JPH0350909A - Prediction device - Google Patents

Prediction device

Info

Publication number
JPH0350909A
JPH0350909A JP18447389A JP18447389A JPH0350909A JP H0350909 A JPH0350909 A JP H0350909A JP 18447389 A JP18447389 A JP 18447389A JP 18447389 A JP18447389 A JP 18447389A JP H0350909 A JPH0350909 A JP H0350909A
Authority
JP
Japan
Prior art keywords
signal
circuit
storage circuit
time
correlation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18447389A
Other languages
Japanese (ja)
Inventor
Masahiro Iwadare
正宏 岩垂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18447389A priority Critical patent/JPH0350909A/en
Publication of JPH0350909A publication Critical patent/JPH0350909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To attain prediction with high accuracy when there is any periodicity in an input signal by using a correlation coefficient so as to find out a waveform similar to a waveform at a current sample time from a signal string resulting from oversampling an input signal string and obtaining a prediction value through the use of a past signal. CONSTITUTION:Let a current sampling time be (j), a signal X(j) is inputted from a terminal 1 and a storage circuit 2 stores L sets of past signals X. Moreover, the signal X(j) is inputted to an oversampling circuit 3, a zero insertion circuit 31 in the circuit 3 inserts a zero at an interval of one sampling signal string to output a signal X2(j) whose sampling frequency Fs is twice that of the signal X(j). Then the frequency spectrum from Fs/4 to Fs/2 of the signal X2(j) is equal to the reflected frequency spectrum of the signal X(j). Then an LPF 32 outputs a signal XL whose frequency component is nearly equal to that of the signal X(j) and whose sampling frequency only differs. Then the storage circuit 4 stores by 2K preceding over-sampled signal. Then a correlation coefficient calculation section 5 applies the correlation evaluation between the L sets of past signals and the signal XL.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は音声・音楽・画像などのディジタル信号の予測
技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technology for predicting digital signals such as voice, music, and images.

〔従来の技術〕[Conventional technology]

現標本時刻までの入力信号より、火種本時刻の入力信号
を予測する従来の予測器として適応予測器がある。この
方式の概説としては、株式会社コロナ社発行の「ディジ
タル信号処理の理論」の推定・適応信号処理理論に詳し
い。以下、適応予測器の一例として、線形予測法の一種
である勾配を利用した確率近似法による予測原理を簡単
に述べる。
There is an adaptive predictor as a conventional predictor that predicts the input signal at the current sample time from the input signal up to the current sample time. For a detailed overview of this method, refer to the theory of estimation and adaptive signal processing in ``Theory of Digital Signal Processing'' published by Corona Co., Ltd. Hereinafter, as an example of an adaptive predictor, a prediction principle based on a probability approximation method using a gradient, which is a type of linear prediction method, will be briefly described.

第3図は確率近似法による従来の適応予測器のブロック
図である。11は入力端子、12は記憶回路、13は減
算器、14は予測係数更新部、15は予測値計算部、1
6は遅延器である。
FIG. 3 is a block diagram of a conventional adaptive predictor based on the probability approximation method. 11 is an input terminal, 12 is a storage circuit, 13 is a subtracter, 14 is a prediction coefficient update section, 15 is a prediction value calculation section, 1
6 is a delay device.

予測器は視標本化時刻j以前のに個の信号、即ち、X(
j−に十l)からX (j)までの信号により火種本時
刻の入力信号X N+1)を予測するもので、予測値を
XP N+1)とおくと、XP  (N+1)  −Σ
At(j)  ・X(j−N+1)・(1) である。ここで、A、N)は時刻jの予測係数であり、
時刻jにおける予測誤差信号E(j)を次式のようにお
くと、 E (J)=X (j)−XP (j)     ・・
・(2)予測誤差信号の電力E”(j)を最小とするよ
うに各係数を変化させる。予測誤差信号の電力EZ(j
)は、 E”(j) −(X (j)−XP (j))” ・ ・ ・(3) であるので、予測誤差信号電力E”(j)の各予測係数
に対する勾配Δi  (j)は、=−2E(j) (j i) ・(4) である。従って、予測誤差信号電力E”(j)を最小と
するには、各予測係数A=(j)は、以下に示すように
変化させる。
The predictor uses the signals before visual sampling time j, that is, X(
It predicts the input signal X N+1) at the main time of the flash using the signal from X (j) to X (j), and if the predicted value is set as XP N+1), then
At(j)·X(j−N+1)·(1). Here, A, N) are prediction coefficients at time j,
If the prediction error signal E(j) at time j is set as the following equation, E (J)=X (j)-XP (j)...
-(2) Change each coefficient so as to minimize the power E''(j) of the prediction error signal. The power EZ(j) of the prediction error signal
) is E”(j) − (X (j) − is =-2E(j) (j i) ・(4) Therefore, in order to minimize the prediction error signal power E''(j), each prediction coefficient A = (j) is as shown below. change it like this.

A;(N+1) =A+ N)+g−E (j)  ・X(j−i)・・
・(5) gは修正係数であり、入力信号の特性に応じて決定され
る定数であり、通常1より充分小さい正の値を用いる。
A; (N+1) =A+ N)+g-E (j) ・X(j-i)...
(5) g is a correction coefficient, which is a constant determined according to the characteristics of the input signal, and usually uses a positive value sufficiently smaller than 1.

以下に標本時刻jのときの信号の流れを説明する。記憶
回路12は、入力端子11から入力された信号Xを予測
係数の個数分に個保存する。減算器13は、入力信号X
(j)から予測信号XP (j)を減じて現標本時刻の
人力信号に対する予測誤差E (j)を計算する。予測
係数更新部14は、弐(5)に従って予測誤差E(j)
と記憶回路12内の入力信号X (j−に+1)からX
(j)の信号を用いて予測係数Az(j)からAア(j
)を更新して、新しい予測係数A+ (j + 1 )
からAm(N+1)を求める。予測値計算部15は、式
(5)に従って更新された予測係数Az(N+1)から
A+=(N+1)−と、記憶回路12内の入力信号X(
j−に+1)、からX (j)とより、火種本時刻の入
力信号の予測値XP N+1)を求める。遅延器16は
、火種本時刻j+1に減算器13で予測誤差信号を計算
するときに用いる予測値XP (N+1)を保存する。
The signal flow at sample time j will be explained below. The storage circuit 12 stores the signal X input from the input terminal 11 in the number of prediction coefficients. The subtracter 13 receives the input signal
The prediction error E (j) for the human input signal at the current sample time is calculated by subtracting the prediction signal XP (j) from (j). The prediction coefficient update unit 14 calculates the prediction error E(j) according to 2(5).
and the input signal X in the memory circuit 12 (+1 to j-) to X
Using the signal of (j), predict coefficient Az(j) to A(j
) and update the new prediction coefficient A+ (j + 1)
Find Am(N+1) from The predicted value calculation unit 15 calculates A+=(N+1)− from the predicted coefficient Az(N+1) updated according to equation (5) and the input signal X(
+1) to j-, and from X (j), the predicted value XP N+1) of the input signal at the main time of the spark is determined. The delay unit 16 stores the predicted value XP (N+1) used when the subtracter 13 calculates the prediction error signal at the actual time j+1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の適応予測器では、複雑な周波数特性をもった入力
信号に対しては高次の予測係数が必要となり、予測係数
の収束にかかる時間が増加するという欠点がある。
Conventional adaptive predictors have the disadvantage that high-order prediction coefficients are required for input signals with complex frequency characteristics, which increases the time required for the prediction coefficients to converge.

本発明の目的はこのような従来の欠点を除去し、入力信
号に周期性があれば、複雑な周波数特性の信号に対して
も予測精度が高精度になるまでの収束時間を必要とせず
に高精度の予測を行う予測器を提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks, and to eliminate the need for convergence time to achieve high prediction accuracy even for signals with complex frequency characteristics as long as the input signal has periodicity. The object of the present invention is to provide a predictor that makes highly accurate predictions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の予測器は、 入力信号を保存する第1の記憶回路と、前記入力信号の
標本化周波数を整数倍するオーバーサンプリング回路と
、 前記オーバーサンプリング回路の出力信号を保存する第
2の記憶回路と、 前記第1の記憶回路内の信号と前記第2の記憶回路内の
信号間の相関係数および平均振幅比を求める相関係数計
算部と、 前記相関係数の絶対値が最大となるときの時刻を選択す
る最大値検出回路と、 前記時刻の平均振幅比と前記時刻の相関係数の符号と前
記第2の記憶回路内の前記時刻の1標本時刻後の信号と
の積を求める乗算器とから構成されることを特徴として
いる。
The predictor of the present invention includes: a first storage circuit that stores an input signal; an oversampling circuit that multiplies the sampling frequency of the input signal by an integer; and a second storage circuit that stores the output signal of the oversampling circuit. and a correlation coefficient calculation unit that calculates a correlation coefficient and an average amplitude ratio between the signal in the first storage circuit and the signal in the second storage circuit, and a correlation coefficient calculation unit that calculates a correlation coefficient and an average amplitude ratio between the signal in the first storage circuit and the signal in the second storage circuit, and a correlation coefficient calculation unit that calculates a correlation coefficient and an average amplitude ratio between the signals in the first storage circuit and the second storage circuit, and a maximum value detection circuit for selecting a time at the time; and calculating the product of the average amplitude ratio at the time, the sign of the correlation coefficient at the time, and a signal one sample time after the time in the second storage circuit. It is characterized by consisting of a multiplier.

〔作用〕 過去の入力信号をオーバーサンプリングして保存してお
き、現標本時刻近傍の信号と波形が相似の部分を選ぶ。
[Operation] Past input signals are oversampled and saved, and a portion whose waveform is similar to the signal near the current sample time is selected.

入力信号に周期性がある場合、火種本時刻の信号部分も
前記の過去の相似部分の信号列に相似になると予測され
るので、前記の過去の相似部分の次の信号値に平均振幅
比を乗じた値を予測値として用いることができる。この
予測器を用いると、入力信号の周波数特性によらず、精
度良い予測を行うことができる。
If the input signal has periodicity, it is predicted that the signal part at the current time of the flash will be similar to the signal sequence of the past similar part, so the average amplitude ratio is applied to the next signal value of the past similar part. The multiplied value can be used as a predicted value. By using this predictor, accurate prediction can be made regardless of the frequency characteristics of the input signal.

〔実施例〕〔Example〕

第1図は本発明による予測器の一実施例である。 FIG. 1 is an embodiment of a predictor according to the present invention.

1は入力端子、2は記憶回路、3はオーバーサンプリン
グ回路、4は記憶回路、5は相関係数計算部、6は最大
値検出回路、7は乗算器、8は出力端子である。
1 is an input terminal, 2 is a storage circuit, 3 is an oversampling circuit, 4 is a storage circuit, 5 is a correlation coefficient calculating section, 6 is a maximum value detection circuit, 7 is a multiplier, and 8 is an output terminal.

現標本時刻をjとおくと、信号X (j)が入力端子1
から入力される。記憶回路2は過去り個の信号Xを保存
する。つまり、信号X(j−L)は破棄され、Xl−L
+1)からX(j)の信号が記憶回路2に蓄えられる。
Letting the current sample time be j, the signal X (j) is input to input terminal 1.
Input from The memory circuit 2 stores the past signals X. That is, the signal X(j-L) is discarded and Xl-L
+1) to X(j) are stored in the memory circuit 2.

また、入力信号XN)はオーバーサンプリング回路3に
入力される。オーバーサンプリング回路3は入力信号の
標本化周波数を整数倍にするものであり、本実施例では
2倍の例を示す。オーバーサンプリング回路3は、ゼロ
挿入回路31と低域通過フィルタ32から構成されてい
る。ゼロ挿入回路31は標本化信号列の間に1つおきに
ゼロの値を挿入し、標本化周波数F、を信号X (j)
の2倍にした信号X2 (j)を出力する。信号X2 
(、r)のゼロからF、/4までの周波数スペクトラム
は信号X(j)の周波数スペクトラムに等しい。信号X
2 <j)のFs/4からF2/2までの周波数スペク
トラムは信号X(j)の周波数スペクトラムを折り返し
たものに等しい。低域通過フィルタ32は、信号X2(
j)のF、/4からF2/2までの周波数成分を減衰さ
せ、周波数成分が信号X(j)の周波数成分にほぼ等し
く、標本化周波数のみが異なる信号XLを出力する。こ
の低域通過フィルタ32の設計方法等の詳細は前記株式
会社コロナ社発行の「ディジタル信号処理の理論Jのデ
ィジタルフィルタ理論に詳しい。低域通過フィルタ32
の入出力に生じる遅延時間をSとおくと、オーバーサン
プリング回路3は1つの信号X(j)に対して、2つの
信号XL N−5−(1/2))とXI、(j−s)を
出力する。記憶回路4はオーバーサンプリングされた信
号XLを過去2に個分、つまり、XL(j −s−に+
 (1/2))からXLN−s)まで保存する。オーバ
ーサンプリングしているので信号XLの標本化時間は0
.5単位となる。相関係数計算部5は、記憶回路2に保
存されている現標本時刻jから過去り個の信号とオーバ
ーサンプリングされた信号XLとの相関の評価、および
、平均振幅比を求める。本実施例では相似の評価として
、相関係数P (t、)を次式のように計算する。
Further, the input signal XN) is input to the oversampling circuit 3. The oversampling circuit 3 multiplies the sampling frequency of the input signal by an integral number, and in this embodiment, an example in which the sampling frequency is doubled is shown. The oversampling circuit 3 includes a zero insertion circuit 31 and a low-pass filter 32. The zero insertion circuit 31 inserts a zero value every other time between the sampling signal strings, and converts the sampling frequency F into the signal X (j)
It outputs a signal X2 (j) which is twice the value. Signal X2
The frequency spectrum of (,r) from zero to F,/4 is equal to the frequency spectrum of signal X(j). signal
The frequency spectrum from Fs/4 to F2/2 for 2<j) is equal to the folded frequency spectrum of the signal X(j). The low-pass filter 32 filters the signal X2 (
The frequency components from F,/4 to F2/2 of signal X(j) are attenuated, and a signal XL whose frequency components are approximately equal to those of signal X(j) and differs only in sampling frequency is output. For details on the design method of this low-pass filter 32, please refer to the above-mentioned "Digital Filter Theory in Theory of Digital Signal Processing J" published by Corona Co., Ltd.
Letting S be the delay time that occurs in the input and output of ) is output. The storage circuit 4 stores the oversampled signal XL in the past two times, that is, XL(j −s− +
(1/2)) to XLN-s). Since oversampling is performed, the sampling time of signal XL is 0.
.. It will be 5 units. The correlation coefficient calculation unit 5 evaluates the correlation between the oversampled signal XL and the past signals from the current sample time j stored in the storage circuit 2, and calculates the average amplitude ratio. In this embodiment, as an evaluation of similarity, a correlation coefficient P (t,) is calculated as shown in the following equation.

ここで、XIおよびx2はそれぞれ次式のようにX(j
−に+1)からX (j)の信号、および、XL(む−
に+1)からXL (t)の信号の平均値である。
Here, XI and x2 are respectively X(j
− to +1) to X (j) signal, and XL(mu−
+1) to XL (t).

である。It is.

相関係数P (t)は信号の直流成分を取除いた成分の
相似の程度を示す。従って、相関係数を求める区間に直
流成分が重畳している場合においても、直流成分に影響
を受けることなしに相似の程度を計算することができる
。値としては−1から1の間の値をとり、その絶対値が
1に近いほど2つの波形が相似となる。P(t、)が正
のときは2つの波形が同位相であり、負のときは逆位相
であることを示している。
The correlation coefficient P (t) indicates the degree of similarity of the components of the signal from which the DC component is removed. Therefore, even if a DC component is superimposed on the interval for which the correlation coefficient is calculated, the degree of similarity can be calculated without being influenced by the DC component. The value takes a value between -1 and 1, and the closer the absolute value is to 1, the more similar the two waveforms are. When P(t,) is positive, the two waveforms are in phase, and when P(t,) is negative, it indicates that they are in opposite phases.

平均振幅比AC(t)は、記憶回路2に保存されている
現標本時刻jから過去り個の信号とオーバーサンプリン
グされた信号XLの信号との振幅の比の平均値であり、
次式のように電力の比の平方根を用いる。
The average amplitude ratio AC(t) is the average value of the amplitude ratios of the past signals from the current sample time j stored in the storage circuit 2 and the oversampled signal XL,
The square root of the power ratio is used as shown in the following equation.

・ ・ ・(8) 記憶回路4に保存されている信号XLは2に個であるの
で、相関係数計算部5はP (j−s−に+ (L/2
))からP(j−s)までの(2に−L+1)個の相関
係数Pおよび平均振幅比ACを計算し、最大値検出回路
6に出力する。最大値検出回路6は前記の(2に−L+
1)個の相関係数Pの中からPの絶対値が最大となる時
刻Mを求め、時刻M、相関係数P (M)および平均振
幅比AC(M)を出力する。信号Xと信号XLの関係は
第2図に示すようになる。第2図(a)は記憶回路2内
の信号Xを、第2図(b)は記憶回路4内の信号XLを
示している。標本時刻j−に+1から現標本時刻jまで
の信号の標本比値系列に標本比値系列が最も相似になる
ようにオーバーサンプリングされた過去の信号列XL 
(M−(L/2)+(1/2))からXL(M)の区間
Cが選ばれる。
・ ・ ・(8) Since the number of signals XL stored in the memory circuit 4 is 2 times, the correlation coefficient calculation unit 5 calculates P (j−s−+(L/2
)) to P(j-s) (2 to -L+1) correlation coefficients P and average amplitude ratio AC are calculated and output to the maximum value detection circuit 6. The maximum value detection circuit 6 is connected to the above-mentioned (2 to -L+
1) Find the time M at which the absolute value of P is maximum from among the correlation coefficients P, and output the time M, the correlation coefficient P (M), and the average amplitude ratio AC (M). The relationship between signal X and signal XL is as shown in FIG. 2(a) shows the signal X in the memory circuit 2, and FIG. 2(b) shows the signal XL in the memory circuit 4. A past signal sequence XL that has been oversampled so that the sample ratio value series is most similar to the sample ratio value series of the signal from +1 at sample time j- to the current sample time j.
Section C of XL(M) is selected from (M-(L/2)+(1/2)).

人力信号に周期性があるとき、火種本時刻の信号X(j
+1)も過去の標本時刻M+1の信号XL(M+1)に
相似になると予測されるので、信号XL(M+1)に平
均振幅比AC(M)と相関係数P (M)の符号を乗じ
た値を信号X (j+1)の予測値信号XP (j+1
)として用いることができる。従って、乗算器7は記憶
回路4に保存されている信号XL(M+1)と平均振幅
比AC(M)と相関係数P (M)の符号の積を求め、
火種本時刻j−1−1の入力信号の予測値XP(j+1
)として出力端子8から出力する。
When the human signal has periodicity, the signal X(j
+1) is predicted to be similar to the signal XL(M+1) at the past sample time M+1, so the value obtained by multiplying the signal XL(M+1) by the average amplitude ratio AC(M) and the sign of the correlation coefficient P(M) is the predicted value signal XP (j+1) of the signal X (j+1)
) can be used as Therefore, the multiplier 7 calculates the product of the signal XL(M+1) stored in the storage circuit 4, the average amplitude ratio AC(M), and the sign of the correlation coefficient P(M),
Predicted value XP(j+1
) from the output terminal 8.

〔発明の効果] 本発明によれば、入力信号列をオーバーサンプリングし
た信号列から現標本時刻近傍の波形と相似の部分を相関
係数により見つけ出し、過去の信号を用いて予測値を求
めるので、入力信号に周期性がある場合、入力信号の周
波数特性によらず、予測精度が高精度になるまでの収束
時間を必要とせずに精度良い予測を行うことができる。
[Effects of the Invention] According to the present invention, a portion similar to the waveform near the current sample time is found from a signal sequence obtained by oversampling an input signal sequence using a correlation coefficient, and a predicted value is obtained using a past signal. When the input signal has periodicity, accurate prediction can be performed without requiring a convergence time until the prediction accuracy becomes highly accurate, regardless of the frequency characteristics of the input signal.

また、保存する入力信号に対してオーバーサンプリング
を行うので、入力信号の標本化周波数が予測精度へ与え
る影響を軽減できる。
Furthermore, since oversampling is performed on the input signal to be stored, the influence of the sampling frequency of the input signal on prediction accuracy can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、 第2図は記憶回路に保存されている信号X、および記憶
回路に保存されている信号XLを示す図、第3図は従来
の適用予測器を示す図である。 1・・・・・入力端子 2・・・・・記憶回路 3・・・・・オーバーサンプリング回路31・・・・・
ゼロ挿入回路 32・・・・・低域通過フィルタ 4・・・・・記憶回路 5・・・・・相関係数計算部 6・・・・・最大値検出回路 7・・・・・乗算器 8 ・出力端子
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a signal X stored in a storage circuit, and a signal XL stored in a storage circuit, and FIG. 3 is a diagram showing a conventional application prediction. FIG. 1... Input terminal 2... Memory circuit 3... Oversampling circuit 31...
Zero insertion circuit 32...Low pass filter 4...Storage circuit 5...Correlation coefficient calculation section 6...Maximum value detection circuit 7...Multiplier 8 ・Output terminal

Claims (1)

【特許請求の範囲】[Claims] (1)入力信号を保存する第1の記憶回路と、前記入力
信号の標本化周波数を整数倍するオーバーサンプリング
回路と、 前記オーバーサンプリング回路の出力信号を保存する第
2の記憶回路と、 前記第1の記憶回路内の信号と前記第2の記憶回路内の
信号間の相関係数および平均振幅比を求める相関係数計
算部と、 前記相関係数の絶対値が最大となるときの時刻を選択す
る最大値検出回路と、 前記時刻の平均振幅比と前記時刻の相関係数の符号と前
記第2の記憶回路内の前記時刻の1標本時刻後の信号と
の積を求める乗算器とから構成されることを特徴とする
予測器。
(1) a first storage circuit that stores an input signal; an oversampling circuit that multiplies the sampling frequency of the input signal by an integer; a second storage circuit that stores the output signal of the oversampling circuit; a correlation coefficient calculation unit that calculates a correlation coefficient and an average amplitude ratio between a signal in the first storage circuit and a signal in the second storage circuit; a maximum value detection circuit to select; and a multiplier that calculates the product of the average amplitude ratio at the time, the sign of the correlation coefficient at the time, and a signal one sample time after the time in the second storage circuit. A predictor comprising:
JP18447389A 1989-07-19 1989-07-19 Prediction device Pending JPH0350909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18447389A JPH0350909A (en) 1989-07-19 1989-07-19 Prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18447389A JPH0350909A (en) 1989-07-19 1989-07-19 Prediction device

Publications (1)

Publication Number Publication Date
JPH0350909A true JPH0350909A (en) 1991-03-05

Family

ID=16153782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18447389A Pending JPH0350909A (en) 1989-07-19 1989-07-19 Prediction device

Country Status (1)

Country Link
JP (1) JPH0350909A (en)

Similar Documents

Publication Publication Date Title
Vainio et al. Noise reduction in zero crossing detection by predictive digital filtering
Vainio et al. Digital filtering for robust 50/60 Hz zero-crossing detectors
EP0437861B1 (en) Signal processing method and system.
KR100210730B1 (en) Digital interpolating circuit
KR950015183B1 (en) Apparatus for estimating the square root of digital samples
Dragotti et al. Exact sampling results for signals with finite rate of innovation using Strang-Fix conditions and local kernels
US6947508B2 (en) Method and apparatus for estimating the frequency and/or phase of a digital signal
JPH0350909A (en) Prediction device
JP2019525502A (en) Digital filter with trust input
JPH05281996A (en) Pitch extracting device
JP4488496B2 (en) Signal processing method and signal processing apparatus
JPH0236617A (en) Prediction device
JPH0350910A (en) Prediction device
JPH0350911A (en) Prediction device
JPS6340367B2 (en)
JPH0236616A (en) Prediction device
JPH10322168A (en) Adaptive finite impulse response filter integrated circuit
JPH0350912A (en) Prediction device
JPH10160507A (en) Peak detecting device
JPH06244678A (en) Digital filter circuit
JP3986457B2 (en) Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor
JP2003289671A (en) Control device for three-phase pwm rectifier
JP3125225B2 (en) Digital / analog converter
JPH07143361A (en) Ringing eliminating device
JPH0758734A (en) Digital data detector