JP3986457B2 - Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor - Google Patents

Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor Download PDF

Info

Publication number
JP3986457B2
JP3986457B2 JP2003090922A JP2003090922A JP3986457B2 JP 3986457 B2 JP3986457 B2 JP 3986457B2 JP 2003090922 A JP2003090922 A JP 2003090922A JP 2003090922 A JP2003090922 A JP 2003090922A JP 3986457 B2 JP3986457 B2 JP 3986457B2
Authority
JP
Japan
Prior art keywords
filter
matrix
output
signal
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003090922A
Other languages
Japanese (ja)
Other versions
JP2004295039A (en
Inventor
正人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003090922A priority Critical patent/JP3986457B2/en
Publication of JP2004295039A publication Critical patent/JP2004295039A/en
Application granted granted Critical
Publication of JP3986457B2 publication Critical patent/JP3986457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は例えば室内での音声収録等の際に、収録音声品質劣化の主要因である残響歪みを低減し明瞭性低下を防ぐ収音技術や移動無線受信時、ビル・高速道路等に起因するマルチパス歪みを低減し、良好な音声品質を維持する受話技術等に用いられ、1入力多出力線形系において、出力信号が系の伝達関数に起因する歪みを伴う場合に、伝達関数固有の事前情報を用いず、入力信号を高精度にブラインド(Blind)推定する方法、及び装置、入力信号推定プログラム、ならびにその記録媒体に関する。
【0002】
【従来の技術】
この種の従来技術として特許文献1に示すものが知られている。これを図5を参照して簡単に説明する。1入力2出力線形系11の入力端12に、時刻nの入力信号u(n)が入力され、この入力信号は1入力2出力線形系11の出力端に設けられた2個のセンサ131 ,132 で電気信号として検出される。センサ131 ,132 の各出力信号は遅延器141 ,142 でそれぞれ1サンプル遅延され、フィルタ151 ,152 へ供給される。フィルタ151 ,152 でフィルタ処理された出力信号は加算器16で互いに加算され、この加算出力が減算器17でセンサ131 の出力信号より差し引かれる。この減算器17の出力信号y(n)と遅延器141 ,142 よりの各遅延出力信号とがフィルタ計算部18へ供給され、フィルタ計算部18で出力信号y(n)の二乗平均値を最小化するようにフィルタ151 ,152 の伝達関数が計算され、これら伝達関数がフィルタ151 ,152 に設定される。
【0003】
入力端12の入力信号u(n)が次の関係を満足する場合、減算器17の出力信号y(n)は入力信号u(n)に一致し、入力信号は精度良く推定される。つまり次式が成立して残響音の影響を受けない入力信号u(n)を出力信号y(n)として得られる。
E{u(n)u(n−j)}=1(j=0) (1a)
E{u(n)u(n−j)}=0(j≠0) (1b)
但し、E{ }:平均
【0004】
【特許文献1】
特許第3341811号公報(平成14年11月5日発行)
【非特許文献1】
児玉,須田,システム制御のためのマトリクス理論,コロナ社,1978年
【0005】
【発明が解決しようとする課題】
この従来の技術は入力信号がランダムな信号の場合は良好な結果が得られる。
しかし、入力信号u(n)の生成過程が自己回帰(AR:autoregressive)過程である場合、減算器17の出力信号y(n)は入力信号u(n)に一致せず、入力信号u(n)は正確には推定されない。この理由は以下の様に説明される。入力信号u(n)のAR生成過程の係数をa1 ,…,ap とすれば、入力信号u(n)は次の関係を満足する。

Figure 0003986457
但し、a(z)=a1 -1+a2 -2+…+ap -p
または、
【数1】
Figure 0003986457
=E{ n T n-1 }(E{ n-1 T n-1 })-1 (2c)
但し、e(n):線形予測誤差, T:転置
【0006】
入力端12とセンサ131 ,132 との間の各伝達関数h1(z),h2(z)(z:複素変数)及びフィルタ151 ,152 の各伝達関数w1(z),w2(z)をそれぞれ次の様に表す。
Figure 0003986457
但し、hj(z)(j=1,2)は共通零点を持たない。
【0007】
この時、減算器17の出力信号y(n)は次の様に表される。
【数2】
Figure 0003986457
フィルタ15j の次数Lと系11の伝達関数の次数mとの関係をL≧m−1と定め、減算器17の出力信号y(n)の二乗平均値E{|y(n+1)|2 }を最小化すると、式(2c)より、フィルタ151 ,152 の伝達関数を表すベクトルは次の様に求められる。
Figure 0003986457
但し、s2 :小さな正数、:単位行列
【0008】
ここで(E{ n-1 T n-1 T +s2 -1:行列E{ n-1 T n-1 T の擬似逆行列
2 を十分小さな正数とする事より、式(5)の関係は次の様に整理される(非特許文献1、339頁)。
【数3】
Figure 0003986457
但し、 + :行列のMoore-Penrose一般逆行列, n-1 T n-1 =E
n-1 T n-1
式(5)を式(4)へ代入し式(2b)の関係を用いれば、出力信号y(n)は次の様に求められる。
Figure 0003986457
【0009】
このようにy(n)はu(n)とならない、つまりAR過程より生成される入力信号u(n)は特許文献1に示す技術では推定されない。
この発明の目的は、室内音声収音等の1入力多出力線形系において、系の伝達関数に関わる事前情報を用いず、各センサの出力信号のみから、AR過程より生成される入力信号でも高精度にブラインド(Blind)推定する方法、及び装置、そのプログラム及び記録媒体を提供することである。
【0010】
【課題を解決するための手段】
この発明によれば、1入力多出力線形系の出力端に備える第1,第2,…,第Nのセンサの出力信号各々に1サンプルの遅延を付与し、上記N個の出力信号と上記N個の遅延信号を用いてN個の前段フィルタ伝達関数と1個の後段フィルタ伝達関数を計算し、上記N個の遅延信号をそれぞれ上記N個の前段フィルタ伝達関数をフィルタ処理し、これらフィルタ処理した信号を加算し、この加算信号を前記第1センサの出力信号から減算し、この減算信号を上記後段フィルタ伝達関数でフィルタ処理する。
【0011】
フィルタ伝達関数の計算は例えば次のように求めることができる。N個の遅延信号の自己相関行列を求め、更にこの自己相関行列の擬似逆行列を求め、また上記N個の遅延信号と上記N個のセンサの各出力信号との相互相関行列を求め、上記自己相関行列の擬似逆行列と上記相互相関行列との積行列を求める。この積行列の第1行のN個の成分を上記N個の前段フィルタ伝達関数とする。また、上記積行列の特性方程式を求め、これより上記AR生成過程の分母多項式と同等な多項式±{1−a(z)}を求め、この多項式の逆元±1/(1−a(z))を求めて後段フィルタ伝達関数とする。この後段フィルタ22で前記減算信号h1:0 e(n)が処理され、その処理結果としてe(n)は式(2a)の関係から、次式(8)に示す様に入力信号u(n)に比例する信号h1:0 u(n)が得られる。
±1/(1−a(z))h1:0 e(n)=±h1:0 u(n) (8)
即ち、系への入力信号は高精度に推定される。
【0012】
【発明の実施の形態】
以下、図面を用いてこの発明の実施の形態を説明する。この発明の入力信号推定装置の実施形態の機能構成を図1に示す。1入力2出力線形系11の入力端12に入力された、時刻nの入力信号u(n)が出力端の2個のセンサ131 ,132 で電気信号として検出され、これら各センサ出力信号は遅延器141 ,142 で1サンプル遅延され、これら遅延信号は前段フィルタ211 ,212 でフィルタ処理され、これらフィルタ出力信号は加算器16で加算されこの加算信号が第1センサ131 の出力信号より減算器17で差し引かれ、この減算信号が後段フィルタ22でフィルタ処理される。フィルタ計算部23でセンサ131 ,132 の各出力信号と遅延器141 ,142 の各遅延信号に基づき、前段フィルタ伝達関数 1 2 、後段フィルタ伝達関数を計算し、これら伝達関数が前段フィルタ211 ,212 、後段フィルタ22にそれぞれセットされる。
【0013】
フィルタ計算
フィルタ計算部23の機能構成例を図2に示す。
遅延器141 ,142 の各出力信号より自己相関計算部24で自己相関行列 A が計算され、この擬似逆行列( A +s2 -1が擬似逆行列計算部25で計算される。遅延器141 ,142 の各出力信号とセンサ131 ,132 の各出力信号との相互相関行列 c が相互相関計算部26で計算される。
【0014】
上記擬似逆行列 A -と相互相関行列 c との積行列 c( A +s2 -1が乗算部27で計算される。この積行列の第1行の2個の成分が前段フィルタ伝達関数 1 2 として前段フィルタ211 ,212 にセットされる。更に積行列の特性多項式が多項式計算部28で計算され、その特性多項式中の、AR生成過程の分母多項式と同等な多項式の逆元が逆元計算部29で計算され、後段フィルタ伝達関数wF として後段フィルタ22にセットされる。
【0015】
次にフィルタ計算部23での処理を詳細に説明する。系11への入力信号u(n)、及びu(n)を生成するAR過程、系11の伝達関数hj(z)、前段フィルタ21 j(j=1,2)の伝達関数wj(z)、及びhj(z)の次数mとwj(z)の次数Lとの関係は、それぞれ前記の式(2)〜(5)の場合と同じとする。遅延器141 ,142 の出力信号より得られる自己相関行列RA は、次式(9)の計算により自己相関計算部24の計算で求められる。
A =HE{un-1 T n-1 }HT (9)
擬似逆行列RA -を逆行列計算部25で求めるとRAは(RA +s2I)-1となり、この擬似逆行列に、式(9)を代入すると、次式(10)に示すように式(5)中の逆行列の部と同一になる。
A -=(RA+s2I)-1=(HE{un-1 Tn-1}HT+s2 I)-1 (10)
【0016】
相互相関行列 C は、遅延器141 ,142 、及びセンサ131 ,132 の各出力より、次式(11)の計算により相互相関計算部26で求められる。
C E{ n-1 T n T (11)
よって、乗算部27で計算される積行列は次式(12)の様になる。
Figure 0003986457
式(12)に式(2c)の関係を代入し、s2 を十分小さな正数とする事より、式(6)と同様に、式(12)の関係は次の様に整理される。
【数4】
Figure 0003986457
【0017】
この積行列の第1行 1rの各成分が先に前段フィルタ211 ,212 にそれぞれ伝達関数としてセットされるが、この積行列の第1行は従来技術の項で述べたサンプル遅延信号をフィルタ処理するフィルタ151 ,152 の伝達関数ベクトル、つまり式(6)に等しい。
Figure 0003986457
従って、遅延器141 ,142 の出力遅延信号を前段フィルタ211 ,212 でそれぞれフィルタ処理し、これら前段フィルタ211 ,212 の出力信号の加算信号を第1センサ131 の出力信号より減算して得られる減算器17の出力信号y(n)は系11への入力信号u(n)の生成過程がAR過程である場合、式(7)に示したように式(2a)で示されるその入力信号u(n)を生成するAR過程1/(1−a(z))を駆動する線形予測誤差e(n)に比例した信号h1:0 e(n)になる。
【0018】
ところで積行列の零でない固有値λi}は次の関係を満足する(非特許文献1、166〜167頁)。
Figure 0003986457
行列の特性多項式cc(z)は、式(2b)より、次の様に求まる。
Figure 0003986457
式(15)の関係があるから、積行列は行列に対し1行の要素が2(L+1)−pだけ多いから、の特性多項式cw(z)は次の様に表される。
Figure 0003986457
【0019】
上記特性多項式cw(z)にz-2(L+1)を乗ずる事より、式(2a)に示すAR生成過程の分母多項式に同等な多項式±{1−a(z)}を得ることができる。実際には多項式計算部28で積行列Wの特性多項式cw(z)を計算し、その中のAR生成過程の分母多項式と同等な多項式±{1−a(z)}を取り出し、この多項式の逆元±1/(1−a(z))を逆元計算部29で計算する。
この逆元±1/(1−a(z))=wF を後段フィルタに伝達関数wF としてセットする。減算器17の出力信号h1:0e(n)は後段フィルタ22でフィルタ処理される。この処理により式(8)が演算され、系11の入力信号u(n)に比例する信号±h1:0u(n)が得られる。即ち、系11への入力信号が高精度に推定される。
【0020】
次にこの発明の方法を図1に示した1入力2出力線形系11に適用した実施形態を図3を参照して簡単に説明する。この方法の各手順を、図4に簡略に示すコンピュータにより実行させることを想定する。
センサ131 ,132 の出力信号を図に示してないが通常はそれぞれ一定周期で標本化してディジタル信号系列としてインタフェース31を通して記憶部32に一旦取り込む(S1)。これらセンサ出力信号に対し、それぞれ1サンプルの遅延を付与し(S2)、これら遅延信号と、センサ出力信号とに基づき前段フィルタ伝達関数 1 2 及び後段フィルタ伝達関数wF を計算する(S3)。
【0021】
つまり例えば図2に示した処理と同様に両遅延信号の自己相関行列 A E{ n-1 T n-1 T を計算し(S3−1)、更にその擬似逆行列 A -=( A +s2 -1を計算して一時記憶する(S3−2)。また両センサ出力信号と両遅延信号との相互相関行列 C E{ n-1 T n T を計算し(S3−3)、相互相関行列 Cと擬似逆行列 A -との積行列を計算する(S3−4)。この積行列の第1行の各成分をそれぞれ前段フィルタ伝達関数 1 2 として記憶する(S3−5)。
【0022】
また積行列の特性多項式cw(z)を計算し(S3−6)、その特性多項式中のAR生成過程の分母多項式に同等な多項式の逆元±1/(1−a(z))を計算し、これを後段フィルタ伝達関数wF として記憶する(S3−7)。
このようにして前段フィルタ伝達関数と後段フィルタ伝達関数を求めた後、各遅延信号を対応する前段フィルタ伝達関数 1 2 を用いてフィルタ処理し(S4)、これら前段フィルタ処理された信号を加算し(S5)、この加算信号を第1センサ出力信号から差し引き(S6)、その差し引かれた信号に対し後段フィルタ伝達関数wF でフィルタ処理し(S7)、その結果を出力部33を通じて出力する(S8)。
【0023】
この図3に示す各過程をコンピュータに実行させるための入力信号推定プログラムをCD−ROM、磁気ディスクなどの記録媒体から、あるいは通信回線を介してプログラムメモリ34にダウンロードして、中央演算処理部(CPU)により、プログラムメモリ34に格納されているプログラムを実行させればよい。
入力信号u(n)の生成方法が決れば、後段フィルタ伝達関数wF は一定であるから、最初に1回計算して、図1では後段フィルタ22にセットし、図3では記憶しておけばよい。前段フィルタ伝達関数 1 2 は信号源、センサの配置の変更、その系11内の空間の変更があれば、その都度、計算する必要がある。従って、前段フィルタ伝達関数は適当な間隔で計算して、適応的に変化させるとよい。
【0024】
上述では1入力2出力線形系を対象としているが、1入力N出力線形系(Nは2以上の整数)を対象とする際には、センサ数、遅延器数、及び遅延器の出力を処理するフィルタ数をそれぞれNへ変更し、これらフィルタの伝達関数の次数Lと系の伝達関数の次数mとの関係をL(m−1)/Nとすれば良く、上記フィルタ演算部23の計算原理や、減算器17の出力を処理する後段フィルタ22の処理、及び効果は変わらない。また入力信号u(n)としてはAR生成過程に基づき生成されたものに限らない。またこの発明は室内の音声収録に限らず、移動無線におけるマルチパスによる影響の除去にも適用でき、その場合はセンサとしてアンテナが用いられ、そのアンテナ出力信号はベースバンド信号に変換されて、前述した場合と同様に処理される。その他同様の問題に対しこの発明を適用することができる。
【0025】
【発明の効果】
以上説明した様に、この発明によれば、AR過程より生成される信号が1入力多出力線形系へ入力される際にも、系の出力端に備える複数センサの各出力を遅延させ、これら遅延信号それぞれをフィルタ処理した後加算し、第1センサの出力より減算して得られる信号(上記AR過程を駆動する線形予測誤差)を、AR過程の分母多項式に同等な多項式の逆元に相当する伝達関数によりフィルタで処理する事より、系への入力信号を高精度に推定する事が出来る。
【図面の簡単な説明】
【図1】この発明の一実施形態に係る入力信号推定装置の機能構成を示すブロック図。
【図2】図1中のフィルタ計算部23の具体的機能構成を示すブロック図。
【図3】この発明の方法の実施形態を示す流れ図。
【図4】コンピュータの機能構成を簡略に示すブロック図。
【図5】従来の入力信号推定装置の機能構成を示すブロック図。[0001]
BACKGROUND OF THE INVENTION
This invention is caused by, for example, sound collection technology for reducing reverberation distortion, which is the main cause of quality deterioration of recorded sound, and for preventing intelligibility deterioration, such as buildings and highways when receiving mobile radios, for example, when recording sound in a room It is used for reception technology that reduces multipath distortion and maintains good speech quality. In a single-input multi-output linear system, when the output signal is distorted due to the transfer function of the system, the transfer function-specific prior The present invention relates to a method and apparatus for blindly estimating an input signal with high accuracy without using information, an input signal estimation program, and a recording medium thereof.
[0002]
[Prior art]
As this type of prior art, the one disclosed in Patent Document 1 is known. This will be briefly described with reference to FIG. An input signal u (n) at time n is input to the input terminal 12 of the 1-input 2-output linear system 11, and this input signal is supplied to two sensors 13 1 provided at the output terminal of the 1-input 2-output linear system 11. 13 2 is detected as an electrical signal. Sensor 13 1, 13 the output signals of the two are respectively one sample delayed by the delay unit 14 1, 14 2, it is supplied to the filter 15 1, 15 2. The output signals filtered by the filters 15 1 and 15 2 are added to each other by the adder 16, and this added output is subtracted from the output signal of the sensor 13 1 by the subtractor 17. The output signal y (n) of the subtractor 17 and the delayed output signals from the delay units 14 1 and 14 2 are supplied to the filter calculation unit 18, and the filter calculation unit 18 uses the mean square value of the output signal y (n). the calculated transfer function of the filter 15 1, 15 2 so as to minimize, these transfer functions are set in the filter 15 1, 15 2.
[0003]
When the input signal u (n) at the input terminal 12 satisfies the following relationship, the output signal y (n) of the subtractor 17 matches the input signal u (n), and the input signal is estimated with high accuracy. That is, the following equation is established and the input signal u (n) that is not affected by the reverberant sound is obtained as the output signal y (n).
E {u (n) u (n−j)} = 1 (j = 0) (1a)
E {u (n) u (n−j)} = 0 (j ≠ 0) (1b)
However, E {}: Average [0004]
[Patent Document 1]
Japanese Patent No. 3341811 (issued on November 5, 2002)
[Non-Patent Document 1]
Kodama, Suda, Matrix theory for system control, Corona, 1978
[Problems to be solved by the invention]
This conventional technique can provide good results when the input signal is a random signal.
However, when the generation process of the input signal u (n) is an autoregressive (AR) process, the output signal y (n) of the subtractor 17 does not match the input signal u (n), and the input signal u (n n) is not estimated accurately. The reason for this is explained as follows. If the coefficients of the AR generation process of the input signal u (n) are a 1 ,..., A p , the input signal u (n) satisfies the following relationship.
Figure 0003986457
However, a (z) = a 1 z −1 + a 2 z −2 +... + A p z −p
Or
[Expression 1]
Figure 0003986457
C = E {u n T u n-1} (E {u n-1 T u n-1}) -1 (2c)
Where e (n): linear prediction error, T : transpose
Transfer functions h 1 (z) and h 2 (z) (z: complex variable) between the input terminal 12 and the sensors 13 1 and 13 2 and the transfer functions w 1 (z) of the filters 15 1 and 15 2 , W 2 (z) are expressed as follows.
Figure 0003986457
However, h j (z) (j = 1, 2) does not have a common zero.
[0007]
At this time, the output signal y (n) of the subtractor 17 is expressed as follows.
[Expression 2]
Figure 0003986457
The relationship between the order L of the filter 15 j and the order m of the transfer function of the system 11 is determined as L ≧ m−1, and the root mean square value E {| y (n + 1) | 2 of the output signal y (n) of the subtractor 17. } Is minimized, the vector w representing the transfer functions of the filters 15 1 and 15 2 is obtained as follows from the equation (2c).
Figure 0003986457
Where s 2 is a small positive number, I is a unit matrix
Here (H E {u n-1 T u n-1} H T + s 2 I) -1: a matrix H E {u n-1 T u n-1} pseudoinverse s 2 of H T sufficiently small By taking a positive number, the relationship of equation (5) is arranged as follows (Non-Patent Document 1, page 339).
[Equation 3]
Figure 0003986457
However, A +: Moore-Penrose generalized inverse matrix of the matrix A, U n-1 T U n-1 = E
{ U n-1 T u n-1 }
By substituting equation (5) into equation (4) and using the relationship of equation (2b), the output signal y (n) can be obtained as follows.
Figure 0003986457
[0009]
Thus, y (n) does not become u (n), that is, the input signal u (n) generated from the AR process is not estimated by the technique shown in Patent Document 1.
An object of the present invention is to use an input signal generated from an AR process only from an output signal of each sensor without using prior information related to a transfer function of the system in a one-input multi-output linear system such as room sound pickup. To provide a method and apparatus for estimating blindness with accuracy, a program thereof, and a recording medium.
[0010]
[Means for Solving the Problems]
According to the present invention, a delay of one sample is given to each of the output signals of the first, second,..., Nth sensors provided at the output end of the one-input multi-output linear system, and the N output signals and the above-mentioned N delay signals are used to calculate N preceding filter transfer functions and one succeeding filter transfer function, and the N delayed signals are filtered to the N preceding filter transfer functions, respectively. The processed signals are added, the added signal is subtracted from the output signal of the first sensor, and the subtracted signal is filtered by the post-filter transfer function.
[0011]
The filter transfer function can be calculated as follows, for example. Obtain an autocorrelation matrix of N delayed signals, further obtain a pseudo inverse matrix of the autocorrelation matrix, obtain a cross correlation matrix between the N delayed signals and the output signals of the N sensors, A product matrix of the pseudo inverse matrix of the autocorrelation matrix and the cross-correlation matrix is obtained. The N components in the first row of the product matrix are defined as the N preceding-stage filter transfer functions. Further, a characteristic equation of the product matrix is obtained, and from this, a polynomial ± {1-a (z)} equivalent to the denominator polynomial in the AR generation process is obtained, and an inverse element ± 1 / (1-a (z) of this polynomial is obtained. )) To obtain the subsequent filter transfer function. The subtracted signal h 1: 0 e (n) is processed by the post-stage filter 22, and as a result of the processing, e (n) is obtained from the relationship of the equation (2a) as shown in the following equation (8). A signal h 1: 0 u (n) proportional to n) is obtained.
± 1 / (1-a (z)) h 1: 0 e (n) = ± h 1: 0 u (n) (8)
That is, the input signal to the system is estimated with high accuracy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a functional configuration of an embodiment of the input signal estimation apparatus of the present invention. An input signal u (n) at time n input to the input terminal 12 of the one-input two-output linear system 11 is detected as an electrical signal by the two sensors 13 1 and 13 2 at the output terminal, and each of these sensor output signals Is delayed by one sample by the delay units 14 1 and 14 2 , these delayed signals are filtered by the pre-filters 21 1 and 21 2 , and these filter output signals are added by the adder 16, and this added signal is the first sensor 13 1. Is subtracted by the subtracter 17, and the subtracted signal is filtered by the post-stage filter 22. Based on the output signals of the sensors 13 1 and 13 2 and the delayed signals of the delay devices 14 1 and 14 2 , the filter calculation unit 23 calculates the pre-stage filter transfer functions w 1 and w 2 and the post-stage filter transfer function, Functions are set in the pre-filters 21 1 and 21 2 and the post-filter 22 respectively.
[0013]
Filter calculation An example of the functional configuration of the filter calculation unit 23 is shown in FIG.
An autocorrelation matrix R A is calculated by the autocorrelation calculation unit 24 from the output signals of the delay devices 14 1 and 14 2 , and this pseudo inverse matrix ( R A + s 2 I ) −1 is calculated by the pseudo inverse matrix calculation unit 25. The A cross-correlation matrix R c between the output signals of the delay devices 14 1 and 14 2 and the output signals of the sensors 13 1 and 13 2 is calculated by the cross-correlation calculating unit 26.
[0014]
A multiplication unit 27 calculates a product matrix W = R c ( R A + s 2 I ) −1 of the pseudo inverse matrix R A and the cross-correlation matrix R c . Two components in the first row of the product matrix W are set in the pre-filters 21 1 and 21 2 as the pre-filter transfer functions w 1 and w 2 . Further, a characteristic polynomial of the product matrix W is calculated by the polynomial calculation unit 28, and an inverse element of a polynomial equivalent to the denominator polynomial in the AR generation process in the characteristic polynomial is calculated by the inverse element calculation unit 29, and the post-stage filter transfer function w F is set in the subsequent filter 22.
[0015]
Next, the processing in the filter calculation unit 23 will be described in detail. The input signal u (n) to the system 11 and the AR process for generating u (n), the transfer function h j (z) of the system 11, and the transfer function w j (of the pre-stage filter 21 j (j = 1, 2) The relationship between the order m of z) and h j (z) and the order L of w j (z) is the same as in the case of the above-described equations (2) to (5). The autocorrelation matrix R A obtained from the output signals of the delay devices 14 1 and 14 2 is obtained by calculation of the autocorrelation calculation unit 24 by calculation of the following equation (9).
R A = HE {u n-1 T u n-1 } H T (9)
When the pseudo inverse matrix R A − is obtained by the inverse matrix calculation unit 25, R A becomes (R A + s 2 I) −1 , and when the formula (9) is substituted into this pseudo inverse matrix, the following formula (10) is obtained. Thus, it becomes the same as the part of the inverse matrix in equation (5).
R A = (R A + s 2 I) −1 = (HE {un n−1 T u n−1 } H T + s 2 I) −1 (10)
[0016]
The cross-correlation matrix R C is obtained by the cross-correlation calculating unit 26 from the outputs of the delay devices 14 1 and 14 2 and the sensors 13 1 and 13 2 by the calculation of the following equation (11).
R C = H E {u n -1 T u n} H T (11)
Therefore, the product matrix W calculated by the multiplication unit 27 is expressed by the following equation (12).
Figure 0003986457
By substituting the relationship of equation (2c) into equation (12) and making s 2 a sufficiently small positive number, the relationship of equation (12) can be arranged as follows, as in equation (6).
[Expression 4]
Figure 0003986457
[0017]
Samples each component of the first row W 1r of the product matrix W but are set as respective transfer functions upstream filter 21 1, 21 2 above, the first row of the product matrix W is discussed in the section of the prior art It is equal to the transfer function vector w 1 of the filters 15 1 and 15 2 for filtering the delayed signal, that is, the expression (6).
Figure 0003986457
Therefore, delay unit 14 1, 14 front filter 21 1 to output delay signals of the 2, 21 2 filters respectively, these front filter 21 1, 21 a sum signal of the second output signal the first sensor 13 the first output signal When the generation process of the input signal u (n) to the system 11 is an AR process, the output signal y (n) of the subtractor 17 obtained by further subtraction is given by the expression (2a) as shown in the expression (7). The signal h 1: 0 e (n) proportional to the linear prediction error e (n) that drives the AR process 1 / (1-a (z)) that generates the input signal u (n) indicated by
[0018]
Incidentally, the non-zero eigenvalues λ i { W } of the product matrix W satisfy the following relationship (Non-Patent Document 1, pages 166 to 167).
Figure 0003986457
The characteristic polynomial c c (z) of the matrix C is obtained from the equation (2b) as follows.
Figure 0003986457
From a relationship of equation (15), since the product matrix W elements of one row to the matrix U is 2 (L + 1) -p by more, W of the characteristic polynomial c w (z) can be expressed as follows .
Figure 0003986457
[0019]
By multiplying the characteristic polynomial c w (z) by z −2 (L + 1) , a polynomial ± {1-a (z)} equivalent to the denominator polynomial in the AR generation process shown in Expression (2a) is obtained. Can do. Actually, the polynomial calculation unit 28 calculates the characteristic polynomial c w (z) of the product matrix W, and takes out the polynomial ± {1-a (z)} equivalent to the denominator polynomial in the AR generation process. Inverse element ± 1 / (1-a (z)) is calculated by the inverse element calculation unit 29.
This inverse element ± 1 / (1-a (z)) = w F is set as a transfer function w F in the subsequent filter. The output signal h 1: 0 e (n) of the subtractor 17 is filtered by the post filter 22. By this processing, equation (8) is calculated, and a signal ± h 1: 0 u (n) proportional to the input signal u (n) of the system 11 is obtained. That is, the input signal to the system 11 is estimated with high accuracy.
[0020]
Next, an embodiment in which the method of the present invention is applied to the one-input two-output linear system 11 shown in FIG. 1 will be briefly described with reference to FIG. It is assumed that each procedure of this method is executed by a computer schematically shown in FIG.
Although the output signals of the sensors 13 1 and 13 2 are not shown in the figure, they are usually sampled at regular intervals and once taken into the storage unit 32 through the interface 31 as a digital signal sequence (S1). Each sensor output signal is given a delay of one sample (S2), and the pre-stage filter transfer functions w 1 and w 2 and the post-stage filter transfer function w F are calculated based on these delay signals and the sensor output signal ( S3).
[0021]
That computes the autocorrelation matrix of the process as well as both the delay signal R A = H E {u n -1 T u n-1} H T shown in FIG. 2, for example (S3-1), further the pseudo-inverse matrix R A = ( R A + s 2 I ) −1 is calculated and temporarily stored (S3-2). Also by calculating the cross-correlation matrix R C = H E {u n -1 T u n} H T between the both sensor output signal and two delayed signals (S3-3), the cross-correlation matrix R C and the pseudo inverse matrix R A - calculating a product matrix W with (S3-4). Each component of the first row of the product matrix W is stored as the pre-stage filter transfer functions w 1 and w 2 (S3-5).
[0022]
Further, the characteristic polynomial c w (z) of the product matrix W is calculated (S3-6), and the inverse element ± 1 / (1-a (z)) of the polynomial equivalent to the denominator polynomial of the AR generation process in the characteristic polynomial Is stored as a post-stage filter transfer function w F (S3-7).
After obtaining the pre-stage filter transfer function and the post-stage filter transfer function in this way, each delayed signal is filtered using the corresponding pre-stage filter transfer functions w 1 and w 2 (S4), and these pre-filter processed signals are obtained. (S5), and subtracts the added signal from the first sensor output signal (S6), filters the subtracted signal with the post-stage filter transfer function w F (S7), and outputs the result through the output unit 33. Output (S8).
[0023]
An input signal estimation program for causing the computer to execute each process shown in FIG. 3 is downloaded to a program memory 34 from a recording medium such as a CD-ROM or a magnetic disk or via a communication line, and a central processing unit ( The CPU may execute a program stored in the program memory 34.
If the generation method of the input signal u (n) is determined, the post-stage filter transfer function w F is constant, so it is calculated once, set in the post-filter 22 in FIG. 1, and stored in FIG. Just keep it. The pre-stage filter transfer functions w 1 and w 2 need to be calculated each time there is a change in the signal source and sensor arrangement, and a change in the space in the system 11. Therefore, the pre-stage filter transfer function is preferably calculated at appropriate intervals and adaptively changed.
[0024]
In the above, a 1-input 2-output linear system is targeted. However, when a 1-input N-output linear system (N is an integer of 2 or more) is targeted, the number of sensors, the number of delay units, and the output of the delay unit are processed. The number of filters to be changed is changed to N, and the relationship between the order L of the transfer function of these filters and the order m of the transfer function of the system may be L > (m−1) / N. The calculation principle, the processing of the post-filter 22 that processes the output of the subtractor 17, and the effect remain unchanged. The input signal u (n) is not limited to that generated based on the AR generation process. The present invention is not limited to indoor audio recording, but can also be applied to the removal of the effects of multipath in mobile radio. In this case, an antenna is used as a sensor, and the antenna output signal is converted into a baseband signal. It is processed in the same way. The present invention can be applied to other similar problems.
[0025]
【The invention's effect】
As described above, according to the present invention, even when a signal generated from the AR process is input to a one-input multi-output linear system, the outputs of a plurality of sensors provided at the output end of the system are delayed, Each delayed signal is filtered and then added, and the signal obtained by subtracting from the output of the first sensor (the linear prediction error that drives the AR process) is equivalent to the inverse element of a polynomial equivalent to the denominator polynomial of the AR process. The input signal to the system can be estimated with high accuracy by processing with a filter according to the transfer function.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a functional configuration of an input signal estimation apparatus according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a specific functional configuration of a filter calculation unit 23 in FIG.
FIG. 3 is a flowchart illustrating an embodiment of the method of the present invention.
FIG. 4 is a block diagram schematically showing a functional configuration of a computer.
FIG. 5 is a block diagram showing a functional configuration of a conventional input signal estimation apparatus.

Claims (4)

1入力多出力線形系の2以上の整数N個の出力端に設けられた第1,第2,…,第Nのセンサよりの出力信号をそれぞれ1サンプル遅延する過程と、
上記N個の出力信号と上記遅延されたN個の信号に基づきN個の前段フィルタ伝達関数と、1個の後段フィルタ伝達関数を計算して記憶するフィルタ計算過程と、
これら遅延された第1,第2,…,第N信号を上記第1,第2,…,第Nフィルタ伝達関数でそれぞれフィルタ処理する前段フィルタ処理過程と、
各フィルタ処理されたN個の信号を加算する過程と、
上記第1のセンサよりの出力信号から上記加算された信号を減算する過程と、
上記減算された信号を上記後段フィルタ伝達関数でフィルタ処理する後段フィルタ処理過程とを有し、
上記フィルタ計算過程は、
上記遅延された第1,第2,…,第N信号の自己相関行列を計算する過程と、
上記自己相関行列の擬似逆行列を計算する過程と、
上記第1,第2,…,第Nセンサの出力信号と、上記遅延された第1,第2,…,第N信号との相互相関行列をそれぞれ計算する過程と、
上記自己相関行列の擬似逆行列と上記相互相関行列の積行列を計算してその第1行のN個の成分をそれぞれ上記第1,第2,…,第Nフィルタ伝達関数として求める過程と、
上記積行列の特性多項式を計算する過程と、
上記特性多項式にz −N(L+1) (Lは上記前段フィルタの伝達関数の次数)を乗算して上記後段フィルタ処理における伝達関数を求める過程と
を有することを特徴とする入力信号推定方法。
A process of delaying the output signals from the first, second,..., Nth sensors provided at the integer N number of output terminals of two or more integers of the one-input multi-output linear system by one sample,
A filter calculation process for calculating and storing N pre-stage filter transfer functions and one post-stage filter transfer function based on the N output signals and the delayed N signals;
A pre-filtering process for filtering the delayed first, second,..., N signals with the first, second,.
Adding each filtered N signal;
Subtracting the added signal from the output signal from the first sensor;
The subtracted signal possess a subsequent filtering step of filtering by the subsequent filter transfer function,
The filter calculation process is as follows:
Calculating the autocorrelation matrix of the delayed first, second,..., Nth signals;
Calculating a pseudo inverse of the autocorrelation matrix;
Calculating the cross-correlation matrix between the output signals of the first, second,..., Nth sensors and the delayed first, second,.
Calculating a product matrix of the pseudo inverse matrix of the autocorrelation matrix and the cross-correlation matrix and obtaining N components of the first row as the first, second,.
Calculating the characteristic polynomial of the product matrix,
Multiplying the characteristic polynomial by z −N (L + 1) (L is the order of the transfer function of the preceding filter) to obtain the transfer function in the latter filter process;
An input signal estimation method comprising:
1入力多出力線形系の出力端に備える第1,第2,…,第Nのセンサと(Nは2以上の整数)、
これらセンサの出力信号各々に1サンプルの遅延を付与する第1,第2,…,第Nの遅延器と、
これら遅延器の出力信号各々を処理する第1,第2,…,第Nの前段フィルタと、
これらフィルタの出力信号を加算する加算器と、
この加算器の出力信号を上記第1センサの出力信号から減算する減算器と、
この減算器の出力信号を処理する後段フィルタと、
上記各センサの各出力信号及び上記各遅延器の各遅延出力信号が入力され、上記第1,第2,…,第Nフィルタと上記後段フィルタの伝達関数をそれぞれ計算して、これらフィルタ伝達関数を上記フィルタの対応するものにそれぞれセットするフィルタ計算器とを具備し、
上記フィルタ係数計算器は、
上記第1,第2,…,第N遅延器の遅延出力信号の自己相関行列を計算する自己相関計算部と、
上記自己相関行列の擬似逆行列を計算する逆行列計算部と、
上記第1,第2,…,第Nセンサの出力信号と上記第1,第2,…,第N遅延器の遅延出力信号との相互相関行列を計算する相互相関計算部と、
上記擬似逆行列と上記相互相関行列との積行列を計算してこの積行列の第1行のN個の成分を、上記第1,第2,…,第Nの前段フィルタへフィルタ伝達関数としてセットする乗算部と、
上記積行列の特性多項式を計算する多項式計算部と、
上記特性多項式にz −N(L+1) (Lは上記前段フィルタの伝達関数の次数)を乗算して、上記後段フィルタへフィルタ伝達関数としてセットする逆元計算部とを有することを特徴とする入力信号推定装置。
1st, 2nd, ..., Nth sensors provided at the output end of the 1-input multi-output linear system (N is an integer of 2 or more),
1st, 2nd,..., Nth delay devices that give a delay of 1 sample to each of the output signals of these sensors;
A first, second,..., Nth pre-filter that processes each of the output signals of these delay devices;
An adder for adding the output signals of these filters;
A subtractor for subtracting the output signal of the adder from the output signal of the first sensor;
A post filter for processing the output signal of the subtractor,
Each delayed output signal of the output signal and the respective delay units of the sensors is input, the first, second, ..., and the N filter and the transfer function of the post-stage filter calculated, respectively, which filter transfer function A filter calculator for setting each to the corresponding one of the filters ,
The filter coefficient calculator is
An autocorrelation calculation unit for calculating an autocorrelation matrix of the delayed output signals of the first, second,.
An inverse matrix calculation unit for calculating a pseudo inverse matrix of the autocorrelation matrix;
A cross-correlation calculator that calculates a cross-correlation matrix between the output signals of the first, second,..., Nth sensors and the delayed output signals of the first, second,.
A product matrix of the pseudo inverse matrix and the cross-correlation matrix is calculated, and N components in the first row of the product matrix are used as filter transfer functions to the first, second,. A multiplier to set;
A polynomial calculator for calculating the characteristic polynomial of the product matrix;
And an inverse element calculation unit that multiplies the characteristic polynomial by z −N (L + 1) (L is the order of the transfer function of the preceding filter) and sets the resultant polynomial as a filter transfer function to the subsequent filter. Signal estimation device.
請求項1に記載した入力信号推定方法の各過程をコンピュータに実行させるための入力信号推定プログラム。An input signal estimation program for causing a computer to execute each step of the input signal estimation method according to claim 1 . 請求項に記載した入力信号推定プログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium in which the input signal estimation program according to claim 3 is recorded.
JP2003090922A 2003-03-28 2003-03-28 Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor Expired - Fee Related JP3986457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090922A JP3986457B2 (en) 2003-03-28 2003-03-28 Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090922A JP3986457B2 (en) 2003-03-28 2003-03-28 Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor

Publications (2)

Publication Number Publication Date
JP2004295039A JP2004295039A (en) 2004-10-21
JP3986457B2 true JP3986457B2 (en) 2007-10-03

Family

ID=33404420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090922A Expired - Fee Related JP3986457B2 (en) 2003-03-28 2003-03-28 Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor

Country Status (1)

Country Link
JP (1) JP3986457B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774100B2 (en) 2006-03-03 2011-09-14 日本電信電話株式会社 Reverberation removal apparatus, dereverberation removal method, dereverberation removal program, and recording medium
WO2008111143A1 (en) * 2007-03-09 2008-09-18 Pioneer Corporation Sound field reproducing device and sound field reproducing method
JP4933975B2 (en) * 2007-08-02 2012-05-16 日本電信電話株式会社 Signal extraction apparatus, method thereof, and program thereof
EP3460795A1 (en) * 2017-09-21 2019-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signal processor and method for providing a processed audio signal reducing noise and reverberation

Also Published As

Publication number Publication date
JP2004295039A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4282227B2 (en) Noise removal method and apparatus
JP3008763B2 (en) Method and apparatus for system identification with adaptive filters
EP1376541A2 (en) Extraction of external noise components
WO2007029536A1 (en) Method and device for noise suppression, and computer program
EP1774517A1 (en) Audio signal dereverberation
JP2957183B2 (en) Cyclic digital filter
JPH07176991A (en) Adaptive filter device and its control method
JP3986457B2 (en) Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor
JP4473709B2 (en) SIGNAL ESTIMATION METHOD, SIGNAL ESTIMATION DEVICE, SIGNAL ESTIMATION PROGRAM, AND ITS RECORDING MEDIUM
JP2541044B2 (en) Adaptive filter device
JP2007067549A (en) Sound collector, sound collecting method and program and its recording medium
EP2809086B1 (en) Method and device for controlling directionality
EP1628397A1 (en) Audio quality adjustment device
CN112802487A (en) Echo processing method, device and system
JP3927701B2 (en) Sound source signal estimation device
JP3831220B2 (en) Noise suppression method and apparatus, noise suppression program, and program recording medium
Bharitkar et al. Perceptual multiple location equalization with clustering
JP2679464B2 (en) Adaptive noise removal filter
JP7270869B2 (en) Information processing device, output method, and output program
JP3092647B2 (en) Adaptive filter device
CN112584274B (en) Adjusting system and adjusting method for equalization processing
US7290022B2 (en) Method and filter arrangement for digital recursive filtering in the time domain
JPH05199071A (en) Filter design method and voice filter
JP4214391B2 (en) How to design a digital filter
JP2883494B2 (en) Digital filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees