分な気相率を確保し、植物にとつて
好適なより乾いた水分状態を創出できない。 問題点を解決するための手段 本発明の方法は、植物生育培地中に埋設した多
孔質管内の水に所定の負圧をかけ、且つ、その水
を循環させることにより、培地水の負圧(水分ポ
テンシヤル)が多孔質管内の水の負圧と等しくな
るように培地と多孔質管の間に水の毛細管移動を
生じさせ、それによつて培地の水分状態を維持す
るものである。 本発明の方法は、圧力調整システムと負圧水循
環システムから成る。第1図に全システムの1例
を模式的に示す。 圧力調整システムは、負圧水循環システム内の
水にマイナス1気圧以上の任意の大きさの負圧を
与える。負圧の大きさは、多孔質管の孔隙の平均
直径、植物生育培地について所望する水分状態等
によつて、先験データに準拠して決める。 図示の圧力調整システムは、減圧タンク1と真
空ポンプ5の結合したものであるが、所定の減圧
度を保つために、タンクには圧力計3と圧力スイ
ツチ2を設けて、設定圧より高くなると圧力スイ
ツチが入り、真空ポンプが作動するように調整す
る。4の電磁弁は真空ポンプ作動中に開き、作動
後は閉じて、外の空気がタンクへ逆流することを
防止する。減圧タンクの気相は、耐圧チユーブに
より貯水槽6上部の空気溜に接続しており、タン
ク内の気圧を循環系内の水に作用させる。 圧力調整システムの負圧の発生、保持手段は真
空ポンプを用いる。負圧を調整する方法は上記以
外に水銀マノメータを圧力センサーとして電磁弁
にリレーする方法であつてもよい。 負圧水循環システムは貯水槽6、循環ポンプ7
および多孔質管8とそれを囲む植物生育培地が配
管によつて連結して成り立つ。 循環ポンプは、システム内に発生した気泡を貯
水槽の空気溜に排除することにより、多孔質管壁
中の毛細管水への負圧の伝達を維持し、植物生育
培地との水の授受効率を高めることを目的とし
て、システム内の負圧水を循環させる。 貯水槽には目盛りを設け、供給水量が測定でき
るようにすることが好ましい。 多孔質管は水の毛細管移動が生起しう素材を用
いた管状体であればよく、例えば素焼管は好まし
い例である。その他合成樹脂製多孔質材料を用い
ることができる。どのような素材を用いた場合で
あつても、多孔質管は植物生育培地中にあつて容
易に腐食せず、負圧、植物生育培地の重量等に耐
えるものでなければならないことは勿論である。 負圧水を循環させる手段は、所謂循環ポンプを
用いる。 本発明の負圧水循環システムについて留意する
ことは、循環ポンプの作動により、循環系内の水
圧分布が多少変化することである。すなわち、第
2図の模式的例示においては、水循環システム内
の水圧は、減圧制御システムによつて掛けられた
吸引圧(負圧)、貯水槽内の水位と多孔質管位置
との高低差、循環ポンプの送水・吸水による圧力
差および配管内の摩擦による水圧低下の合成によ
つて決定される。 しかしながら、実用段階においては、循環手段
による水圧変化と配管内の摩擦損失は流速の2乗
に比例するので、水流速をあまり高くしないこと
により、また、減圧タンクの圧力調整によつて多
孔質管内の水圧を制御することにより、実用上支
障のない程度にシステム内の水圧を平準化でき
る。また、多孔質管を直列よりも並列に配置する
ことにより培地の水分状態を一層均一にすること
ができる。 作 用 循環水に所定の負圧を付加することによつて多
孔質管内の水にほぼ等しい大きさの負圧が伝達さ
れ、多孔質管内の水の圧力と培地の水の圧力(水
分ポテンシヤル)の間に差があると、圧力差がゼ
ロになるように、多孔質管と植物生育培地の間に
水の授受が行われ、これによつて培地の水分ポテ
ンシヤルは設定定負圧とほぼ等しく維持される。 実施例 1 トウモロコシ幼植物生育ポツトに対する水供給
能の試験 <装置の規模> 圧力調整系 小型真空ポンプ 減圧タンク(硬質塩ビ製、4
容) 圧力スイツチ(使用範囲1―40cm
Hg感度±10mmHg) 負圧水循環系 循環ポンプ(0.5/min.) 貯水槽(アクリル樹脂製、0.2
容、目盛付) 多孔質管(アルミナ質素焼管、92
% Al2O3+0.5% SiO2、平均孔
隙直径2.1μm、外径0.8mm、内径
6.7mm、長さ70mm) 根吸水系 内径75mm、高さ50mmの硬質塩ビパ
イプ容器に土壌を詰め(粗密2段
階)、中間に多孔質管を埋設して
ある。 上記のシステムによつて、無栽培、自然蒸発下
において予備試験を行つた結果、pF3.5(マイナス
3.2気圧)の乾いた土壌を、pF2.4(マイナス0.25
気圧)の土壌水分状態(畑状態水分)に至らしめ
るに3日以内を要し、pF2.4の土壌水分をpF2.0
(マイナス0.10気圧)に至らしめるに2日以内を
要した。これらは完全平衡所要時間であり、大略
平衡所要時間はいずれも1日以内であつた。 上記システムにより、土壌水ポテンシヤルを
pF2.4(マイナス0.25気圧)に制御した状態でトウ
モロコシを栽培した。最大日蒸散量3.5〜5.2mmの
活発な吸水が行われ、トウモロコシは正常に生育
した。 1日当たりの吸水量を貯水槽中の水の減少量に
より測定した。 実験期間中における土壌水分の減少量は極く小
さく、培地は、ほぼ一定の水分状態に維持される
ことが認められた。 試験結果を表1に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for automatically controlling the moisture status of a plant growth medium in agricultural land and plant cultivation facilities. Here, the plant growth medium refers to soil or other porous materials for growing plants, such as agricultural land soil, facility cultivation soil, microbial culture medium, porous culture medium of cultivation facilities and plant factories such as Rock Wool. . Problems to be Solved by the Prior Art and the Invention Mediums in which plants can grow generally contain a gas phase, except in the case of wet plants such as paddy rice, and the water present in the medium is sucked through the pores. It is restrained and has a negative pressure relative to atmospheric pressure. The pressure that acts on the water in the pores with this gas phase is called the water potential, and is quantified in units such as atmospheric pressure and pF. Water in drier soils has a smaller water potential than water in wetter soils, and water potential has a close relationship with water content. In agricultural land and plant cultivation facilities, water in the plant growth medium is constantly supplied and consumed by natural forces such as rainfall, evapotranspiration, and gravity drainage, and by artificial management such as irrigation and drainage construction. Conditions are constantly changing. If the moisture status of the plant growth medium, especially the moisture content and moisture potential, could be artificially controlled, it would be easy to eliminate moisture damage, control growth, and improve the quality of plants, and it would also be possible to automate cultivation facilities and reduce the cost of water. It also makes it possible to develop utilization technologies, which has great benefits. However, although the importance of moisture control in plant growth media has been recognized, automatic control methods based on physical principles remain at the research stage and have not been put to practical use. The area has not yet been reached. For example, by connecting water in a porous cup to a free water surface under atmospheric pressure via a connecting pipe with air excluded, and creating a difference in height between the porous cup and the free water surface, the water in the cup can be Negative pressure (cm
Several attempts have been made so far to adjust the negative pressure of water using the head method of applying H 2 O) or the pressure adjustment method using a vacuum pump, and supplying negative pressure water to the soil through porous pipes. Yes. However, in these conventional static water supply methods, air enters from outside the porous tube and generates bubbles, which reduces water supply efficiency and makes it impossible to transmit negative pressure. cannot be kept constant. Further, negative pressure control is limited to a range of -0.03 atmospheres or more, and cannot secure a sufficient gas phase ratio in the culture medium and create a drier moisture condition suitable for plants. Means for Solving the Problems The method of the present invention applies a predetermined negative pressure to water in a porous pipe embedded in a plant growth medium and circulates the water, thereby applying negative pressure ( Capillary movement of water is caused between the culture medium and the porous tube so that the water potential (water potential) is equal to the negative pressure of the water in the porous tube, thereby maintaining the moisture state of the culture medium. The method of the invention consists of a pressure regulation system and a negative pressure water circulation system. FIG. 1 schematically shows an example of the entire system. The pressure regulation system provides a negative pressure of any magnitude greater than or equal to minus one atmosphere to the water in the negative pressure water circulation system. The magnitude of the negative pressure is determined based on a priori data, depending on the average diameter of the pores of the porous tube, the desired moisture state of the plant growth medium, and the like. The illustrated pressure adjustment system is a combination of a pressure reduction tank 1 and a vacuum pump 5, but in order to maintain a predetermined degree of pressure reduction, the tank is equipped with a pressure gauge 3 and a pressure switch 2. Adjust so that the pressure switch is turned on and the vacuum pump is activated. The solenoid valve 4 opens when the vacuum pump is in operation and closes after operation to prevent outside air from flowing back into the tank. The gas phase of the decompression tank is connected to the air reservoir in the upper part of the water storage tank 6 through a pressure tube, and the air pressure inside the tank is applied to the water in the circulation system. A vacuum pump is used to generate and maintain negative pressure in the pressure regulation system. In addition to the method described above, a method for adjusting the negative pressure may be a method in which a mercury manometer is used as a pressure sensor and relayed to a solenoid valve. Negative pressure water circulation system includes water tank 6 and circulation pump 7
The porous tube 8 and the plant growth medium surrounding it are connected by piping. The circulation pump maintains the transmission of negative pressure to the capillary water in the porous tube wall by eliminating air bubbles generated in the system into the air reservoir of the water tank, increasing the efficiency of water exchange with the plant growth medium. Circulate negative pressure water in the system with the purpose of increasing it. It is preferable that the water tank is provided with a scale so that the amount of water supplied can be measured. The porous tube may be a tubular body made of a material that allows capillary movement of water; for example, an unglazed tube is a preferable example. Other porous materials made of synthetic resin can be used. No matter what material is used, it goes without saying that the porous tube must not corrode easily in the plant growth medium and must be able to withstand negative pressure, the weight of the plant growth medium, etc. be. A so-called circulation pump is used as a means for circulating the negative pressure water. What should be noted about the negative pressure water circulation system of the present invention is that the water pressure distribution within the circulation system changes somewhat due to the operation of the circulation pump. That is, in the schematic illustration of FIG. 2, the water pressure in the water circulation system is determined by the suction pressure (negative pressure) applied by the pressure reduction control system, the height difference between the water level in the water tank and the porous pipe position, It is determined by the combination of the pressure difference due to water supply and suction by the circulation pump and the drop in water pressure due to friction within the piping. However, in the practical stage, water pressure changes due to circulation means and friction loss in the piping are proportional to the square of the flow velocity, so by not increasing the water flow velocity too high, and by adjusting the pressure of the decompression tank, it is possible to By controlling the water pressure in the system, the water pressure in the system can be leveled to a level that does not cause any practical problems. Furthermore, by arranging the porous tubes in parallel rather than in series, the moisture state of the culture medium can be made more uniform. Effect By applying a predetermined negative pressure to the circulating water, a negative pressure of approximately the same magnitude is transmitted to the water in the porous tube, and the pressure of the water in the porous tube and the pressure of the water in the medium (moisture potential) are If there is a difference between maintained. Example 1 Test of water supply ability to corn seedling growth pot <Size of device> Pressure adjustment system Small vacuum pump decompression tank (made of hard PVC, 4
Pressure switch (use range 1-40cm)
Hg sensitivity ±10mmHg) Negative pressure water circulation system Circulation pump (0.5/min.) Water tank (acrylic resin, 0.2
capacity, with scale) Porous tube (alumina biscuit tube, 92
% Al 2 O 3 +0.5% SiO 2 , average pore diameter 2.1 μm, outer diameter 0.8 mm, inner diameter
6.7 mm, length 70 mm) Root water absorption system A hard PVC pipe container with an inner diameter of 75 mm and a height of 50 mm is filled with soil (2 stages of coarse and dense), and a porous pipe is buried in the middle. As a result of preliminary tests using the above system without cultivation and under natural evaporation, the results showed that pF3.5 (minus
dry soil at pF2.4 (minus 0.25 atm)
It takes less than 3 days to reach the soil moisture condition (field condition moisture) of pF2.4 (atmospheric pressure) and pF2.0.
It took less than two days to reach the temperature (minus 0.10 atmospheres). These are the times required for complete equilibrium, and the approximate times required for equilibrium were all within one day. The above system increases soil water potential.
Corn was grown under controlled conditions at pF2.4 (minus 0.25 atm). Active water absorption occurred with maximum daily transpiration of 3.5 to 5.2 mm, and corn grew normally. The amount of water absorbed per day was measured by the amount of water lost in the water tank. It was observed that the amount of decrease in soil moisture during the experiment period was extremely small, and the medium was maintained at an almost constant moisture state. The test results are shown in Table 1.

【表】 貯水槽に適当な目盛りを設けることにより、消
費水量が精度高く読み取ることが可能で、吸水速
度の経日変化の測定も可能であつた(第3図参
照)。 実施例 2 実施例1と同じシステムにより、設定圧マイナ
ス0.1気圧(pF2.0)としたより湿つた水分条件で
の栽培試験の結果においても同様に、本発明の方
法が有効であることが認められた。結果を表2に
示す。
[Table] By providing an appropriate scale on the water storage tank, it was possible to read the amount of water consumed with high accuracy, and it was also possible to measure changes in water absorption rate over time (see Figure 3). Example 2 Using the same system as in Example 1, the results of a cultivation test under humid water conditions with a set pressure of minus 0.1 atm (pF2.0) also confirmed that the method of the present invention was effective. It was done. The results are shown in Table 2.

【表】 多孔質管よりの給水量
実施例 3 大型ポツトに対する土壌水分調節試験 〈装置の規模〉 圧力調整系 実施例1に同じ 水循環系 循環ポンプ(送水量0.5/min.) 貯水槽(容量1.2) 多孔質管(アルミナ質素焼管、外
径14mm、内径10mm、土壌接触部分
の長さ100mm、ポツト内に7cm間
隔にて3本直列連結して埋設) 土壌容量 7.0 この装置において、設定圧力を−9cmHgと−
4cmHgとしたときの土壌水ポテンシヤルの経時
変化を表3に示す。
[Table] Example of water supply amount from porous pipe 3 Soil moisture adjustment test for large pot (scale of equipment) Pressure adjustment system Same as Example 1 Water circulation system Circulation pump (water supply rate 0.5/min.) Water storage tank (capacity 1.2 ) Porous pipes (alumina biscuit pipes, outer diameter 14 mm, inner diameter 10 mm, length of soil contact part 100 mm, 3 pipes connected in series and buried at 7 cm intervals in a pot) Soil capacity 7.0 In this device, the set pressure is -9cmHg and-
Table 3 shows the change in soil water potential over time at 4 cmHg.

【表】 多孔質管への給水開始後の目数と土壌水分ポテ
ンシヤル(テンシオメータによる測定)の関係を
みると、本実施例の条件ではほぼ3日で土壌水分
は平衡に達することが分かる。これは多孔質管の
単位表面積当たりの土壌容積が、実施例1の場合
より5倍強と多くなつても十分な供給能があるこ
とを示す。 表4には、−9cmHg圧力設定の場合の、ほぼ平
衡後におけるポツト内土壌水分の深さ別分布を示
す。この結果、本発明方法によれば、植物生育培
地の深さが変化してもほぼ均一な水分分布が得ら
れることが分かる。 表5に、水循環系において、2個のポツトを直
列或いは並列に連結してポンプから一定距離離し
て配置した場合の平衡土壌水ポテンシヤルの差異
を示した。 直列の場合、循環ポンプより遠くに連結された
ポツトにおいて、水分ポテンシヤルが小さく現
れ、既に循環系内の水圧分布の説明で示したよう
に、循環ポンプによる水圧差の発生と配管内の流
れに伴う摩擦による圧力損失の影響が現れること
を示している。 並列の場合には、ポンプからの距離の違いに拘
わらず2つのポツトの土壌水分がほぼ均一であ
る。
[Table] Looking at the relationship between the number of meters after the start of water supply to the porous pipe and the soil moisture potential (measured by a tensiometer), it can be seen that under the conditions of this example, the soil moisture reaches equilibrium in approximately 3 days. This shows that even if the soil volume per unit surface area of the porous tube is more than five times as large as that in Example 1, there is sufficient supply capacity. Table 4 shows the distribution of soil moisture in the pot by depth after almost equilibrium in the case of -9 cmHg pressure setting. As a result, it can be seen that according to the method of the present invention, a substantially uniform moisture distribution can be obtained even if the depth of the plant growth medium changes. Table 5 shows the difference in equilibrium soil water potential when two pots are connected in series or in parallel and placed a certain distance away from the pump in the water circulation system. In the case of a series connection, the water potential appears small in the pot connected far away from the circulation pump, and as already shown in the explanation of water pressure distribution in the circulation system, the difference in water pressure caused by the circulation pump and the flow in the piping occur. This shows that the influence of pressure loss due to friction appears. In the parallel case, the soil moisture in the two pots is approximately equal regardless of the difference in distance from the pump.

【表】【table】

【表】 上記の実施例1、2及び3により、本発明の負
圧水循環方式が原理上妥当であり、実用上有効で
あることが実証された。 実用にあたつては、感度の高い圧力スイツチを
使用すること、水消費速度の高い培地に対して
は、多孔質管の埋設密度を高めること、および貯
水槽の断面積を目的に応じて適宜選択することに
より、幅広い水分ポテンシヤルに対して精度の高
い制御が可能になる。 効 果 水分は、新しく負圧水循環システムを設けて多
孔質管内の負圧水を循環移動させることにより、
システム内に発生した気泡を強制的に排除できる
ようにしたことによつて、植物培地水の供給・排
除の効率を一段と高め、長時間に亘り培地水分状
態を一定に維持でき、且つ、培地水の負圧制御域
を水の毛細管移動の限界値であるマイナス0.5気
圧の水分ポテンシヤルまで拡大できる。 本発明を、例えば第4図に示すように施設化す
ることにより、さらに下記の効果が得られる。 (1) 植物培地の水分状態が気象・生育条件に応じ
て自動的に調整され、且つ、培地の水分をほぼ
一定に保ちつつ、培地へ連続的に長時間給水で
きる。 (2) 同時に植物培地の排水が効率的に行われる。
すなわち、多孔質管の水に負圧を掛けることに
より、従来の工学的排水法では不可能であつた
水分状態まで排水できる。これまでの暗渠など
の排水法は、重力を利用したものであり、重力
で流出する水分しか排除できないが本法では毛
細管に保持された水も排除できる。 (3) 培地に必要十分な気相を与え、植物根を健全
に保てることにより、植物や作物収穫物の品質
向上に役立つ。 (4) 空中湿度を高めないため、また、病害菌の培
地中移動(重力水があるときのみ培地中を移動
できる病原菌が多い)を阻止できるため、病害
の発生を抑制できる。 (5) 培地中の必要部位にのみ植物の吸水にみあつ
た給水を行い、重力による水の下方移動の損失
が防げるため、最大限の節水栽培が可能であ
る。 (6) 重力水による水移動を排除できるため、農薬
肥料等の培地に添加され、または発生する物質
による地下水汚染を防止でき、また、培地の洗
浄等で生じた開放系への排出が好ましくない汚
染水を回収することも可能である。 (7) 植物培地以外に、水が消費・供給されるとこ
ろの多孔質体堆積物の水分制御ができる。
[Table] The above Examples 1, 2, and 3 demonstrated that the negative pressure water circulation system of the present invention is valid in principle and effective in practice. In practice, it is recommended to use a highly sensitive pressure switch, increase the density of porous pipes for culture media with high water consumption rates, and adjust the cross-sectional area of the water tank appropriately depending on the purpose. This selection enables highly accurate control over a wide range of moisture potentials. Effect Water can be removed by installing a new negative pressure water circulation system and circulating negative pressure water inside the porous pipe.
By forcibly removing air bubbles generated in the system, the efficiency of supplying and removing plant medium water is further increased, and the medium moisture state can be maintained constant over a long period of time. The negative pressure control range can be expanded to a moisture potential of minus 0.5 atmospheres, which is the limit value for capillary movement of water. By institutionalizing the present invention, for example, as shown in FIG. 4, the following effects can be obtained. (1) The moisture state of the plant medium is automatically adjusted according to weather and growth conditions, and water can be continuously supplied to the culture medium for a long time while keeping the moisture level of the medium almost constant. (2) At the same time, the plant medium is drained efficiently.
That is, by applying negative pressure to the water in the porous pipe, water can be drained to a moisture state that was impossible with conventional engineering drainage methods. Previous drainage methods such as underdrains utilize gravity and can only remove water that flows out due to gravity, but this method can also remove water held in capillaries. (3) By providing the necessary and sufficient air phase to the medium and keeping plant roots healthy, it helps improve the quality of plants and crop harvests. (4) It is possible to suppress the occurrence of diseases because it does not increase the humidity in the air and prevents the movement of pathogenic bacteria in the medium (many pathogenic bacteria can only move in the medium when there is gravity water). (5) Water is supplied only to the necessary parts of the culture medium in a manner that matches the plant's water absorption, and water loss due to downward movement due to gravity is prevented, making it possible to maximize water-saving cultivation. (6) Since water movement due to gravity water can be eliminated, it is possible to prevent groundwater contamination due to substances added to or generated from the culture medium such as agricultural chemicals and fertilizers, and discharge into open systems caused by cleaning of the culture medium is undesirable. It is also possible to recover contaminated water. (7) In addition to the plant culture medium, moisture can be controlled in porous sediments where water is consumed and supplied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のシステムの模式図、第2図は
本発明のシステムにおける水圧分布を示す図、第
3図は本発明のシステムによる吸水速度の経日変
化を示すグラフ、第4図は本発明のシステムの実
際の施設化の例の模式図。 1…減圧タンク、2…圧力スイツチ、3…圧力
計、4…電磁弁、5…真空ポンプ、6…貯水槽、
7…循環ポンプ、8…多孔質管。
Figure 1 is a schematic diagram of the system of the present invention, Figure 2 is a diagram showing the water pressure distribution in the system of the present invention, Figure 3 is a graph showing the daily change in water absorption rate by the system of the present invention, and Figure 4 is FIG. 2 is a schematic diagram of an example of actual institutionalization of the system of the present invention. 1...Reduction tank, 2...Pressure switch, 3...Pressure gauge, 4...Solenoid valve, 5...Vacuum pump, 6...Water tank,
7...Circulation pump, 8...Porous pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 植物生育培地の中に埋設した多孔質管中に真
空ポンプにより予め調整された、大気圧に対して
マイナス1気圧以上0気圧以下の範囲の任意の大
きさの負圧をもつ水を循環させ、該多孔質管を介
して植物生育培地中に水を供給あるいは植物生育
培地より水を排除することにより、植物生育培地
の水分含有率または水分ポテンシヤルを制御する
ことを特徴とする植物生育培地の水分制御法。
1. Circulating water with a negative pressure of any magnitude in the range of -1 atm to 0 atm relative to atmospheric pressure, which is pre-adjusted by a vacuum pump, through a porous pipe buried in a plant growth medium. , wherein the water content or water potential of the plant growth medium is controlled by supplying water into the plant growth medium or excluding water from the plant growth medium through the porous tube. Moisture control method.
JP63233481A 1988-09-20 1988-09-20 Method for controlling water content in culture medium for growing plant Granted JPH0284117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233481A JPH0284117A (en) 1988-09-20 1988-09-20 Method for controlling water content in culture medium for growing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233481A JPH0284117A (en) 1988-09-20 1988-09-20 Method for controlling water content in culture medium for growing plant

Publications (2)

Publication Number Publication Date
JPH0284117A JPH0284117A (en) 1990-03-26
JPH0351373B2 true JPH0351373B2 (en) 1991-08-06

Family

ID=16955684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233481A Granted JPH0284117A (en) 1988-09-20 1988-09-20 Method for controlling water content in culture medium for growing plant

Country Status (1)

Country Link
JP (1) JPH0284117A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775138B2 (en) * 1993-12-31 1998-07-16 株式会社佐電工 Plant cultivation system
JP4982823B2 (en) * 2006-08-18 2012-07-25 長崎県 Water management method in fruit cultivation
JP5216622B2 (en) * 2009-02-13 2013-06-19 株式会社つくばアグリサイエンス Underground irrigation equipment
JP6038703B2 (en) * 2013-03-28 2016-12-07 株式会社クボタケミックス Underground irrigation system

Also Published As

Publication number Publication date
JPH0284117A (en) 1990-03-26

Similar Documents

Publication Publication Date Title
JP4807805B2 (en) Irrigation system and related methods
US4182357A (en) Method of controlling the relative humidity in a soil environment and apparatus for accomplishing same
JP6689505B2 (en) Plant cultivation equipment
CN111587716A (en) Automatic soil humidity control system and application thereof in underground irrigation, space farms, desert field building and the like
EP1091640A1 (en) Liquid transfer device, and use of the device for irrigation
US20080263948A1 (en) Plant pot and soil watering system
JP4662671B2 (en) Irrigation equipment
US3407608A (en) Subsurface irrigation system
JP2005525806A (en) Equipment and containers for irrigation using capillary action
WO2015178409A1 (en) Cultivation apparatus and cultivation method
JP2010099062A (en) Subsurface environment controller and subsurface environment control method for plant planted in vessel
JPH0351373B2 (en)
UA80597C2 (en) Method for growing plants in growing substrate and apoparatus suitable for growing plants
JP2017221150A (en) Plant cultivation device and irrigation control method
JP7074971B2 (en) Plant cultivation equipment
JP6680514B2 (en) Cultivation device and cultivation method
RU2115302C1 (en) Method and apparatus for root feeding of plants under artificial conditions
KR101435906B1 (en) Hydroponics cultivation apparatus
JPS59173028A (en) Negative pressure irrigating method
JPH09308398A (en) Automatic water feed/drain device
JP3426416B2 (en) Negative pressure differential irrigation system
JPH08107720A (en) Plant cultivating device and method therefor
RU2137354C1 (en) Apparatus for irrigating in greenhouses, hotbeds and on garden lands
JPH0363338B2 (en)
JPH1033074A (en) Automatic watering type planter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term