JPH0351090B2 - - Google Patents

Info

Publication number
JPH0351090B2
JPH0351090B2 JP59157214A JP15721484A JPH0351090B2 JP H0351090 B2 JPH0351090 B2 JP H0351090B2 JP 59157214 A JP59157214 A JP 59157214A JP 15721484 A JP15721484 A JP 15721484A JP H0351090 B2 JPH0351090 B2 JP H0351090B2
Authority
JP
Japan
Prior art keywords
discharge
reaction chamber
gas
reaction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59157214A
Other languages
Japanese (ja)
Other versions
JPS6136923A (en
Inventor
Toshio Hayashi
Koichi Tamagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP15721484A priority Critical patent/JPS6136923A/en
Publication of JPS6136923A publication Critical patent/JPS6136923A/en
Publication of JPH0351090B2 publication Critical patent/JPH0351090B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、反応室内に導入される反応ガス分子
に光を照射して吸収させ分解効率を高めるように
構成した、例えば超LSI技術等に用いられる光励
起プロセス装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is used in, for example, ultra-LSI technology, which is configured to irradiate and absorb light on reaction gas molecules introduced into a reaction chamber to increase decomposition efficiency. The present invention relates to a photoexcitation process device.

従来の技術 最近の超LSI技術の発展につれて従来の反応性
イオンエツチングやプラズマを用いたプロセスに
代わつて無損傷、低温プロセスが要求されるよう
になつており、その一つとして光励起化学反応を
用いたプロセス(光励起CVDやエツチング技術)
が注目されている。光励起プロセスは低温、低基
板損傷性および選択性という特色を備えており、
反応選択性としては光照射を行なつている部分だ
け薄膜を形成したり或いはその部分だけをエツチ
ングできる空間的な反応選択性と、反応ガス中の
特定の種類の分子のみを励起したり或いは種類の
異なる分子の励起状態を制御したりできるいわゆ
る化学反応に対する選択性とがある。このような
観点から、光励起プロセスについての基礎研究が
種々なされている。それらの基礎研究において
は、例えば低圧Hgランプ、Hg−Xeランプ或い
はエキシマレーザー等を光源として用い、光源か
らの光をミラーやレンズ等の適当な光学系を介し
て反応室へ導く方法がとられている。しかしこの
ような構成では光源が大気中にあるため空気中の
酸素による吸収や、差圧に耐え得るように厚くし
た透過窓による吸収のために、紫外光の反応室へ
の照射効率は著しく低下する。その結果、反応速
度が遅いという欠点がある。
Conventional technology With the recent development of VLSI technology, a damage-free, low-temperature process is required to replace the conventional reactive ion etching and plasma-based processes, and one of these is the use of photoexcited chemical reactions. (photo-excited CVD and etching technology)
is attracting attention. The photoexcitation process has the characteristics of low temperature, low substrate damage, and selectivity.
Regarding reaction selectivity, there is spatial reaction selectivity that allows a thin film to be formed or etched only in the area that is irradiated with light, and spatial reaction selectivity that allows only a specific type of molecule in the reaction gas to be excited or a type of molecule to be etched. There is so-called selectivity for chemical reactions, which allows controlling the excited states of different molecules. From this point of view, various basic studies on photoexcitation processes have been conducted. In these basic studies, methods are used, such as using a low-pressure Hg lamp, Hg-Xe lamp, or excimer laser as a light source, and guiding the light from the light source to the reaction chamber through a suitable optical system such as a mirror or lens. ing. However, in this configuration, since the light source is in the atmosphere, the efficiency of irradiating the ultraviolet light into the reaction chamber is significantly reduced due to absorption by oxygen in the air and absorption by the thick transmission window to withstand differential pressure. do. As a result, there is a drawback that the reaction rate is slow.

このような欠点を解消するため、先に特願昭58
−179272において、反応室に隣接して放電室を設
け、放電室内で発生した励起光を、反応室の実質
的に全面にわたつてひろがる透過窓を通つて大気
に触れさせずに反応室内へ導入し、そして放電室
と反応室との間の透過窓に実質的な差圧がかゝら
ないように自動リーク弁手段を設けた光励起プロ
セス装置を提案した。これにより空気中の酸素に
よる紫外光の吸収は避けることができ、また透過
窓に加わる差圧を減少できるので窓材を比較的薄
くでき、それにより反応室への励起光の照射光率
を高めることができた。
In order to eliminate these drawbacks, we first filed a patent application in 1982.
-179272, a discharge chamber is provided adjacent to the reaction chamber, and the excitation light generated in the discharge chamber is introduced into the reaction chamber through a transmission window that extends over substantially the entire surface of the reaction chamber without exposing it to the atmosphere. We also proposed a photoexcitation process device equipped with automatic leak valve means to prevent a substantial pressure difference from being applied to the transmission window between the discharge chamber and the reaction chamber. This avoids the absorption of ultraviolet light by oxygen in the air, and also reduces the differential pressure applied to the transmission window, allowing the window material to be made relatively thin, thereby increasing the irradiation rate of excitation light into the reaction chamber. I was able to do that.

発明が解決しようとする問題点 しかしながら、先に提案した装置では、活性化
された放電用ガスによつて透過窓(例えばSiO2
窓)がエツチングされて次第に曇り、時間と共に
反応室内へ導入される紫外線強度が減少するとい
う問題がある。
Problems to be Solved by the Invention However, in the previously proposed device, the transparent window (for example, SiO 2
There is a problem in that the windows (windows) are etched and gradually become cloudy, reducing the intensity of ultraviolet light introduced into the reaction chamber over time.

そこで、本発明の目的は、活性化された放電用
ガスによる透過窓のエツチングを防止して長時間
にわたつて反応室内への励起光の照射効率を一定
のレベルに維持できるようにした光励起プロセス
装置を提供することにある。
Therefore, an object of the present invention is to provide a photoexcitation process that prevents etching of the transmission window by activated discharge gas and maintains the irradiation efficiency of excitation light into the reaction chamber at a constant level over a long period of time. The goal is to provide equipment.

問題点を解決するための手段 上記の目的を達成するために、本発明によれ
ば、反応室内に導入される反応ガス分子に光を照
射して吸収させ分解効率を高めるようにした光励
起プロセス装置において、大気側から反応室壁を
通つて反応室内へのび、マイクロ波放電装置によ
つて生じられた放電光を反応室内へ透過する光学
窓を備えた放電管を有し、放電管の光学窓を反応
室内に配置し、放電管に、光学窓へ向かつて放電
管内へ放電用ガスを導入する放電用ガス導入口を
設け、また大気側にマイクロ波放電装置及びガス
排出口を配置したことを特徴としている。
Means for Solving the Problems In order to achieve the above object, the present invention provides a photoexcitation process device that irradiates and absorbs light into reaction gas molecules introduced into a reaction chamber to increase decomposition efficiency. A discharge tube is provided with an optical window that extends from the atmosphere side into the reaction chamber through the reaction chamber wall and transmits discharge light generated by a microwave discharge device into the reaction chamber, and the optical window of the discharge tube was placed in the reaction chamber, the discharge tube was provided with a discharge gas inlet for introducing discharge gas into the discharge tube toward the optical window, and a microwave discharge device and a gas discharge port were placed on the atmospheric side. It is a feature.

作 用 このように構成した本発明の装置においては放
電用ガスは放電管の光学窓の近くに設けられた放
電用ガス導入口から導入され、そして他端から排
出され、その結果光学窓は常に活性化されていな
い放電用ガスで覆われるのでエツチングは起らな
い。これにより反応室へ励起光の照射を長時間予
定のレベルに維持することができる。
Function In the device of the present invention configured as described above, the discharge gas is introduced from the discharge gas inlet provided near the optical window of the discharge tube, and is discharged from the other end, so that the optical window is always closed. Etching does not occur because it is covered with unactivated discharge gas. Thereby, the irradiation of excitation light into the reaction chamber can be maintained at a predetermined level for a long time.

実施例 以下、添付図面を参照して本発明の一実施例に
ついて説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図面には本発明の光励起プロセス装置の一実施
例を示し、1は反応室であり、その内部に回転可
能な基板ホルダ2が配置されており、この基板ホ
ルダ2に処理すべき基板3が装着されている。反
応室1の壁には図示したように反応ガス導入ポー
ト4と真空ポンプ(図示してない)に連結される
排気ポート5とが設けられている。
The drawing shows an embodiment of the optical excitation process apparatus of the present invention, in which 1 is a reaction chamber, in which a rotatable substrate holder 2 is arranged, and a substrate 3 to be processed is mounted on this substrate holder 2. has been done. As shown in the drawing, a reaction gas introduction port 4 and an exhaust port 5 connected to a vacuum pump (not shown) are provided on the wall of the reaction chamber 1.

また反応室1の外部から反応室1の壁を通つて
基板3に向つて筒形放電管6がのびている。この
放電管6の一端6aには透過窓7を備えた放電用
ガス供給部8が設けられており、この放電用ガス
供給部8は放電管6の外周部に真空封止され、そ
して放電用ガス導入口9を備えている。一方放電
管6の他端6bは図示してない真空ポンプに連結
され、また図示したようにマイクロ波空胴共振器
10を備えている。
Further, a cylindrical discharge tube 6 extends from the outside of the reaction chamber 1 through the wall of the reaction chamber 1 toward the substrate 3. A discharge gas supply section 8 equipped with a transmission window 7 is provided at one end 6a of the discharge tube 6. This discharge gas supply section 8 is vacuum-sealed around the outer circumference of the discharge tube 6, and is A gas inlet 9 is provided. On the other hand, the other end 6b of the discharge tube 6 is connected to a vacuum pump (not shown), and is also provided with a microwave cavity resonator 10 as shown.

このように構成した図示装置の動作において、
放電用ガスは放電用ガス導入口9を通つて放電用
ガス供給部8に入り図示したように放電管6の一
端6aの外周に沿つて透過窓7側のすき間から放
電管6内に導入され、そしてその他端6bから排
出される。そしてマイクロ波空胴共振器10によ
つてマイクロ波放電が生じられ、放電管6内に紫
外光が発生される。この紫外光は透過窓7を通つ
て反応室1内に配置された基板ホルダ2上の基板
3の全面に照射される。この場合、放電用ガスが
透過窓7側から導入されるので、透過窓7は常に
活性化されてないガスで覆われ、従つて透過窓の
エツチングは防止される。
In the operation of the illustrated device configured in this way,
The discharge gas enters the discharge gas supply section 8 through the discharge gas inlet 9 and is introduced into the discharge tube 6 from a gap on the transmission window 7 side along the outer periphery of one end 6a of the discharge tube 6, as shown in the figure. , and is discharged from the other end 6b. Then, microwave discharge is generated by the microwave cavity resonator 10, and ultraviolet light is generated within the discharge tube 6. This ultraviolet light passes through the transmission window 7 and is irradiated onto the entire surface of the substrate 3 on the substrate holder 2 placed in the reaction chamber 1 . In this case, since the discharge gas is introduced from the side of the transparent window 7, the transparent window 7 is always covered with unactivated gas, thus preventing etching of the transparent window.

なお図示実施例において放電管6およびそれの
関連装置は縦配列の代りに横に配列することもで
き、さらに放電管を複数本設けることも可能であ
る。
In the illustrated embodiment, the discharge tubes 6 and their related devices may be arranged horizontally instead of vertically, and it is also possible to provide a plurality of discharge tubes.

効 果 以上説明してきたように、本発明による装置に
おいては、光を透過する光学窓が常に活性化され
ていないガスで覆われるように構成されているの
で、光学窓はエツチングされることがなく、曇ら
ないため、長時間にわたつて光強度を減少させず
光を照射することができる。従つて大面積の光励
起CVDやエツチングを行なうことができ、超LSI
製造プロセスによる量産化が可能となる。
Effects As explained above, in the device according to the present invention, the optical window that transmits light is always covered with inactivated gas, so the optical window is not etched. Since it does not fog, it is possible to irradiate light for a long time without reducing the light intensity. Therefore, it is possible to perform large-area photo-excited CVD and etching, making it possible to perform ultra-LSI
Mass production using the manufacturing process becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例による光励起プロセス
装置を示す概略断面図である。 図中、1:反応室、6:放電管、7:透過窓、
8:放電用ガス供給部、10:マイクロ波空胴共
振器。
The drawing is a schematic cross-sectional view showing a photoexcitation process apparatus according to an embodiment of the present invention. In the figure, 1: reaction chamber, 6: discharge tube, 7: transmission window,
8: Discharge gas supply section, 10: Microwave cavity resonator.

Claims (1)

【特許請求の範囲】[Claims] 1 反応室内に導入される反応ガス分子に光を照
射して吸収させ分解効率を高めるようにした光励
起プロセス装置において、大気側から反応室壁を
通つて反応室内へのび、マイクロ波放電装置によ
つて生じられた放電光を反応室内へ透過する光学
窓を備えた放電管を有し、放電管の光学窓を反応
室内に配置し、放電管に、光学窓へ向かつて放電
管内へ放電用ガスを導入する放電用ガス導入口を
設け、また大気側にマイクロ波放電装置及びガス
排出口を配置したことを特徴とする光励起プロセ
ス装置。
1 In a photoexcitation process device that irradiates and absorbs light into reaction gas molecules introduced into a reaction chamber to increase decomposition efficiency, the light extends into the reaction chamber from the atmosphere side through the reaction chamber wall, and is heated by a microwave discharge device. The optical window of the discharge tube is placed inside the reaction chamber, and the discharge gas is directed toward the optical window and into the discharge tube. 1. A photoexcitation process device, characterized in that a discharge gas inlet for introducing gas is provided, and a microwave discharge device and a gas discharge port are arranged on the atmosphere side.
JP15721484A 1984-07-30 1984-07-30 Optically pumped processor Granted JPS6136923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15721484A JPS6136923A (en) 1984-07-30 1984-07-30 Optically pumped processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15721484A JPS6136923A (en) 1984-07-30 1984-07-30 Optically pumped processor

Publications (2)

Publication Number Publication Date
JPS6136923A JPS6136923A (en) 1986-02-21
JPH0351090B2 true JPH0351090B2 (en) 1991-08-05

Family

ID=15644706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15721484A Granted JPS6136923A (en) 1984-07-30 1984-07-30 Optically pumped processor

Country Status (1)

Country Link
JP (1) JPS6136923A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144199A (en) * 1990-01-11 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Microwave discharge light source device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054172A (en) * 1973-08-22 1975-05-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054172A (en) * 1973-08-22 1975-05-13

Also Published As

Publication number Publication date
JPS6136923A (en) 1986-02-21

Similar Documents

Publication Publication Date Title
KR100189794B1 (en) Process for oxidation of an article surface
US4522674A (en) Surface treatment apparatus
KR100677661B1 (en) Apparatus and method for irradiating ultraviolet light
EP0198361A2 (en) Method and apparatus for thin film formation using photo-induced chemical reaction
US4936940A (en) Equipment for surface treatment
US4157253A (en) Method of reducing absorption losses in fused quartz and fused silica optical fibers
KR20030048075A (en) Excimer uv photo reactor
JPH0351090B2 (en)
JPH079884B2 (en) Photo-excitation process equipment
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JPS60212226A (en) Ultraviolet ray treatment method
JPS62237733A (en) Oxidation and apparatus therefor
JPH0241900B2 (en)
JPS6012128A (en) Photochemical surface treating apparatus
JPH0611347U (en) Resist film ashing device
JP2934601B2 (en) Vacuum device, evacuation method using the vacuum device, and device using the vacuum device
JPH0586648B2 (en)
JP2001217216A (en) Method and device for ultraviolet-ray irradiation
JPH07105347B2 (en) Photochemical vapor deposition method
JPH05243138A (en) Ultraviolet ray emitter and processing method using the same
JPS63133627A (en) Light irradiating apparatus
JP4291193B2 (en) Optical processing apparatus and processing apparatus
JP3158911B2 (en) Dielectric barrier discharge lamp device
KR20010034992A (en) Apparatus irradiating ultraviolet light
JPH0448720A (en) Surface treating method and device