JP4488496B2 - Signal processing method and signal processing apparatus - Google Patents

Signal processing method and signal processing apparatus Download PDF

Info

Publication number
JP4488496B2
JP4488496B2 JP2004087483A JP2004087483A JP4488496B2 JP 4488496 B2 JP4488496 B2 JP 4488496B2 JP 2004087483 A JP2004087483 A JP 2004087483A JP 2004087483 A JP2004087483 A JP 2004087483A JP 4488496 B2 JP4488496 B2 JP 4488496B2
Authority
JP
Japan
Prior art keywords
signal sequence
component
signal
processing
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004087483A
Other languages
Japanese (ja)
Other versions
JP2005274320A (en
Inventor
素直 論手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004087483A priority Critical patent/JP4488496B2/en
Publication of JP2005274320A publication Critical patent/JP2005274320A/en
Application granted granted Critical
Publication of JP4488496B2 publication Critical patent/JP4488496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

本発明は、センサが過渡状態に出力する信号からその収束値を速やかに且つ精度よく予測するための技術に関する。   The present invention relates to a technique for quickly and accurately predicting a convergence value from a signal output from a sensor in a transient state.

各種の物理量を検出するためのセンサには、その物理量の変化に対して過渡的な応答を示すものが多い。   Many sensors for detecting various physical quantities show a transient response to changes in the physical quantities.

例えば、ロードセル等のように物品の質量を検出するためのセンサは、物品の荷重を受けて変形し、その変形量に応じた電圧の信号を出力するが、センサに対する物品の荷重が急激に行なわれた場合、このセンサの系の固有振動モードが励起されてセンサに伝達されるため、その出力信号y(t)は例えば図8の(a)に示すように非線形振動をする。   For example, a sensor for detecting the mass of an article, such as a load cell, is deformed by receiving the load of the article and outputs a voltage signal corresponding to the amount of deformation, but the load of the article on the sensor is abruptly performed. In this case, since the natural vibration mode of the sensor system is excited and transmitted to the sensor, the output signal y (t) exhibits non-linear vibration as shown in FIG.

この出力信号の非線形振動は時間が経過するにしたがって減衰して、最終的には物品の質量Mに対応した一定の値に収束するが、ライン等で物品の質量検査を連続的に行なう場合、この振動が完全に収束するまで待っていたのでは効率的な検査がおこなえない。   This non-linear vibration of the output signal is attenuated as time passes and finally converges to a constant value corresponding to the mass M of the article. However, when the mass inspection of the article is continuously performed using a line or the like, If this vibration is completely converged, efficient inspection cannot be performed.

このため、従来では、図9に示しているように、センサ1からの出力信号y(t)を低域通過フィルタ2に入力して、出力信号y(t)に含まれる振動成分(過渡変動成分)を除去し、低域通過フィルタ2から図8の(b)のように出力される信号y(t)′から、物品の質量を検出する方法が多く採用されていた。   For this reason, conventionally, as shown in FIG. 9, the output signal y (t) from the sensor 1 is input to the low-pass filter 2 and the vibration component (transient fluctuation) included in the output signal y (t). Many methods have been employed in which the mass of the article is detected from the signal y (t) ′ output from the low-pass filter 2 as shown in FIG.

ところが、機械的な剛体に取り付けられたセンサ1の過渡応答の振動周波数は数Hz〜数10Hzと低いため、これに合わせて低域通過フィルタ2の高域遮断周波数も非常に低く設定しなければならず、その時定数が非常に大きくなる。   However, since the vibration frequency of the transient response of the sensor 1 attached to the mechanical rigid body is as low as several Hz to several tens Hz, the high-frequency cutoff frequency of the low-pass filter 2 must be set very low accordingly. Rather, the time constant becomes very large.

このため、図8の(b)に示したように、物品の荷重タイミングt0から相当な時間が経過しなければ低域通過フィルタ2の出力信号y(t)′は質量Mに達せず、このLPF2の時定数によって測定時間が制限されてしまい、より高速な計量に対応できない。   Therefore, as shown in FIG. 8B, the output signal y (t) ′ of the low-pass filter 2 does not reach the mass M unless a considerable time elapses from the load timing t0 of the article. The measurement time is limited by the time constant of the LPF 2, and it is not possible to cope with faster weighing.

また、フィルタとしてデジタルフィルタを用いるとともに、センサの過渡的な動作を表す伝達関数を求め、その伝達関数の逆数となるような関数に対応するフィルタ係数をデジタルフィルタに設定することで、振動成分を抑圧する方法も提案されている(特許文献1)。   In addition to using a digital filter as a filter, a transfer function that represents a transient operation of the sensor is obtained, and a filter coefficient corresponding to a function that is the inverse of the transfer function is set in the digital filter, so that the vibration component is reduced. A method of suppressing has also been proposed (Patent Document 1).

特開平7−134057号公報JP-A-7-134057

しかしながら、実際のセンサにはその構造に起因する非線形的な要素があるため、過渡的な動作を正確に表す伝達関数を定義することは困難で、その関数で定義できない非線形要素による誤差が発生する。また、振動成分を抑圧するために多くのサンプル値を必要とし、速度の点でも十分といえなかった。   However, because actual sensors have nonlinear elements due to their structure, it is difficult to define a transfer function that accurately represents transient behavior, and errors due to nonlinear elements that cannot be defined by that function occur. . In addition, many sample values are required to suppress the vibration component, and the speed is not sufficient.

本発明は、この問題を解決し、高精度で且つ高速にセンサ出力の収束値を予想できる信号処理方法および信号処理装置を提供することを目的としている。   An object of the present invention is to provide a signal processing method and a signal processing apparatus that can solve this problem and can predict a convergence value of a sensor output with high accuracy and high speed.

前記目的を達成するために、本発明の信号処理方法は、
センサの出力信号をオーバサンプリングによりデジタルの原信号列に変換する段階(S1)と、
前記原信号列に含まれる交流成分の信号列を検出する段階(S2)と、
前記原信号列と前記抽出した交流成分の信号列との位相および振幅を合わせる段階(S3)と、
前記位相および振幅を合わせた両信号列の加算または減算を行い、前記原信号列の直流成分の信号列を検出する段階(S4)と、
前記直流成分の信号列に対する間引き処理を行う段階(S5)と、
前記間引きされた信号列に対する高域遮断処理を行う段階(S6)とを含み、
前記高域遮断処理された信号列を前記センサの出力信号の収束予想値としている。
In order to achieve the above object, the signal processing method of the present invention comprises:
Converting the output signal of the sensor into a digital original signal sequence by oversampling (S1);
Detecting a signal sequence of AC components included in the original signal sequence (S2);
Matching the phase and amplitude of the original signal sequence and the extracted AC component signal sequence (S3);
Performing addition or subtraction of both signal sequences combined with the phase and amplitude to detect a signal sequence of a DC component of the original signal sequence (S4);
Performing a thinning process on the signal sequence of the DC component (S5);
Performing a high-frequency cutoff process on the thinned signal train (S6),
The signal sequence that has been subjected to the high-frequency cutoff processing is used as an expected convergence value of the output signal of the sensor.

また、本発明の請求項2の信号処理装置は、
センサ(1)の出力信号をオーバサンプリングして、デジタルの原信号列に変換するA/D変換手段(21)と、
前記原信号列の交流成分を検出する交流分検出手段(23)と、
前記交流分検出手段から出力される交流成分の信号列と前記原信号列との位相および振幅を合わせる補正手段(24、25)と、
前記補正手段によって補正された交流成分の信号列と原信号列との加算または減算を行い、前記原信号列の直流成分の信号列を検出する演算手段(26)と、
前記演算手段から出力される直流成分の信号列に対する間引き処理を行う間引き手段(30)と、
前記間引き処理された直流成分の信号列に対する低次の高域遮断処理を行い、該処理結果を前記センサの出力信号の収束予想値として出力する低域通過フィルタ(31)とを備えている。
The signal processing device according to claim 2 of the present invention is
A / D conversion means (21) for oversampling the output signal of the sensor (1) and converting it to a digital original signal sequence;
AC component detecting means (23) for detecting an AC component of the original signal sequence;
Correction means (24, 25) for matching the phase and amplitude of the signal sequence of the AC component output from the AC component detection means and the original signal sequence;
An arithmetic means (26) for performing addition or subtraction between the signal sequence of the AC component corrected by the correction means and the original signal sequence, and detecting the signal sequence of the DC component of the original signal sequence;
Thinning means (30) for performing thinning processing on the signal sequence of the DC component output from the calculation means;
A low-pass filter (31) that performs low-order high-frequency cutoff processing on the signal sequence of the DC component subjected to the thinning-out processing and outputs the processing result as a predicted convergence value of the output signal of the sensor.

このように、本発明では、センサの出力信号に対するオーバサンプリングによって得られた原信号列から交流分を検出し、その交流分と原信号列との位相および振幅を合わせて加減算処理することで、原信号列に含まれる直流成分を検出し、さらに、この直流成分に対して間引き処理と高域遮断処理とを行ってセンサの出力信号の収束予想値を求めている。   As described above, in the present invention, the AC component is detected from the original signal sequence obtained by oversampling the output signal of the sensor, and the addition and subtraction processing is performed by combining the phase and amplitude of the AC component and the original signal sequence. A DC component included in the original signal sequence is detected, and further, a thinning process and a high-frequency cutoff process are performed on the DC component to obtain a predicted convergence value of the output signal of the sensor.

このため、オーバサンプリングで得られた誤差の少ない原信号列から精度の高い交流成分を検出することができ、その位相と振幅を原信号列に合わせて加減算することで精度の高い直流分を検出することができる。そして、この直列分に対する間引き処理を行った分だけ低次の高域遮断処理により、直流分の誤差変動を短時間に除去することができ、センサの出力信号の収束値を高精度で且つ高速に予想できる。   For this reason, it is possible to detect AC components with high accuracy from the original signal sequence with few errors obtained by oversampling, and to detect DC components with high accuracy by adding and subtracting the phase and amplitude according to the original signal sequence. can do. Then, the error fluctuation of the DC component can be removed in a short time by the low-order high-frequency cut-off process by the thinning process for the series component, and the convergence value of the sensor output signal can be obtained with high accuracy and high speed. Can be expected.

以下、図面に基づいて本発明の実施の形態を説明する。
始めに、本発明の信号処理方法を図1のフローチャートに基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the signal processing method of the present invention will be described based on the flowchart of FIG.

図1に示しているように、本発明の信号処理方法は、質量、圧力等の物理量Mを受けたセンサからの出力信号y(t)をオーバサンプリングによりデジタルの原信号列y(k)に変換し(S1)、その原信号列y(k)に含まれる交流成分の信号列Δy(k)を検出する(S2)。この交流分の検出処理は、差分演算処理あるいは離散ヒルベルト変換によって実現できる。   As shown in FIG. 1, in the signal processing method of the present invention, an output signal y (t) from a sensor that receives a physical quantity M such as mass or pressure is converted into a digital original signal sequence y (k) by oversampling. The signal is converted (S1), and the AC component signal sequence Δy (k) included in the original signal sequence y (k) is detected (S2). This AC detection processing can be realized by difference calculation processing or discrete Hilbert transform.

次に、原信号列y(k)と交流成分の信号列Δy(k)との位相および振幅を合わせて(S3)、両信号列の加算または減算を行うことで、原信号列y(k)の直流成分の信号列z(k)を検出する(S4)。   Next, the phases and amplitudes of the original signal sequence y (k) and the AC component signal sequence Δy (k) are matched (S3), and both signal sequences are added or subtracted to obtain the original signal sequence y (k ) Of the DC component signal sequence z (k) is detected (S4).

そして、この直流成分の信号列z(k)に対して間引き処理(S5)と高域遮断処理と(S6)を行い、センサの出力信号y(t)の収束予想値を求める。   Then, a thinning-out process (S5) and a high-frequency cutoff process (S6) are performed on the signal sequence z (k) of the direct current component to obtain a predicted convergence value of the sensor output signal y (t).

このように、オーバサンプリングで得られた誤差の少ない原信号列y(k)から精度の高い交流成分Δy(k)を検出することができ、その位相と振幅を原信号列y(k)に合わせて加減算することで直流分を高い精度で検出することができる。そして、さらにこの直流分に含まれる誤差を、直列分の信号列z(k)に対する間引き処理を行い、その間引き効果により、低次の高域遮断処理を行うことができて、直流分の誤差変動を短時間に除去することができ、センサの出力信号y(t)の収束値を高精度で且つ高速に予想できる。   As described above, it is possible to detect the AC component Δy (k) with high accuracy from the original signal sequence y (k) with a small error obtained by oversampling, and to convert the phase and amplitude into the original signal sequence y (k). By adding and subtracting together, the DC component can be detected with high accuracy. Further, the error included in the direct current component is subjected to a thinning process on the signal sequence z (k) for the serial component, and the high-order cutoff processing of the lower order can be performed by the thinning effect. The fluctuation can be removed in a short time, and the convergence value of the sensor output signal y (t) can be predicted with high accuracy and at high speed.

図2は、上記信号処理方法を適用した実施形態の信号処理装置20の構成を示している。   FIG. 2 shows a configuration of a signal processing device 20 according to an embodiment to which the signal processing method is applied.

この信号処理装置20は、物理量M(例えば重量)を受けたときの過渡状態におけるセンサ1の出力信号y(t)を受けて、その収束値を予測検出するためのものであり、A/D変換器21は、センサ1から出力されるアナログの信号y(t)を、所定のサンプリング周期でサンプリングしてデジタルの原信号列y(k)に変換して振動成分除去部22に出力する。   This signal processing device 20 receives an output signal y (t) of the sensor 1 in a transient state when receiving a physical quantity M (for example, weight), and predicts and detects its convergence value. A / D The converter 21 samples the analog signal y (t) output from the sensor 1 at a predetermined sampling cycle, converts the analog signal y (t) into a digital original signal sequence y (k), and outputs the digital signal to the vibration component removal unit 22.

このA/D変換器21のサンプリング周波数は、入力信号y(t)の予想される周波数帯域の上限(例えば数10Hz)に対して十分高く(例えば数100Hz〜数10kHz以)に設定されている。なお、一般的にアナログ信号に対するサンプリングは、ナイキスト周波数(信号の上限周波数の2倍)で十分とされているが、この信号処理装置20では、上記のようにアナログ信号の上限周波数の2倍より格段に高い周波数でサンプリングを行うオーバサンプリング方式により量子化誤差を低減している。   The sampling frequency of the A / D converter 21 is set sufficiently high (for example, several hundred Hz to several tens of kHz or more) with respect to the upper limit (for example, several tens of Hz) of the expected frequency band of the input signal y (t). . In general, the Nyquist frequency (twice the upper limit frequency of the signal) is sufficient for sampling the analog signal. However, in the signal processing device 20, as described above, the sampling frequency is more than twice the upper limit frequency of the analog signal. The quantization error is reduced by an oversampling method that performs sampling at a remarkably high frequency.

A/D変換器21から出力される原信号列y(k)は、信号処理部22の交流分検出手段23および後述する位相補正手段24に入力される。   The original signal sequence y (k) output from the A / D converter 21 is input to an AC component detecting unit 23 of the signal processing unit 22 and a phase correcting unit 24 described later.

交流分検出手段23は、原信号列y(k)に含まれる交流成分(過渡振動成分)を検出するためのものであり、差分演算(連続信号空間における微分演算)あるいは後述する離散ヒルベルト変換によって実現できるが、ここでは、差分演算の場合で説明する。   The AC component detecting means 23 is for detecting an AC component (transient vibration component) included in the original signal sequence y (k), and is obtained by differential calculation (differential calculation in a continuous signal space) or discrete Hilbert transform described later. Although it can be realized, here, a case of difference calculation will be described.

差分演算の場合、入力される信号列y(k)についての次の一次差分演算を逐次行い、差分信号列Δy(k)を順次求めることで実現できる。   In the case of the difference calculation, it can be realized by sequentially performing the next primary difference calculation for the input signal sequence y (k) and sequentially obtaining the difference signal sequence Δy (k).

Δy(1)=y(1)−y(0)
Δy(2)=y(2)−y(1)
Δy(3)=y(3)−y(2)
……
Δy(k)=y(k)−y(k−1)
Δy (1) = y (1) −y (0)
Δy (2) = y (2) −y (1)
Δy (3) = y (3) −y (2)
......
Δy (k) = y (k) −y (k−1)

前記したようにA/D変換器21はオーバサンプリング方式で、入力信号y(t)の変化に対してサンプリング周期が十分短いため、上記の差分信号列Δy(k)は、入力信号y(t)を微分した信号にほぼ正確に対応している。入力信号y(t)は、物理量Mに対応する直流成分と正弦的で且つ減衰的な振動成分(交流成分)との和で表される。差分信号列Δy(k)は、その交流成分を90度移相したものにほぼ等しいので、物理量Mに対応する直流成分を含まない特性を有する。   As described above, since the A / D converter 21 is an oversampling method and the sampling cycle is sufficiently short with respect to the change of the input signal y (t), the difference signal sequence Δy (k) is the input signal y (t ) Is almost exactly corresponding to the differentiated signal. The input signal y (t) is represented by the sum of a DC component corresponding to the physical quantity M and a sinusoidal and damped vibration component (AC component). The difference signal sequence Δy (k) is substantially equal to a 90-degree phase shift of the AC component, and therefore has a characteristic that does not include a DC component corresponding to the physical quantity M.

この差分信号列Δy(k)は、位相補正手段24に入力される。
位相補正手段24は、差分信号列Δy(k)の位相と原信号列y(k)の振動成分の位相とが同相または逆相となるように、少なくとも一方の信号列に対する移相処理を行う。
This difference signal sequence Δy (k) is input to the phase correction means 24.
The phase correction unit 24 performs a phase shift process on at least one signal sequence so that the phase of the difference signal sequence Δy (k) and the phase of the vibration component of the original signal sequence y (k) are in phase or in reverse phase. .

例えば、図3の(a)の実線で示す原信号列y(k)の振動成分に対して、交流分検出手段23の差分演算処理で得られる差分信号列Δy(k)の位相は図3の(b)のように90度分進んでいるので、交流分検出手段23の処理遅延が無いと仮定すれば、その差分信号列Δy(k)を図3の(b)の点線で示す差分信号列Δy′(k)のように90度分遅らせることで、原信号列y(k)の振動成分の位相と同相にすることができる。   For example, with respect to the vibration component of the original signal sequence y (k) shown by the solid line in FIG. As shown in (b) of FIG. 3, if it is assumed that there is no processing delay of the AC component detecting means 23, the difference signal sequence Δy (k) indicated by the dotted line in (b) of FIG. By delaying by 90 degrees as in the signal sequence Δy ′ (k), the phase of the vibration component of the original signal sequence y (k) can be made in phase.

また、逆に原信号列y(k)を図3の(a)の点線で示す原信号列y′(k)のように90度分遅らせることで、両信号列の位相が180度ずれた逆相の状態にすることができる。   Conversely, by delaying the original signal sequence y (k) by 90 degrees as in the original signal sequence y ′ (k) indicated by the dotted line in FIG. 3A, the phases of both signal sequences are shifted by 180 degrees. The phase can be reversed.

振幅補正手段25は、位相補正手段24とともにこの実施形態の補正手段を構成するものであり、位相補正された差分信号列Δy′(k)に例えば所定の補正係数を乗算して、位相補正された原信号列y(k)′の振動成分の振幅と一致させる。   The amplitude correction means 25 constitutes the correction means of this embodiment together with the phase correction means 24, and the phase correction is performed by multiplying the phase-corrected difference signal sequence Δy ′ (k) by, for example, a predetermined correction coefficient. The amplitude of the vibration component of the original signal sequence y (k) ′ is matched.

このように、差分信号列と原信号列の振動成分との位相を同相あるいは逆相にして振幅を合わせれば、両信号列の減算あるいは加算によって交流分を除去(相殺)することができ、直流分の検出が可能となる。   In this way, if the phase of the difference signal sequence and the vibration component of the original signal sequence are in phase or opposite phase and the amplitude is matched, the AC component can be removed (cancelled) by subtraction or addition of both signal sequences. Minute detection is possible.

ただし、実際には交流検出手段23の処理のための遅延と振幅補正のための遅延が少なくとも1クロック分ずつあるので、位相補正手段24は、それらの処理遅延時間を見込んで移相処理を行い、振幅補正された差分信号列Δy″(k)と位相補正された原信号列y(k)′の振動成分とが同相または逆相の状態で、演算手段26に入力されるようにする。   However, since there is actually a delay for processing of the AC detection means 23 and a delay for amplitude correction by at least one clock, the phase correction means 24 performs the phase shift process in anticipation of these processing delay times. The amplitude-corrected difference signal sequence Δy ″ (k) and the phase-corrected original signal sequence y (k) ′ are input to the computing means 26 in the same phase or in reverse phase.

また、上記の位相補正のための移相量や振幅補正のための係数は、センサ1について予め最適値を求めて設定しておく。   The phase shift amount for the phase correction and the coefficient for the amplitude correction are set by obtaining an optimum value for the sensor 1 in advance.

演算手段26は、上記のように位相補正および振幅補正された差分信号列Δy″(k)と位相補正された原信号列y′(k)との減算(同相の場合)または加算(逆相の場合)を行って、原信号列y′(k)から振動成分を除去して直流分の信号列z(k)を出力する。   The computing means 26 performs subtraction (in the case of in-phase) or addition (reverse phase) of the differential signal sequence Δy ″ (k) subjected to phase correction and amplitude correction as described above and the original signal sequence y ′ (k) subjected to phase correction. In this case, the vibration component is removed from the original signal sequence y ′ (k) and a signal sequence z (k) for direct current is output.

演算手段26から出力される信号列z(k)は、センサ1が受けている物理量Mの大きさおよびその変化に対応している。   The signal sequence z (k) output from the computing means 26 corresponds to the magnitude of the physical quantity M received by the sensor 1 and its change.

ただし、この加減算処理で得られる直流分の信号列z(k)には、前記したセンサ1の非線形要素による誤差が含まれており、要求される精度が例えば1/100(1パーセント)程度であれば信号列z(k)による予想で十分である場合が多いが、1/1000以下(0.1パーセント以下)の精度が要求される場合には十分とはいえない。   However, the signal sequence z (k) for direct current obtained by the addition / subtraction process includes an error due to the nonlinear element of the sensor 1, and the required accuracy is, for example, about 1/100 (1 percent). If so, the prediction based on the signal sequence z (k) is often sufficient, but it is not sufficient when accuracy of 1/1000 or less (0.1 percent or less) is required.

この誤差は非線形振動の主モードの周波数と同一の周波数成分を有しており、その抑圧はFIR型の低域通過フィルタを用いることで実現できるが、上記したように入力信号y(t)に対してオーバサンプリング方式で得られた信号列から高精度に直流分(非常に低い周波数帯も含む)を得るためには、非常に高い次数(例えば500次)の大がかりなフィルタが必要となり、しかも、次数分のフィルタ係数の多くの乗算演算処理を必要とし、さらに、処理遅延により、誤差の少ない結果を得るまでに多くの時間を要してしまう。   This error has the same frequency component as the frequency of the main mode of the non-linear vibration, and the suppression can be realized by using an FIR type low-pass filter, but as described above, the input signal y (t) On the other hand, in order to obtain a DC component (including a very low frequency band) with high accuracy from a signal sequence obtained by the oversampling method, a large filter of a very high order (for example, 500th order) is required. In this case, a large number of multiplication operations of the filter coefficients corresponding to the orders are required, and more time is required to obtain a result with less error due to processing delay.

これを防ぐために、この信号処理装置20では、演算手段26で得られた直流分の信号列z(k)に対する間引き(デシメーション)処理と低次の高域遮断処理とを行って誤差変動分を除去し、高速で且つ高精度に収束予想値M′を求めている。   In order to prevent this, the signal processing device 20 performs a thinning (decimation) process and a low-order high-frequency cutoff process on the DC signal sequence z (k) obtained by the computing means 26 to reduce the error fluctuation. The predicted convergence value M ′ is obtained at high speed and with high accuracy.

即ち、演算手段26から出力される直流分の信号列z(k)を間引き手段30に入力して1/N(Nは例えば10)の間引き処理を行い、その間引き処理で得られた信号列z(m・N)(mは正の整数)を、低次(たとえば30次)のFIR型の低域通過フィルタ31に入力して、誤差変動分を抑圧している。   That is, a signal sequence z (k) for direct current output from the calculation means 26 is input to the thinning means 30 to perform a thinning process of 1 / N (N is, for example, 10), and a signal string obtained by the thinning process. z (m · N) (m is a positive integer) is input to a low-order (for example, 30th order) FIR type low-pass filter 31 to suppress an error variation.

この間引き処理と低次の高域遮断処理によって、高次フィルタだけで誤差変動分を抑圧する方法より、格段に高速に且つ精度のよい収束予想値を簡単な構成で得ることができる。   By this thinning-out processing and low-order high-frequency cutoff processing, it is possible to obtain a predicted convergence value that is much faster and more accurate with a simple configuration than the method of suppressing error fluctuations using only a high-order filter.

図4は、上記した信号処理装置20のサンプリング周波数約10kHzにおけるシミュレーション結果である。   FIG. 4 shows a simulation result at the sampling frequency of about 10 kHz of the signal processing apparatus 20 described above.

図4の(a)は、センサ1に負荷を一定時間与えたときの出力信号y(t)に対してオーバサンプリングして得られた原信号列y(k)を示したもので、非線形減衰振動を伴いながら負荷の変化に追従して変動する。なお、前記したように、A/D変換器21のサンプリング周期は十分短いので、この原信号列y(k)は、センサ出力信号y(t)に少ない誤差(量子化誤差)で追従している。   FIG. 4A shows an original signal sequence y (k) obtained by oversampling the output signal y (t) when a load is applied to the sensor 1 for a fixed time. Fluctuates following changes in load with vibration. As described above, since the sampling period of the A / D converter 21 is sufficiently short, the original signal sequence y (k) follows the sensor output signal y (t) with a small error (quantization error). Yes.

また、図4の(b)は、図4の(a)の原信号列y(k)に対して、高次のデジタルフィルタで高域遮断処理をした結果(従来方法による結果)を表している。   FIG. 4B shows the result of high-frequency cutoff processing using a high-order digital filter for the original signal sequence y (k) in FIG. 4A (result of the conventional method). Yes.

図4の(c)は、上記原信号列y(k)の差分演算処理で得られた差分信号列Δy(k)に対して、前記位相補正(同相)および振幅補正して得られた差分信号列Δy″(k)を表しており、この差分信号列を図4の(a)の原信号列y(k)から減じて得られた直流分の信号列z(k)が図4の(d)となる。   FIG. 4C shows the difference obtained by performing the phase correction (in-phase) and the amplitude correction on the difference signal sequence Δy (k) obtained by the difference calculation process of the original signal sequence y (k). 4 represents a signal sequence Δy ″ (k), and a signal sequence z (k) for direct current obtained by subtracting the difference signal sequence from the original signal sequence y (k) in FIG. (D).

この信号列z(k)は、負荷の変化に対して、図4の(b)に示した従来方法の結果と比べて格段に高速な追従性を示しているが、前記した誤差による変動が含まれている。   This signal sequence z (k) shows a much faster follow-up performance with respect to a change in load than the result of the conventional method shown in FIG. 4B. include.

図5の(a)はこの誤差変動を拡大したものであり、前記したように1/1000以下の精度が要求される場合には無視できない大きさである。   FIG. 5A is an enlarged view of this error variation, and is a size that cannot be ignored when accuracy of 1/1000 or less is required as described above.

しかし前記した間引き処理と低次の高域遮断処理を行うことにより、この誤差による変動は図4の(d)および図5の(b)の拡大図でもほとんど無視できる程度に抑圧され、その処理のための演算両が少なく且つ遅延時間も比較的短くて済み、図4の(b)の従来方法の結果に対する高速性も失われていないことが判る。   However, by performing the above-described thinning-out processing and low-order high-frequency cutoff processing, the fluctuation due to this error is suppressed to an extent that can be almost ignored in the enlarged views of FIGS. 4D and 5B. It can be seen that the number of computations for the above-described operation is small and the delay time is relatively short, and the high-speed performance with respect to the result of the conventional method of FIG. 4B is not lost.

上記のシミュレーション結果から、実施形態の信号処理装置20はセンサ1の出力信号の収束値を従来に比べて格段に高速且つ高精度に予想できることがわかる。   From the above simulation results, it can be seen that the signal processing apparatus 20 according to the embodiment can predict the convergence value of the output signal of the sensor 1 at a much higher speed and higher accuracy than the conventional one.

以上、交流分検出手段23が差分演算(連続信号空間における微分演算)によって、原信号列y(k)の交流分を検出する場合について説明したが、前記したように、離散ヒルベルト変換を用いて交流分を検出することも可能である。離散ヒルベルト変換は、入力される信号列の交流分を90度移相して出力する機能を有しており、前記差分演算と同様に、原信号列y(k)の交流分の検出が可能である。   As described above, the case where the AC component detecting unit 23 detects the AC component of the original signal sequence y (k) by the difference calculation (differential calculation in the continuous signal space) has been described. As described above, the discrete Hilbert transform is used. It is also possible to detect the AC component. The discrete Hilbert transform has a function of shifting the AC component of the input signal sequence by 90 degrees and outputting it, and can detect the AC component of the original signal sequence y (k) as in the difference calculation. It is.

その場合、図6のように、交流分検出手段23を、2つの離散型のヒルベルト変換器41、42の縦列接続で構成すれば、原信号列y(k)の振動成分に対して180度分位相が遅れた信号列を得ることができ、位相補正手段24を簡略化できる。なお、後段のヒルベルト変換器42は位相補正手段24の一部と解釈することもできる。   In this case, as shown in FIG. 6, if the AC component detecting means 23 is configured by cascading two discrete Hilbert transformers 41 and 42, 180 degrees with respect to the vibration component of the original signal string y (k). A signal sequence with a delayed phase can be obtained, and the phase correction means 24 can be simplified. The latter-stage Hilbert transformer 42 can also be interpreted as a part of the phase correction means 24.

図7は、上記のように2つのヒルベルト変換器41、42を用いた場合のシミュレーション結果を示している。   FIG. 7 shows a simulation result when the two Hilbert transformers 41 and 42 are used as described above.

前記同様に図7の(a)はセンサ1の出力信号y(k)をオーバサンプリングして得られた原信号列y(k)、図7の(b)は従来方法による結果を示しており、原信号列y(k)に対して2段のヒルベル変換処理を行い、位相補正(処理遅延に関する補正)と振幅補正して得られた交流分の信号列Δy″(k)が図7の(c)である。   7A shows the original signal sequence y (k) obtained by oversampling the output signal y (k) of the sensor 1, and FIG. 7B shows the result of the conventional method. FIG. 7 shows an AC signal sequence Δy ″ (k) obtained by performing two-stage Hilbel transform processing on the original signal sequence y (k), phase correction (correction regarding processing delay), and amplitude correction. (C).

そして、この信号列Δy″(k)を原信号列y(k)と加算して得られた直流分の信号列z(k)は、図7の(d)のようになる。   A signal sequence z (k) for direct current obtained by adding the signal sequence Δy ″ (k) to the original signal sequence y (k) is as shown in FIG.

この直流分の信号列z(k)も従来方法の結果に比べて、負荷に対して極めて高速な追従性を示しているが、前記同様に無視できない誤差変動を含んでいる。   The signal sequence z (k) for the direct current also shows extremely high tracking performance with respect to the load as compared with the result of the conventional method, but also includes error fluctuations that cannot be ignored as described above.

この誤差変動は、前記同様に間引き手段30による間引き処理と、低域通過フィルタ31による低次の高域遮断処理を行うことで、図7の(d)のように無視できる程度まで抑圧することができ、しかも、高速性は失われていないことがわかる。   This error fluctuation is suppressed to a negligible level as shown in FIG. 7D by performing the thinning process by the thinning means 30 and the low-order high-frequency cutoff process by the low-pass filter 31 as described above. It can be seen that high speed is not lost.

なお、上記説明では、交流分の信号列に対して位相補正を行ってから、振幅補正を行っているが、振幅補正を先に行ってから、位相補正してもよい。   In the above description, the amplitude correction is performed after the phase correction is performed on the AC signal sequence. However, the phase correction may be performed after the amplitude correction is performed first.

また、高域遮断処理に使用する低域通過フィルタとして、演算を低速化するポリフェーズ構成を採用してもよい。   Moreover, you may employ | adopt the polyphase structure which makes a calculation slow down as a low-pass filter used for a high region cutoff process.

また、上記説明では、重量測定用のセンサの出力信号に対する信号処理について説明したが、物理量の負荷に対して過渡的な応答を示す他のセンサの出力信号についても、本発明を同様に適用できる。   In the above description, the signal processing for the output signal of the sensor for weight measurement has been described. However, the present invention can be similarly applied to the output signal of another sensor that shows a transient response to a physical quantity load. .

本発明の信号処理方法の手順を示すフローチャートThe flowchart which shows the procedure of the signal processing method of this invention 本発明の実施形態の構成を示す図The figure which shows the structure of embodiment of this invention 実施形態の要部の処理を説明するための波形図Waveform diagram for explaining the processing of the main part of the embodiment 差分処理を用いた実施形態のシミュレーション結果を示す波形図Waveform diagram showing simulation results of an embodiment using differential processing 図4の一部を拡大した波形図Waveform diagram enlarging a part of FIG. 交流分検出手段をヒルベルト変換器で構成した例を示す図The figure which shows the example which comprised AC component detection means with the Hilbert converter ヒルベルト変換処理を用いた実施形態のシミュレーション結果を示す波形図Waveform diagram showing simulation results of an embodiment using Hilbert transform processing センサの出力信号の波形図Waveform diagram of sensor output signal 従来装置の構成図Configuration diagram of conventional equipment

符号の説明Explanation of symbols

1……センサ、20……信号処理装置、21……A/D変換器、23……交流分検出手段、24……位相補正手段、25……振幅補正手段、26……演算手段、30……間引き手段、31……低域通過フィルタ、41、42……ヒルベルト変換器   DESCRIPTION OF SYMBOLS 1 ... Sensor, 20 ... Signal processing apparatus, 21 ... A / D converter, 23 ... AC component detection means, 24 ... Phase correction means, 25 ... Amplitude correction means, 26 ... Calculation means, 30 .... thinning means, 31 ... low-pass filter, 41, 42 ... Hilbert transformer

Claims (2)

センサの出力信号をオーバサンプリングによりデジタルの原信号列に変換する段階(S1)と、
前記原信号列に含まれる交流成分の信号列を検出する段階(S2)と、
前記原信号列と前記抽出した交流成分の信号列との位相および振幅を合わせる段階(S3)と、
前記位相および振幅を合わせた両信号列の加算または減算を行い、前記原信号列の直流成分の信号列を検出する段階(S4)と、
前記直流成分の信号列に対する間引き処理を行う段階(S5)と、
前記間引きされた信号列に対する高域遮断処理を行う段階(S6)とを含み、
前記高域遮断処理された信号列を前記センサの出力信号の収束予想値とする信号処理方法。
Converting the output signal of the sensor into a digital original signal sequence by oversampling (S1);
Detecting a signal sequence of AC components included in the original signal sequence (S2);
Matching the phase and amplitude of the original signal sequence and the extracted AC component signal sequence (S3);
Performing addition or subtraction of both signal sequences combined with the phase and amplitude to detect a signal sequence of a DC component of the original signal sequence (S4);
Performing a thinning process on the signal sequence of the DC component (S5);
Performing a high-frequency cutoff process on the thinned signal train (S6),
A signal processing method in which the signal sequence subjected to the high-frequency cutoff processing is used as an expected convergence value of the output signal of the sensor.
センサ(1)の出力信号をオーバサンプリングして、デジタルの原信号列に変換するA/D変換手段(21)と、
前記原信号列の交流成分を検出する交流分検出手段(23)と、
前記交流分検出手段から出力される交流成分の信号列と前記原信号列との位相および振幅を合わせる補正手段(24、25)と、
前記補正手段によって補正された交流成分の信号列と原信号列との加算または減算を行い、前記原信号列の直流成分の信号列を検出する演算手段(26)と、
前記演算手段から出力される直流成分の信号列に対する間引き処理を行う間引き手段(30)と、
前記間引き処理された直流成分の信号列に対する高域遮断処理を行い、該処理結果を前記センサの出力信号の収束予想値として出力する低域通過フィルタ(31)とを備えた信号処理装置。
A / D conversion means (21) for oversampling the output signal of the sensor (1) and converting it to a digital original signal sequence;
AC component detecting means (23) for detecting an AC component of the original signal sequence;
Correction means (24, 25) for matching the phase and amplitude of the signal sequence of the AC component output from the AC component detection means and the original signal sequence;
An arithmetic means (26) for performing addition or subtraction between the signal sequence of the AC component corrected by the correction means and the original signal sequence, and detecting the signal sequence of the DC component of the original signal sequence;
Thinning means (30) for performing thinning processing on the signal sequence of the DC component output from the calculation means;
A signal processing apparatus comprising: a low-pass filter (31) that performs high-frequency cutoff processing on the signal sequence of the DC component that has been subjected to the thinning-out processing and outputs the processing result as a predicted convergence value of the output signal of the sensor.
JP2004087483A 2004-03-24 2004-03-24 Signal processing method and signal processing apparatus Expired - Fee Related JP4488496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087483A JP4488496B2 (en) 2004-03-24 2004-03-24 Signal processing method and signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087483A JP4488496B2 (en) 2004-03-24 2004-03-24 Signal processing method and signal processing apparatus

Publications (2)

Publication Number Publication Date
JP2005274320A JP2005274320A (en) 2005-10-06
JP4488496B2 true JP4488496B2 (en) 2010-06-23

Family

ID=35174155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087483A Expired - Fee Related JP4488496B2 (en) 2004-03-24 2004-03-24 Signal processing method and signal processing apparatus

Country Status (1)

Country Link
JP (1) JP4488496B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0618484D0 (en) * 2006-09-20 2006-11-01 Cashmaster Internat Ltd Error cancelling system
JP4819742B2 (en) * 2006-12-13 2011-11-24 アンリツ株式会社 Signal processing method and signal processing apparatus
JP4814136B2 (en) * 2007-03-23 2011-11-16 アンリツ株式会社 Signal processing method and signal processing apparatus
JP4729553B2 (en) * 2007-10-23 2011-07-20 アンリツ株式会社 Signal processing method and signal processing apparatus
JP5113491B2 (en) * 2007-11-02 2013-01-09 株式会社日立製作所 Persistent noise removal device and control / monitoring system
JP5155733B2 (en) * 2008-05-16 2013-03-06 アンリツ株式会社 Signal processing method and signal processing apparatus
JP5658594B2 (en) * 2011-02-24 2015-01-28 アンリツ産機システム株式会社 Weighing device
KR101897327B1 (en) * 2016-04-25 2018-09-11 국방과학연구소 Real-time off-set removal method of force measuring sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398524A (en) * 1986-10-15 1988-04-30 Kubota Ltd Method and apparatus for setting model parameter in digital balance
JPH06317459A (en) * 1993-04-30 1994-11-15 Yamato Scale Co Ltd Low frequency attenuator for digital metric register
JPH08201158A (en) * 1995-01-30 1996-08-09 Tec Corp Electronic balance
JPH102815A (en) * 1996-06-18 1998-01-06 Nireco Corp Noise reduced type tension detecting device
JP2002163745A (en) * 2000-11-29 2002-06-07 Anritsu Corp Signal processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398524A (en) * 1986-10-15 1988-04-30 Kubota Ltd Method and apparatus for setting model parameter in digital balance
JPH06317459A (en) * 1993-04-30 1994-11-15 Yamato Scale Co Ltd Low frequency attenuator for digital metric register
JPH08201158A (en) * 1995-01-30 1996-08-09 Tec Corp Electronic balance
JPH102815A (en) * 1996-06-18 1998-01-06 Nireco Corp Noise reduced type tension detecting device
JP2002163745A (en) * 2000-11-29 2002-06-07 Anritsu Corp Signal processor

Also Published As

Publication number Publication date
JP2005274320A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4754941B2 (en) Linear corrector
WO2009065027A1 (en) Method and apparatus for computing interpolation factors in sample rate conversion systems
JP4488496B2 (en) Signal processing method and signal processing apparatus
US20110090104A1 (en) Digital converter for processing resolver signal
CN104300541B (en) Dynamic prediction compensation method for controlling time delay through active power filter
WO2011090110A1 (en) Sampling rate conversion device, and sampling rate conversion method
JP5181427B2 (en) Phase / amplitude detection apparatus and method
JP2009079972A (en) Electric power measurement method and electric power measuring device
US7609181B2 (en) Sampling frequency conversion apparatus
JP4819742B2 (en) Signal processing method and signal processing apparatus
JP5098526B2 (en) Coriolis mass flow meter
JP4729553B2 (en) Signal processing method and signal processing apparatus
JPH0221712A (en) Sampling frequency converter
JP4638981B2 (en) Signal processing device
JP5155733B2 (en) Signal processing method and signal processing apparatus
JP6787105B2 (en) Digital filter, reciprocal count value generation circuit and physical quantity sensor
JP2010136548A (en) Individual operation detecting apparatus for distributed power supply
JP6265870B2 (en) Digital protection relay device
JP6809201B2 (en) Sampling rate conversion circuit, reciprocal count value generation circuit and physical quantity sensor
JP4814136B2 (en) Signal processing method and signal processing apparatus
JP4750266B2 (en) Signal processing device
JP6373765B2 (en) Filter device and filtering method
JP4456407B2 (en) Signal processing device
JP4799307B2 (en) Power measuring device
JP4640321B2 (en) Waveform generation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees