JP4729553B2 - Signal processing method and signal processing apparatus - Google Patents

Signal processing method and signal processing apparatus Download PDF

Info

Publication number
JP4729553B2
JP4729553B2 JP2007275796A JP2007275796A JP4729553B2 JP 4729553 B2 JP4729553 B2 JP 4729553B2 JP 2007275796 A JP2007275796 A JP 2007275796A JP 2007275796 A JP2007275796 A JP 2007275796A JP 4729553 B2 JP4729553 B2 JP 4729553B2
Authority
JP
Japan
Prior art keywords
signal
frequency
processing
noise component
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007275796A
Other languages
Japanese (ja)
Other versions
JP2009103585A (en
Inventor
素直 論手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007275796A priority Critical patent/JP4729553B2/en
Publication of JP2009103585A publication Critical patent/JP2009103585A/en
Application granted granted Critical
Publication of JP4729553B2 publication Critical patent/JP4729553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、センサの出力信号からそのセンサに負荷された物理量に対応した直流成分を速やかに且つ精度よく得るための技術に関する。   The present invention relates to a technique for quickly and accurately obtaining a DC component corresponding to a physical quantity loaded on a sensor from an output signal of the sensor.

各種の物理量を検出するためのセンサには、その物理量の変化に対して過渡的な応答を示すものが多い。   Many sensors for detecting various physical quantities show a transient response to changes in the physical quantities.

例えば、ロードセル等のように物品の質量を検出するためのセンサは、物品の荷重を受けて変形し、その変形量に応じた電圧の信号を出力するが、センサに対する物品の荷重が急激に行なわれた場合、このセンサの系の固有振動モードが励起されてセンサに伝達されるため、その出力信号は非線形振動をする。   For example, a sensor for detecting the mass of an article, such as a load cell, is deformed by receiving the load of the article and outputs a voltage signal corresponding to the amount of deformation, but the load of the article on the sensor is abruptly performed. In this case, since the natural vibration mode of this sensor system is excited and transmitted to the sensor, the output signal exhibits non-linear vibration.

この出力信号の非線形振動は時間が経過するにしたがって減衰して、最終的には物品の質量Mに対応した一定の値(直流値)に収束するが、ライン等で物品の質量検査を連続的に行う場合、この振動が完全に収束するまで待っていたのでは効率的な検査がおこなえない。   This non-linear vibration of the output signal is attenuated as time passes, and finally converges to a constant value (DC value) corresponding to the mass M of the article. In this case, an efficient inspection cannot be performed by waiting until this vibration is completely converged.

そこで、一般的には低域通過フィルタにより雑音成分を除去することが行われているが、数10Hz以下の雑音成分を除去するためのフィルタの時定数はかなり大きく、収束予想値を高速に得ることは困難であった。   Therefore, noise components are generally removed by a low-pass filter. However, the time constant of the filter for removing noise components of several tens of Hz or less is quite large, and an expected convergence value is obtained at high speed. It was difficult.

この問題を解決するための一つの技術として、本願出願人は、センサの出力信号に含まれる交流信号成分を抽出してその位相を反転させて原信号と加算することにより、センサの出力信号の雑音成分を除去する技術を開示している(特許文献1)。   As one technique for solving this problem, the applicant of the present application extracts an alternating current signal component included in the sensor output signal, inverts the phase thereof, and adds the original signal to the sensor signal. A technique for removing a noise component is disclosed (Patent Document 1).

特開2005−274320号公報JP 2005-274320 A

しかし、上記特許文献1の技術を用いても、床振動等で生じる数10Hz以下の雑音成分を精度よく且つ速やかに除去することが困難であった。   However, even if the technique of Patent Document 1 is used, it has been difficult to accurately and quickly remove noise components of several tens of Hz or less caused by floor vibration or the like.

特に、位相反転用として一般的に用いられるヒルベルト変換器の周波数特性は基本的にハイパス型であり、極低域までその周波数特性を延ばそうとすれば、そのタップ数が非常に大きくなり、その処理による大きな遅延が生じてしまう。   In particular, the frequency characteristics of a Hilbert transformer that is generally used for phase inversion is basically a high-pass type. If you try to extend the frequency characteristics to an extremely low frequency range, the number of taps will become very large, Cause a large delay.

本発明は、この点を改善し、センサの出力信号に含まれる低周波雑音成分を速やかに且つ精度よく除去して、センサに負荷された物理量に対応する直流成分を得ることができる信号処理方法および装置を提供することを目的としている。   The present invention improves this point, and can quickly and accurately remove low-frequency noise components contained in the output signal of the sensor to obtain a DC component corresponding to the physical quantity loaded on the sensor. And to provide an apparatus.

前記目的を達成するために、本発明の請求項1の信号処理方法は、
センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の移相処理を行う段階(S5)と、
前記移相処理で得られた信号(Y(k)′)に基づいて、該移相処理の前記所定周波数以下の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記所定周波数以下の振幅を補正し、前記第1処理信号に含まれる低域雑音成分を180゜移相した雑音信号(NL1(k))を生成する段階(S7)と、
前記第1処理信号と前記雑音信号とを加算して、前記第1処理信号から前記所定周波数以下の低域雑音成分を除去した信号(Z(k))を求める段階(S8)とを含み、
さらに、前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含むことを特徴とする。
In order to achieve the object, a signal processing method according to claim 1 of the present invention comprises:
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a phase shift process of 180 degrees on the first processed signal (S5);
Obtaining a time response coefficient (α) that causes a low-frequency amplitude error equal to or lower than the predetermined frequency of the phase shift process based on the signal (Y (k) ′) obtained by the phase shift process (S6); ,
Based on the obtained time response coefficient, an amplitude of the phase-shifted signal that is equal to or lower than the predetermined frequency is corrected, and a low-frequency noise component included in the first processed signal is phase-shifted by a noise signal (N L1 (k)) is generated (S7);
By adding said noise signal and the first processed signal, seen including a first processed signal from the signal obtained by removing the predetermined frequency below the low frequency noise component (Z (k)) determining a (S8) ,
Furthermore, the phase shift process includes:
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
Generating a 180 ° phase-shifted signal to the processed signal to the inputs on the basis of the calculated instantaneous phase and instantaneous amplitude and (S101), characterized in including Mukoto.

また、本発明の請求項2の信号処理方法は、
センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の第1の移相処理を行う段階(S5)と、
前記第1の移相処理で得られた信号(Y(k)′)に基づいて、該第1の移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(NL1(k))を生成する段階(S7)と、
前記第1処理信号と前記第1の雑音信号とを加算して、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める段階(S8)と、
前記第2処理信号に対する180度の第2の移相処理を行う段階(S11)と、
前記第2の移相処理で得られた信号(Z(k)′)に対して、該第2の移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲における周波数対振幅の誤差を補正して、前記第2処理信号の前記第2の周波数範囲に含まれる低域雑音成分を180度移相した第2の雑音信号(NL2(k))を生成する段階(S13)と、
前記第2処理信号と前記第2の雑音信号とを加算して、前記第2処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める段階(S14)とを含み、
さらに、前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含むことを特徴とする。
The signal processing method according to claim 2 of the present invention includes:
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a first phase shift process of 180 degrees on the first processed signal (S5);
A first frequency range from the predetermined frequency of the first phase shift processing to a lower boundary frequency (Fb) based on the signal (Y (k) ′) obtained by the first phase shift processing. Obtaining a time response coefficient (α) that causes a low-frequency amplitude error (S6),
Based on the obtained time response coefficient, the amplitude of the first frequency range of the phase-shifted signal is corrected, and a low frequency noise component included in the first frequency range of the first processed signal is corrected. Generating a first noise signal (N L1 (k)) phase shifted by 180 ° (S7);
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. Step (S8);
Performing a second phase shift process of 180 degrees on the second processed signal (S11);
The frequency in the second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the second phase shift process with respect to the signal (Z (k) ′) obtained by the second phase shift process A step of generating a second noise signal (N L2 (k)) in which a low-frequency noise component included in the second frequency range of the second processed signal is phase-shifted by 180 degrees by correcting an error in the pair amplitude. (S13),
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the second processed signal. look including a step (S14),
Furthermore, the phase shift process includes:
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
Generating a 180 ° phase-shifted signal to the processed signal to the inputs on the basis of the calculated instantaneous phase and instantaneous amplitude and (S101), characterized in including Mukoto.

また、本発明の請求項3の信号処理方法は
センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の第1の移相処理を行う段階(S5)と、
前記第1の移相処理で得られた信号(Y(k)′)に基づいて、該第1の移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(N L1 (k))を生成する段階(S7)と、
前記第1処理信号と前記第1の雑音信号とを加算して、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める段階(S8)と、
前記第2処理信号に対する180度の第2の移相処理を行う段階(S11)と、
前記第2の移相処理で得られた信号(Z(k)′)に対して、該第2の移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲における周波数対振幅の誤差を補正して、前記第2処理信号の前記第2の周波数範囲に含まれる低域雑音成分を180度移相した第2の雑音信号(N L2 (k))を生成する段階(S13)と、
前記第2処理信号と前記第2の雑音信号とを加算して、前記第2処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める段階(S14)とを含み、
前記第3処理信号を求める際には、該第3処理信号から抽出した雑音成分の振幅情報と周波数情報から生成した第2の雑音信号を用いて補正処理を行うことを特徴とする。
The signal processing method according to claim 3 of the present invention includes :
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a first phase shift process of 180 degrees on the first processed signal (S5);
A first frequency range from the predetermined frequency of the first phase shift processing to a lower boundary frequency (Fb) based on the signal (Y (k) ′) obtained by the first phase shift processing. Obtaining a time response coefficient (α) that causes a low-frequency amplitude error (S6),
Based on the obtained time response coefficient, the amplitude of the first frequency range of the phase-shifted signal is corrected, and a low frequency noise component included in the first frequency range of the first processed signal is corrected. Generating a first noise signal (N L1 (k)) phase shifted by 180 ° (S7);
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. Step (S8);
Performing a second phase shift process of 180 degrees on the second processed signal (S11);
The frequency in the second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the second phase shift process with respect to the signal (Z (k) ′) obtained by the second phase shift process A step of generating a second noise signal (N L2 (k)) in which a low-frequency noise component included in the second frequency range of the second processed signal is phase-shifted by 180 degrees by correcting an error in the pair amplitude. (S13),
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the second processed signal. Including step (S14),
When obtaining the third processed signal, correction processing is performed using a second noise signal generated from amplitude information and frequency information of a noise component extracted from the third processed signal .

また、本発明の請求項4の信号処理方法は、請求項3記載の信号処理方法において、
前記入力信号または前記第1処理信号に対するスペクトラム解析により少なくとも前記所定周波数以下の雑音成分を求める段階(S3)と、
前記スペクトラム解析により得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲のいずれにあるかを判定する段階(S4、S9、S16)とを含み、
前記スペクトラム解析により得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲の両方にあるときには、前記第3処理信号を最終の処理結果とし、雑音成分が前記第1の周波数範囲にのみあるときには、前記第2処理信号を最終の処理結果とし、雑音成分が前記第2の周波数範囲にのみあるときには、前記第2処理信号の代わりに前記第1処理信号に対して前記第3処理信号を求める処理をおこない、その結果を最終処理結果として出力することを特徴とする。
The signal processing method according to claim 4 of the present invention, in the signal processing method Motomeko 3 wherein,
Obtaining a noise component of at least the predetermined frequency or less by spectrum analysis on the input signal or the first processing signal (S3);
Determining whether the noise component obtained by the spectrum analysis is in the first frequency range or the second frequency range (S4, S9, S16),
When the noise component obtained by the spectrum analysis is in both the first frequency range and the second frequency range, the third processing signal is set as a final processing result, and the noise component is in the first frequency range. The second processed signal is the final processed result, and when the noise component is only in the second frequency range, the third processed signal is replaced with the third processed signal instead of the second processed signal. A process for obtaining a processing signal is performed, and the result is output as a final processing result .

また、本発明の請求項5の信号処理方法は、請求項3または請求項4記載の信号処理方法において、
前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含んでいることを特徴とする。
The signal processing method according to claim 5 of the present invention is the signal processing method according to claim 3 or 4 ,
The phase shift process is
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
A step (S101) of generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude.

また、本発明の請求項6の信号処理装置は、
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う移相手段(31)と、
前記移相処理で得られた信号(Y(k)′)に基づいて、該移相処理の前記所定周波数以下の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記所定周波数以下の振幅を補正し、前記第1処理信号に含まれる低域雑音成分を180゜移相した雑音信号(NL1(k))を生成する補正手段(33)と、
前記第1処理信号と前記雑音信号とを加算し、前記第1処理信号から前記所定周波数以下の低域雑音成分を除去した第2処理信号を求める加算手段(35)とを備え
さらに、前記移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする。
The signal processing device according to claim 6 of the present invention is
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the signal (Y (k) ′) obtained by the phase shift processing, time response coefficient calculation means for obtaining a time response coefficient (α) that causes a low-frequency amplitude error below the predetermined frequency of the phase shift processing. (32),
Based on the obtained time response coefficient, an amplitude of the phase-shifted signal that is equal to or lower than the predetermined frequency is corrected, and a low-frequency noise component included in the first processed signal is phase-shifted by a noise signal (N L1 (k)) generating correction means (33);
Adding means (35) for adding the first processed signal and the noise signal to obtain a second processed signal obtained by removing a low-frequency noise component of the predetermined frequency or less from the first processed signal ;
Further, the phase shift means includes
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
It is characterized by comprising means (107 to 109) for generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude .

また、本発明の請求項7の信号処理装置は、
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う第1の移相手段(31)と、
前記第1の移相手段の出力信号(Y(k)′)に基づいて、該移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記第1の移相手段の出力信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(NL1(k))を生成する第1の補正手段(33)と、
前記第1処理信号と前記第1の雑音信号とを加算し、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める第1の加算手段(35)と、
前記第2処理信号に対して180度の移相処理を行う第2の移相手段(41)と、
前記第2の移相手段の出力信号(Z(k)′)に対して、前記第1の移相手段によって移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲の周波数対振幅の誤差を補正して、前記第2処理信号に含まれる前記第2の周波数範囲の雑音成分を180度移相した第2の雑音信号(NL2(k))を生成する第2の補正手段(42)と、
前記第2処理信号と前記第2の雑音信号とを加算し、前記第1処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める第2の加算手段(45)とを備え
さらに、前記各移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする。
The signal processing device according to claim 7 of the present invention is
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A first phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the output signal (Y (k) ′) of the first phase shift means, the low-frequency amplitude error in the first frequency range from the predetermined frequency of the phase shift processing to the lower boundary frequency (Fb) A time response coefficient calculating means (32) for obtaining a time response coefficient (α) that causes
Based on the obtained time response coefficient, the amplitude of the first frequency range of the output signal of the first phase shifting means is corrected, and the low frequency range included in the first frequency range of the first processed signal First correcting means (33) for generating a first noise signal (N L1 (k)) having a noise component shifted by 180 °;
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. 1 addition means (35);
A second phase shift means (41) for performing a phase shift process of 180 degrees on the second processed signal;
A second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the phase shifting process by the first phase shifting means with respect to the output signal (Z (k) ′) of the second phase shifting means. To generate a second noise signal (N L2 (k)) that is 180 degrees phase-shifted from the noise component of the second frequency range included in the second processed signal. Two correction means (42);
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the first processed signal. 2 addition means (45) ,
Furthermore, each said phase shift means is
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
It is characterized by comprising means (107 to 109) for generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude .

また、本発明の請求項8の信号処理装置は、
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う第1の移相手段(31)と、
前記第1の移相手段の出力信号(Y(k)′)に基づいて、該移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記第1の移相手段の出力信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(N L1 (k))を生成する第1の補正手段(33)と、
前記第1処理信号と前記第1の雑音信号とを加算し、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める第1の加算手段(35)と、
前記第2処理信号に対して180度の移相処理を行う第2の移相手段(41)と、
前記第2の移相手段の出力信号(Z(k)′)に対して、前記第1の移相手段によって移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲の周波数対振幅の誤差を補正して、前記第2処理信号に含まれる前記第2の周波数範囲の雑音成分を180度移相した第2の雑音信号(N L2 (k))を生成する第2の補正手段(42)と、
前記第2処理信号と前記第2の雑音信号とを加算し、前記第1処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める第2の加算手段(45)とを備え、
前記第2の補正手段は、前記第3処理信号から抽出した雑音成分の振幅情報と周波数情報から生成した第2の雑音信号を用いて補正処理を行うことを特徴とする。
The signal processing device according to claim 8 of the present invention is
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A first phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the output signal (Y (k) ′) of the first phase shift means, the low-frequency amplitude error in the first frequency range from the predetermined frequency of the phase shift processing to the lower boundary frequency (Fb) A time response coefficient calculating means (32) for obtaining a time response coefficient (α) that causes
Based on the obtained time response coefficient, the amplitude of the first frequency range of the output signal of the first phase shifting means is corrected, and the low frequency range included in the first frequency range of the first processed signal First correcting means (33) for generating a first noise signal (N L1 (k)) having a noise component shifted by 180 ° ;
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. 1 addition means (35);
A second phase shift means (41) for performing a phase shift process of 180 degrees on the second processed signal;
A second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the phase shifting process by the first phase shifting means with respect to the output signal (Z (k) ′) of the second phase shifting means. To generate a second noise signal (N L2 (k)) that is 180 degrees phase-shifted from the noise component of the second frequency range included in the second processed signal . Two correction means (42);
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the first processed signal. 2 addition means (45),
The second correction means performs correction processing using a second noise signal generated from amplitude information and frequency information of a noise component extracted from the third processing signal .

また、本発明の請求項9の信号処理装置は、請求項8記載の信号処理装置において、
前記入力信号または前記第1処理信号に対するスペクトラム解析により少なくとも前記所定周波数以下の雑音成分を求めるスペクトラム解析手段(26)と、
前記スペクトラム解析手段で得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲のいずれにあるかを判定する雑音分布判定手段(27)と、
前記スペクトラム解析手段で得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲の両方にあるときには、前記第3処理信号を最終の処理結果として出力させ、雑音成分が前記第1の周波数範囲にのみあるときには、前記第2処理信号を最終の処理結果として出力させ、雑音成分が前記第2の周波数範囲にのみあるときには、前記第2処理信号の代わりに前記第1処理信号を前記第2の移相手段に入力させ、該第1処理信号に対して前記第2の加算手段で得られた第3処理信号を最終処理結果として出力させる信号切換手段(28a〜28c)とを有していることを特徴とする。
The signal processing apparatus according to claim 9 of the present invention, in the signal processing apparatus Motomeko 8, wherein,
Spectrum analysis means (26) for obtaining a noise component of at least the predetermined frequency or less by spectrum analysis on the input signal or the first processing signal;
Noise distribution determination means (27) for determining whether the noise component obtained by the spectrum analysis means is in the first frequency range or the second frequency range;
When the noise component obtained by the spectrum analysis means is in both the first frequency range and the second frequency range, the third processing signal is output as a final processing result, and the noise component is the first frequency range. The second processing signal is output as a final processing result when it is only in the frequency range, and when the noise component is only in the second frequency range, the first processing signal is used instead of the second processing signal. Signal switching means (28a to 28c) for inputting to the second phase shifting means and outputting the third processed signal obtained by the second adding means as a final processing result for the first processed signal. It is characterized by having.

また、本発明の請求項10の信号処理装置は、請求項8または請求項9記載の信号処理装置において、
前記移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする。
A signal processing device according to claim 10 of the present invention is the signal processing device according to claim 8 or 9 , wherein
Each of the phase shifting means includes
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
It is characterized by comprising means (107 to 109) for generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude.

このように本発明では、センサの出力信号に対するA/D変換処理で得られた時系列の信号に対して高域雑音除去処理を行い、その高域雑音除去処理後の第1処理信号に対する180度の移相処理を行い、その移相処理によって生じる低域振幅誤差を移相処理の時間応答係数を基づいて補正して、入力信号に含まれていた交流の雑音成分を180度移相した雑音信号を生成してから入力信号と加算して、その雑音成分を相殺除去しているので、移相処理帯域を極端に低域まで下げることなく、低域雑音成分を除去することができ、速やかに且つ精度よく直流成分を検出することができる。   As described above, in the present invention, the high-frequency noise removal processing is performed on the time-series signal obtained by the A / D conversion processing on the output signal of the sensor, and the first processing signal 180 after the high-frequency noise removal processing is processed. The phase shift process is performed, the low-frequency amplitude error caused by the phase shift process is corrected based on the time response coefficient of the phase shift process, and the AC noise component included in the input signal is phase shifted 180 degrees. Since the noise component is added to the input signal after generating the noise signal, the noise component is canceled out, so the low-frequency noise component can be removed without lowering the phase shift processing band to an extremely low frequency. The DC component can be detected promptly and accurately.

また、移相処理の周波数特性の傾斜部以下の低域を、境界周波数を境にして2つの周波数範囲に分け、その高い方の第1の周波数範囲については時間応答係数により速やかに補正処理を行い、低い方の第2の周波数範囲については、周波数対振幅の特性に基づいて振幅補正しているから、床振動などの極めて低い雑音成分に対しても速やかに精度よくセンサへの負荷に対応した直流成分を検出することかできる。   In addition, the low frequency range below the slope of the frequency characteristic of the phase shift processing is divided into two frequency ranges with the boundary frequency as a boundary, and the higher first frequency range is corrected quickly by the time response coefficient. Since the amplitude of the lower second frequency range is corrected based on the frequency-to-amplitude characteristics, the sensor load can be handled quickly and accurately even for extremely low noise components such as floor vibrations. The detected direct current component can be detected.

また、入力信号あるいは第1処理信号のスペクトラム解析を行い、低域雑音がどの周波数範囲にあるかによって、雑音除去処理を選択的に行うものでは、実際に発生する雑音に応じて最短の処理時間でその雑音の除去が行える。   Also, in the case where the spectrum analysis of the input signal or the first processing signal is performed and the noise removal processing is selectively performed depending on which frequency range the low-frequency noise is in, the shortest processing time according to the actually generated noise Can remove the noise.

以下、図面に基づいて本発明の実施の形態を説明する。
先ず始めに、本発明の信号処理方法の一実施形態を図1のフローチャートに基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, an embodiment of the signal processing method of the present invention will be described based on the flowchart of FIG.

図1に示しているように、この実施形態の信号処理方法は、質量、圧力等の物理量Mを受けたセンサの出力信号x(t)を、その周波数成分の上限の2倍より十分高い周波数でオーバサンプリングして、量子化雑音が極めて少ないデジタルの原信号X(k)に変換する(S1)。   As shown in FIG. 1, in the signal processing method of this embodiment, the output signal x (t) of a sensor that has received a physical quantity M such as mass or pressure has a frequency sufficiently higher than twice the upper limit of its frequency component. Oversampling is performed to convert the digital original signal X (k) with very little quantization noise (S1).

そして、この原信号X(k)に含まれる所定周波数Fa(例えば数10Hz)以上の高域雑音成分を除去する(S2)。この所定周波数Faは、後述する各移相手段の周波数振幅特性の平坦部と低域側の傾斜部の境界近傍に設定されているものとする(図3参照)。   Then, a high frequency noise component having a frequency equal to or higher than a predetermined frequency Fa (for example, several tens of Hz) included in the original signal X (k) is removed (S2). This predetermined frequency Fa is assumed to be set in the vicinity of the boundary between the flat portion of the frequency amplitude characteristic of each phase shift means to be described later and the inclined portion on the low frequency side (see FIG. 3).

高域雑音成分の除去処理については後述するが、例えば前記した特許文献1の処理が使用可能であり、この処理により、例えば、図2の(a)のような信号x(t)に対して、図2の(b)のように低域の雑音成分のみが重畳した信号Y(k)を出力する。   Although the high-frequency noise component removal process will be described later, for example, the process of Patent Document 1 described above can be used. For example, the signal x (t) as shown in FIG. As shown in FIG. 2B, a signal Y (k) in which only low-frequency noise components are superimposed is output.

高域雑音除去処理で所定周波数Fa以上の雑音成分が短時間に除去された第1処理信号Y(k)は、低域雑音除去処理を受けるが、その低域雑音成分の存在を先に調べておくことで、以後の処理に無駄がなくなる。   The first processed signal Y (k) from which the noise component of the predetermined frequency Fa or higher is removed in a short time by the high-frequency noise removal processing is subjected to the low-frequency noise removal processing, but the existence of the low-frequency noise component is examined first. By doing so, there is no waste in subsequent processing.

即ち、スペクトラム解析処理(S3)を行い、周波数Fa以下の所定レベル以上の雑音があるか否かを判定する(S4、S9、S16)。   That is, spectrum analysis processing (S3) is performed, and it is determined whether or not there is noise of a predetermined level or higher below the frequency Fa (S4, S9, S16).

ここで、図3に示すように、移相処理の振幅周波数特性の周波数Faから雑音除去処理の下限周波数Fcの間を、境界周波数Fb(例えば10Hz)を境にして高い方を第1の周波数範囲、低い方を第2の周波数範囲に分け、雑音成分がどちらの周波数範囲にあるかを判定する。   Here, as shown in FIG. 3, between the frequency Fa of the amplitude frequency characteristic of the phase shift process and the lower limit frequency Fc of the noise removal process, the higher one with the boundary frequency Fb (for example, 10 Hz) as the boundary is the first frequency. The lower range is divided into the second frequency range, and it is determined which frequency range the noise component is in.

雑音成分が第1の周波数範囲にあるとき(S4)には、第1処理信号Y(k)に対する雑音除去処理が行われる。   When the noise component is in the first frequency range (S4), noise removal processing is performed on the first processing signal Y (k).

この低域雑音除去処理は、基本的に元の信号に含まれる交流の雑音成分を180゜移相して加算することで雑音成分を相殺するものである。   This low-frequency noise removal processing basically cancels the noise component by shifting the AC noise component included in the original signal by 180 ° and adding it.

即ち、第1処理信号Y(k)に対して180度の移相処理を行う(S5)。
この180度の移相処理は、単純には広帯域にわたり90度の移相処理が可能なヒルベルト変換器を2段接続して実現できる。
That is, a phase shift process of 180 degrees is performed on the first processing signal Y (k) (S5).
This 180 degree phase shift process can be realized simply by connecting two stages of Hilbert transformers capable of 90 degree phase shift over a wide band.

また、後述するように入力信号からヒルベルト変換器を用いてIQ直交信号を生成し、そのI成分とQ成分から、雑音成分の瞬時周波数、瞬時位相、瞬時振幅を求め、これらの情報から各雑音成分について180゜移相した信号を合成して出力する構成としてもよい。   As will be described later, an IQ quadrature signal is generated from the input signal using a Hilbert transformer, and the instantaneous frequency, instantaneous phase, and instantaneous amplitude of the noise component are obtained from the I component and Q component, and each noise is obtained from these information. It may be configured to synthesize and output signals that are 180 ° phase shifted for the components.

ただし、前記したようにヒルベルト変換器はハイパス型で、図3で示したように周波数Faより傾斜部で周波数とともに利得が低下し、図2の(c)のように、移相処理した後の信号Y(k)′の低域成分の振幅が減衰してしまう。この利得が低下する周波数は、ヒルベルト変換処理のタップ数を多くすることでより低い方へずらすことができるが、そのために大きな遅延時間が生じてしまう。   However, as described above, the Hilbert transformer is a high-pass type, and as shown in FIG. 3, the gain decreases with the frequency at the slope portion from the frequency Fa, and after the phase shift processing as shown in FIG. The amplitude of the low frequency component of the signal Y (k) ′ is attenuated. The frequency at which the gain decreases can be shifted to a lower level by increasing the number of taps in the Hilbert transform process, but this causes a large delay time.

そこで、この実施形態では、移相処理によって生じる低域振幅誤差を移相処理の時間応答係数αを求めて補正処理し、第1処理信号Y(k)に含まれていた第1の周波数範囲の雑音成分を180度移相した第1の雑音信号NL1(k)を生成し、加算処理してその雑音成分を除去している。 Therefore, in this embodiment, the low frequency amplitude error caused by the phase shift process is corrected by obtaining the time response coefficient α of the phase shift process, and the first frequency range included in the first processed signal Y (k) is corrected. The first noise signal N L1 (k) is generated by shifting the noise component by 180 degrees and added to remove the noise component.

つまり、図2の(c)のように第1処理信号Y(k)に対して180゜の移相処理して得られた信号Y(k)′と、元の信号Y(k)とから時間応答係数αを求めて(S6)、その時間応答係数に応じた補正処理を行い(S7)、図2の(d)のように第1処理信号Y(k)に含まれる第1の周波数範囲の雑音成分を180゜移相した第1の雑音信号NL1(k)を求め、第1処理信号Y(k)と加算する(S8)ことで、図2の(e)のようなに第1の周波数範囲の雑音が除去された第2処理信号Z(k)を得ている。 That is, from the signal Y (k) ′ obtained by performing the phase shift process of 180 ° with respect to the first processed signal Y (k) as shown in FIG. 2C, and the original signal Y (k). The time response coefficient α is obtained (S6), correction processing corresponding to the time response coefficient is performed (S7), and the first frequency included in the first processing signal Y (k) as shown in FIG. 2 (d). A first noise signal N L1 (k) obtained by shifting the noise component of the range by 180 ° is obtained and added to the first processed signal Y (k) (S8), as shown in FIG. A second processed signal Z (k) from which noise in the first frequency range is removed is obtained.

なお、時間応答係数αの算出は、例えば時刻mT、(m+1)Tの入力値をそれぞれK1、K2、そのときの直流値をDcで一定、ヒルベルト変換の出力値をそれぞれh[mT]、h[(m+1)T]とすると、次の連立方程式が成り立つ。   The time response coefficient α is calculated by, for example, setting the input values at time mT and (m + 1) T to K1 and K2, respectively, the DC value at that time is constant at Dc, and the output value of the Hilbert transform to h [mT] and h, respectively. Assuming [(m + 1) T], the following simultaneous equations hold.

Dc+h(mT)=K1
Dc+h[(m+1)T]=K2
Dc + h (mT) = K1
Dc + h [(m + 1) T] = K2

また、元の信号をそれぞれg[mT]、g[(m+1)T]とすれば、
α・g[mT]=h[mT]
α・g[(m+1)T]=h[(m+1)T]
となる。
If the original signals are g [mT] and g [(m + 1) T], respectively,
α · g [mT] = h [mT]
α · g [(m + 1) T] = h [(m + 1) T]
It becomes.

これらの式を解くことで、直流分Dcと時間応答係数αが得られるので、この時間応答係数α分の補正処理(逆数1/αを乗じる)を行うことで、前記したように第1の周波数範囲の低域雑音が除去された第2処理信号Z(k)を得ることができる。   By solving these equations, the DC component Dc and the time response coefficient α can be obtained. Therefore, by performing the correction process (multiplying the reciprocal 1 / α) for this time response coefficient α, the first part is obtained as described above. The second processed signal Z (k) from which the low frequency noise in the frequency range has been removed can be obtained.

この第2処理信号Z(k)に第2の周波数範囲の雑音がなければ、第2処理信号Z(k)が最終の処理結果として出力されることになる(S9、S10)が、数Hzの低い周波数の床振動があるような場合、図2の(e)のように第2処理信号Z(k)にその雑音成分が重畳している。   If there is no noise in the second frequency range in the second processing signal Z (k), the second processing signal Z (k) is output as the final processing result (S9, S10), which is several Hz. When there is a floor vibration of a low frequency, the noise component is superimposed on the second processed signal Z (k) as shown in FIG.

そこで、次に第2の周波数範囲の雑音に対する除去処理を行う。
即ち、第2処理信号Z(k)に対して180゜の移相処理を行い(S11)、図2の(f)のような信号Z(k)′を求める。
Therefore, next, removal processing for noise in the second frequency range is performed.
That is, a 180 ° phase shift process is performed on the second processed signal Z (k) (S11) to obtain a signal Z (k) ′ as shown in FIG.

そして、前記同様にその移相処理による低域振幅誤差を補正する。
この低域振幅誤差の補正処理としては、移相処理部の周波数特性が既知で固定であることから、その周波数特性を補償する固定周波数特性(LPF)のフィルタ処理(畳み込み演算処理)を行うことで実現できる。
Then, similarly to the above, the low-frequency amplitude error due to the phase shift processing is corrected.
As this low-frequency amplitude error correction processing, since the frequency characteristic of the phase shift processing unit is known and fixed, a fixed frequency characteristic (LPF) filter process (convolution calculation process) for compensating the frequency characteristic is performed. Can be realized.

また、センサ11の出力に含まれる低域雑音成分は、センサ11に定常的に加わっている振動成分が主体である場合が多いので、その信号成分についてだけ低域振幅誤差を補正することで補正処理が容易となり、補正に必要な処理時間がより短くて済む。   Further, since the low-frequency noise component included in the output of the sensor 11 is mainly a vibration component that is constantly added to the sensor 11, correction is performed by correcting the low-frequency amplitude error only for the signal component. Processing becomes easier and processing time required for correction is shorter.

さらに、雑音が例えば床振動のように定常的なものが主体である場合、振幅最大の雑音成分だけを除去対象とし、その雑音を抽出して周波数情報と振幅情報を求めておき、その情報から雑音信号を生成して補正処理することも可能である。   Furthermore, when the noise is mainly stationary such as floor vibration, for example, only the noise component with the maximum amplitude is targeted for removal, and the noise is extracted to obtain frequency information and amplitude information. It is also possible to generate a noise signal and perform correction processing.

なお、図1の例では、第2処理信号Z(k)に対するスペクトラム解析を利用して、第2の周波数範囲に存在する雑音成分に対して前記移相処理で生じる低域振幅誤差を補正するために必要な係数(この場合FIR型フィルタの係数)を求め(S12)、そのフィルタ係数による補正演算処理(畳み込み演算処理)を信号Z(k)′に対して行い(S13)、図2の(g)のように、振幅誤差が補正され、且つ元の信号の低域雑音成分に対して180度移相した第2の雑音信号NL2(k)を生成している。 In the example of FIG. 1, the spectrum analysis for the second processed signal Z (k) is used to correct the low-frequency amplitude error caused by the phase shift processing for the noise component existing in the second frequency range. 2 is obtained (S12), and a correction calculation process (convolution calculation process) using the filter coefficient is performed on the signal Z (k) ′ (S13). As shown in (g), the second noise signal N L2 (k) is generated in which the amplitude error is corrected and phase-shifted by 180 degrees with respect to the low-frequency noise component of the original signal.

そして、第2処理信号Z(k)と第2の雑音信号NL2(k)とを加算して、図2の(h)のように第2の周波範囲の低域雑音成分が除去された第3処理信号W(k)を求め(S14)、これを最終の処理結果として出力する(S15)。 Then, the second processed signal Z (k) and the second noise signal N L2 (k) are added, and the low frequency noise component in the second frequency range is removed as shown in FIG. 2 (h). The third processing signal W (k) is obtained (S14), and this is output as the final processing result (S15).

この最終の処理結果として出力された第3処理信号W(k)から、センサの出力信号x(t)の直流成分Vm、即ち、センサに負荷された物理量を正確に予測できる。   From the third processing signal W (k) output as the final processing result, the DC component Vm of the sensor output signal x (t), that is, the physical quantity loaded on the sensor can be accurately predicted.

また、スペクトラム解析の結果、第1の周波数範囲と第2の周波数範囲のいずれにも有害な雑音がないと判定された場合(S16)には、第1処理信号Y(k)を最終の処理結果として出力し(S17)、第2の周波数範囲にのみ有害な雑音があると判定された場合には、前記第2処理信号Z(k)の代わりに第1処理信号Y(k)に対する180°の移相処理を行って(S18)、その移相信号に対してS12〜S14の処理を行い、その処理で得られた信号W(k)を最終の処理結果とすればよい。   When it is determined that there is no harmful noise in either the first frequency range or the second frequency range as a result of spectrum analysis (S16), the first processing signal Y (k) is subjected to final processing. As a result (S17), if it is determined that there is harmful noise only in the second frequency range, 180 for the first processing signal Y (k) instead of the second processing signal Z (k). The phase shift process is performed (S18), the processes of S12 to S14 are performed on the phase shift signal, and the signal W (k) obtained by the process is used as the final process result.

なお、ここでは、第2の周波数範囲に、精度に影響を与える低域雑音成分が複数ある場合を想定して、その複数の低域振幅誤差を補正するために必要なフィルタ係数を求めていたが、スペクトラム解析で得られた低域雑音成分のうちの第2の周波数範囲内でレベル最大の雑音成分だけに対して補正処理を行うことも可能であり、その場合には、対象となる雑音成分の振幅の減衰割合を係数として求め、その係数の逆数を移相処理後の信号に乗じる演算のみで補正処理が行え、最短の処理時間で済む。   Here, assuming that there are a plurality of low-frequency noise components that affect the accuracy in the second frequency range, the filter coefficients necessary for correcting the plurality of low-frequency amplitude errors have been obtained. However, it is also possible to perform correction processing only on the noise component having the maximum level within the second frequency range among the low-frequency noise components obtained by the spectrum analysis. The correction processing can be performed only by calculating the attenuation ratio of the amplitude of the component as a coefficient and multiplying the reciprocal of the coefficient by the signal after the phase shift processing, and the shortest processing time is required.

このように、実施形態の信号処理方法では、センサ1の出力信号に対するA/D変換処理で得られた時系列の信号に対して高域雑音除去処理を行い、その結果得られた第1処理信号に対して180度の移相処理を行い、その移相処理により生じる低域振幅誤差を移相処理の時間応答係数に基づいて補正して第1処理信号と加算することで、低域雑音成分を相殺除去しているので、低域成分に対する移相処理のために大きな遅延時間を発生させることなく、極めて低い周波数の雑音成分の除去を速やか行うことができ、センサに負荷された物理量を高速且つ高精度に検出できる。   As described above, in the signal processing method of the embodiment, the high-frequency noise removal processing is performed on the time-series signal obtained by the A / D conversion processing on the output signal of the sensor 1, and the first processing obtained as a result is performed. The signal is subjected to a phase shift process of 180 degrees, a low-frequency amplitude error caused by the phase-shift process is corrected based on the time response coefficient of the phase-shift process, and added to the first processed signal, thereby reducing the low-frequency noise. Since the components are canceled out, noise components at extremely low frequencies can be quickly removed without generating a large delay time due to the phase shift processing for the low frequency components, and the physical quantity loaded on the sensor can be reduced. It can be detected at high speed and with high accuracy.

さらに低域を第1の周波数範囲と第2の周波数範囲に分け、その高い方の第1の周波数範囲については時間応答係数に基づいて補正した雑音信号を用いて雑音除去処理を行い、低い方の第2の周波数範囲については移相処理の周波数対振幅の特性に基づいて補正され雑音信号を用いて雑音除去処理を行い、第2の周波数範囲の低域雑音成分を相殺させ、センサの出力信号の直流成分を得ているので、より効率的に雑音を除去できる。   Further, the low frequency band is divided into a first frequency range and a second frequency range, and the higher first frequency range is subjected to noise removal processing using a noise signal corrected based on the time response coefficient, and the lower one is selected. The second frequency range of the second frequency range is corrected based on the frequency-to-amplitude characteristics of the phase shift processing, and noise removal processing is performed using the noise signal to cancel out the low-frequency noise component in the second frequency range, and the sensor output Since the DC component of the signal is obtained, noise can be removed more efficiently.

なお、高域雑音除去の処理は任意であり、簡単にはローパスフィルタのみで高域雑音成分を除去してもよく、また、前記した特許文献1の処理で極めて高速な雑音除去処理を行うこともできる。   Note that the high-frequency noise removal process is arbitrary, and a high-frequency noise component may be simply removed using only a low-pass filter. In addition, the extremely high-speed noise removal process may be performed using the process described in Patent Document 1. You can also.

図4は、上記実施形態の信号処理方法を用いた実施形態の信号処理装置20の構成を示している。   FIG. 4 shows the configuration of the signal processing device 20 of the embodiment using the signal processing method of the above embodiment.

この信号処理装置20は、ロードセル等のセンサ11の出力信号x(t)を、A/D変換器21により例えば数kHzでオーバサンプリングして、量子化雑音が少ないデジタルの原信号X(k)を得て、高域雑音除去部22に入力している。   The signal processing device 20 oversamples the output signal x (t) of the sensor 11 such as a load cell by using an A / D converter 21 at, for example, several kHz, and produces a digital original signal X (k) with little quantization noise. Is input to the high-frequency noise removing unit 22.

高域雑音除去部22は、移相手段23、遅延手段24および加算手段25により構成されている。   The high-frequency noise removal unit 22 includes a phase shift unit 23, a delay unit 24, and an addition unit 25.

原信号X(k)を受ける移相手段23は、90度の移相を行う2つのヒルベルト変換器23a、23bを直列に接続したものであり、そのタップ数は、周波数Fa以上の周波数成分に対して平坦な周波数特性が得られる最小数に設定されている。   The phase shift means 23 that receives the original signal X (k) is a unit in which two Hilbert transformers 23a and 23b that perform a phase shift of 90 degrees are connected in series, and the number of taps is a frequency component equal to or higher than the frequency Fa. On the other hand, the minimum number is set so that a flat frequency characteristic can be obtained.

なお、上記のようにヒルベルト変換器を用いた移相手段23の場合、原理的に直流分は除去されているので、原信号に重畳している交流成分に対して180度移相した雑音信号N(k)を生成できる。ただし、低域の雑音成分については元の成分に対して振幅が低下している。 In the case of the phase shift means 23 using the Hilbert converter as described above, since the DC component is removed in principle, the noise signal shifted by 180 degrees with respect to the AC component superimposed on the original signal. N H (k) can be generated. However, the amplitude of the low frequency noise component is lower than the original component.

また、遅延手段24は、信号X(k)に対し、移相手段23の移相処理に必要な処理時間分の遅延を与え、加算器25に出力する。   The delay unit 24 gives a delay corresponding to the processing time necessary for the phase shift processing of the phase shift unit 23 to the signal X (k), and outputs the delay to the adder 25.

加算手段25には、原信号X(k)と、その原信号に含まれていた周波数Fa以上の高域雑音成分を180度移相した雑音信号N(k)とが入力されることになり、その加算処理により高域雑音成分が相殺除去された第1処理信号Y(k)が前記図2の(b)のように出力されることになる。 The addition means 25 is supplied with the original signal X (k) and the noise signal N H (k) obtained by shifting the high frequency noise component of the frequency Fa or higher included in the original signal by 180 degrees. Thus, the first processed signal Y (k) from which the high-frequency noise component has been canceled out by the addition process is output as shown in FIG.

このようにして得られた第1処理信号Y(k)は、スペクトラム解析手段26、低域雑音除去部30の移相手段31および遅延手段34に入力される。   The first processed signal Y (k) obtained in this way is input to the spectrum analyzing unit 26, the phase shifting unit 31 and the delay unit 34 of the low-frequency noise removing unit 30.

スペクトラム解析手段26は、第1処理信号Y(k)に対するスペクトラム解析を行い、周波数Fa以下の雑音成分を求める。   The spectrum analysis unit 26 performs a spectrum analysis on the first processing signal Y (k) and obtains a noise component having a frequency Fa or less.

雑音分布判定手段27は、スペクトラム解析手段26で得られた雑音成分が、第1の周波数範囲と第2の周波数範囲のいずれにあるかを判定する。この判定結果によって後述する信号切換用のスイッチ28a〜28cが切り替わる。   The noise distribution determining unit 27 determines whether the noise component obtained by the spectrum analyzing unit 26 is in the first frequency range or the second frequency range. Based on the determination result, the signal switching switches 28a to 28c described later are switched.

第1処理信号Y(k)はスイッチ28aを介して低域雑音除去部30の移相手段31に入力される。移相手段31は例えば、図示のように90度の移相を行う2つのヒルベルト変換器31a、31bを直列に接続して構成でき、そのタップ数は、周波数Faより低い周波数成分に対しては、前記図3で示したように周波数が低くなる程振幅が減衰する特性となり、図2の(c)で示したように、その帯域の信号の振幅を下げてしまうが、その振幅低下は後続の補正手段33によって補正される。   The first processed signal Y (k) is input to the phase shift means 31 of the low frequency noise removing unit 30 via the switch 28a. For example, the phase shift means 31 can be configured by connecting two Hilbert transformers 31a and 31b that perform a phase shift of 90 degrees in series as shown in the figure, and the number of taps is lower than the frequency Fa. As shown in FIG. 3, as the frequency becomes lower, the amplitude is attenuated. As shown in (c) of FIG. 2, the amplitude of the signal in the band is lowered. It is corrected by the correcting means 33.

つまり、時間応答係数算出手段32により出力信号Y(k)′と入力信号Y(k)とから時間応答係数αが算出されて補正手段33に与えられ、信号Y(k)′の振幅が補正されて、図2の(d)に示したように第1処理信号Y(k)の第1の周波数範囲に含まれる雑音成分を180゜移相した第1の雑音信号NL1(k)が求められ、加算器35に与えられる。この加算器35には、第1処理信号Y(k)が、時間応答算出手段32および補正手段33の処理遅延分だけ遅延手段34で遅延されて入力されており、その加算処理により、第1処理信号Y(k)からその第1の周波数範囲に含まれる雑音成分が除去されて、図2の(e)に示した第2処理信号Z(k)が得られる。 That is, the time response coefficient α is calculated from the output signal Y (k) ′ and the input signal Y (k) by the time response coefficient calculation means 32 and is given to the correction means 33, and the amplitude of the signal Y (k) ′ is corrected. Then, as shown in FIG. 2D, the first noise signal N L1 (k) obtained by shifting the noise component included in the first frequency range of the first processed signal Y (k) by 180 ° is obtained. It is obtained and given to the adder 35. The adder 35 is inputted with the first processing signal Y (k) after being delayed by the delay means 34 by the processing delay of the time response calculation means 32 and the correction means 33. The noise component included in the first frequency range is removed from the processed signal Y (k), and the second processed signal Z (k) shown in (e) of FIG. 2 is obtained.

このようにして得られた第2処理信号Z(k)は、スイッチ28bを介して移相手段41および遅延手段44に入力される。   The second processing signal Z (k) obtained in this way is input to the phase shift means 41 and the delay means 44 via the switch 28b.

移相手段41は、例えば前記同様に2つのヒルベルト変換器41a、41bで構成され、入力する処理信号Z(k)(後述するようにY(k)の場合もある)の交流成分に対して180°の移相処理を行うが、前記したように低周波域ではその周波数振幅特性の傾斜により振幅が低下しており、特に第2の周波数範囲では、振幅誤差が大きくなっており、補正処理が必要となる。   The phase shift means 41 is composed of, for example, two Hilbert transformers 41a and 41b as described above, and with respect to the AC component of the input processing signal Z (k) (may be Y (k) as will be described later). As described above, the phase shift process of 180 ° is performed. In the low frequency range, the amplitude is decreased due to the inclination of the frequency amplitude characteristic, and particularly in the second frequency range, the amplitude error is large, and the correction process is performed. Is required.

この補正には、ヒルベルト変換器を用いた移相手段41の低域の周波数特性と逆の周波数特性を持つフィルタによってその低域全体の低域振幅誤差を補償する方法、実際に存在する低域雑音成分のうち、精度に影響を与える可能性のあるレベルが大きい雑音成分に対してのみ振幅誤差を補償する方法とがあるが、ここでは前者について説明する。   This correction includes a method of compensating for the low-frequency amplitude error of the entire low frequency band by a filter having a frequency characteristic opposite to the low frequency characteristic of the phase shift means 41 using the Hilbert transformer, Among the noise components, there is a method of compensating an amplitude error only for a noise component having a large level that may affect accuracy. Here, the former will be described.

即ち、補正手段42は、図3の周波数特性と逆の周波数特性をもつFIR型の低域通過フィルタであり、上記した移相処理によって生じる第2の周波数範囲の低域振幅誤差を補正する。   That is, the correction means 42 is an FIR type low-pass filter having a frequency characteristic opposite to the frequency characteristic shown in FIG. 3, and corrects a low-frequency amplitude error in the second frequency range caused by the above-described phase shift processing.

補正係数算出手段43は、前記スペクトラム解析手段26等により得られた第2の周波数範囲の雑音成分の情報を受け、精度に影響する可能性のある所定レベル以上の低域雑音成分に対して移相手段41により生じる低域振幅誤差を補正するためのフィルタ係数を求め、これを補正手段42に設定する。このフィルタ係数は、例えばスペクトラム解析情報から補正に必要な振幅位相特性を求め、その特性に対して逆フーリエ変換(IFFT)を行ってインパルス応答を求め、そのインパルス応答を、要求する精度に対応した広さで切り出すことにより得ている。   The correction coefficient calculation means 43 receives the information of the noise component in the second frequency range obtained by the spectrum analysis means 26 and the like, and shifts the low frequency noise component of a predetermined level or more that may affect the accuracy. A filter coefficient for correcting the low-frequency amplitude error generated by the phase unit 41 is obtained and set in the correction unit 42. For this filter coefficient, for example, an amplitude phase characteristic necessary for correction is obtained from spectrum analysis information, an inverse Fourier transform (IFFT) is performed on the characteristic to obtain an impulse response, and the impulse response corresponds to the required accuracy. It is obtained by cutting out by area.

また、前記したように最もレベルが高い雑音成分(単信号)だけに対して補正処理を行う場合には、図4で点線で示しているように出力信号W(k)から得られた雑音成分の周波数情報と振幅情報に基づいて、その雑音信号に対して180゜移相した雑音信号を生成する雑音生成手段46を用い、その生成された雑音信号と移相処理された信号とを補正手段12で加算することで、雑音成分を除去することもでき、この場合最も短い処理時間で済む。なお、この場合、雑音成分の周波数情報と振幅情報は、出力W(k)から定期的に抽出して更新する方法と、メモリに記憶している固定の情報を用いる方法のいずれであってもよい。   Further, as described above, when correction processing is performed only on the noise component (single signal) having the highest level, the noise component obtained from the output signal W (k) as shown by the dotted line in FIG. Based on the frequency information and amplitude information, the noise generating means 46 for generating a noise signal shifted by 180 ° with respect to the noise signal is used, and the generated noise signal and the phase-shifted signal are corrected. By adding at 12, the noise component can be removed. In this case, the shortest processing time is required. In this case, the frequency information and amplitude information of the noise component may be either a method of periodically extracting and updating from the output W (k) or a method of using fixed information stored in the memory. Good.

このようにして第2の周波数範囲の低域振幅誤差が補正されて、前記図2の(g)に示したように、第2処理信号Z(k)の第2の周波数範囲の低域雑音成分を180度移相した第2の雑音信号NL2(k)が得られる。 In this way, the low-frequency amplitude error in the second frequency range is corrected, and as shown in FIG. 2G, the low-frequency noise in the second frequency range of the second processed signal Z (k). A second noise signal N L2 (k) whose components are shifted by 180 degrees is obtained.

一方、遅延手段44は、信号Z(k)に、移相手段41および補正手段42の処理時間分の遅延を与えて、加算手段45に出力する。   On the other hand, the delay means 44 gives a delay corresponding to the processing time of the phase shift means 41 and the correction means 42 to the signal Z (k) and outputs it to the addition means 45.

したがって、加算手段45には、第2処理信号Z(k)と、その信号Z(k)の第2の周波数範囲に含まれていた低域雑音成分を180度移相した第2の雑音信号NL2(k)とが入力されることになり、前記図2の(h)のようにその低域雑音成分が相殺除去された第3処理信号W(k)が得られ、スイッチ28cを介して最終の処理結果として出力されることになる。 Therefore, the adding means 45 receives the second processed signal Z (k) and the second noise signal obtained by shifting the low frequency noise component included in the second frequency range of the signal Z (k) by 180 degrees. N L2 (k) is input, and the third processed signal W (k) from which the low-frequency noise component is canceled out as shown in FIG. 2 (h) is obtained. Is output as the final processing result.

以上、第1の周波数範囲と第2の周波数範囲に雑音が存在する場合について説明したが、雑音分布判定手段27によって第1の周波数範囲にのみ有害な雑音信号が存在すると判定された場合には、第1処理信号Y(k)を移相手段31に入力させ、加算手段35から出力される第2処理信号Z(k)をスイッチ28cで最終の処理結果として出力すればよい。   The case where noise is present in the first frequency range and the second frequency range has been described above. However, when the noise distribution determination unit 27 determines that a harmful noise signal exists only in the first frequency range. The first processing signal Y (k) may be input to the phase shift means 31, and the second processing signal Z (k) output from the addition means 35 may be output as the final processing result by the switch 28c.

また、第2の周波数範囲にのみ有害な雑音信号が存在すると判定された場合には、第2処理信号Z(k)の代わりに第1処理信号Y(k)を、スイッチ28bを介して移相手段41に入力させ、加算手段45から出力される第3処理信号W(k)をスイッチ28cで最終の処理結果として出力すればよい。   If it is determined that a harmful noise signal exists only in the second frequency range, the first processed signal Y (k) is transferred via the switch 28b instead of the second processed signal Z (k). The third processing signal W (k) input to the phase unit 41 and output from the adding unit 45 may be output as the final processing result by the switch 28c.

このようにスペクトラム解析を行って実際に存在する低域雑音信号を求め、その低域雑音信号の分布に対して選択的に補正処理を行うようにすれば、補正のためのフィルタ構成が簡単に済み、遅延時間を短くすることができる。   By performing spectrum analysis in this way to obtain the low-frequency noise signal that actually exists and selectively correcting the low-frequency noise signal distribution, the filter configuration for correction can be simplified. The delay time can be shortened.

なお、上記実施形態では、180°の移相処理として2段のヒルベルト変換を行う場合について説明したが、図5のフローチャートに示すように、ヒルベルト変換を用いて入力する処理信号から直交信号I、Qを生成して、その瞬時位相、瞬時振幅を求め(S100)、得られた瞬時位相にπ/4を加えた位相値に対応する振幅1の直交成分を求め、瞬時振幅をそれぞれに乗算して加算合成することで、入力する処理信号に対して最終的に180゜移相した信号を生成することができる。ただし、この場合もヒルベルト変換処理の低域振幅歪みの影響を受けるので前記した補正処理が必要となる。   In the above embodiment, the case where the two-stage Hilbert transform is performed as the 180 ° phase shift processing has been described. However, as shown in the flowchart of FIG. 5, the orthogonal signal I, Q is generated, and its instantaneous phase and instantaneous amplitude are obtained (S100), the quadrature component of amplitude 1 corresponding to the phase value obtained by adding π / 4 to the obtained instantaneous phase is obtained, and the instantaneous amplitude is multiplied respectively. By adding and synthesizing the signals, a signal that is finally shifted by 180 ° with respect to the input processing signal can be generated. However, in this case as well, the correction processing described above is required because it is affected by the low-frequency amplitude distortion of the Hilbert transform processing.

図6は、図5の処理を実現する移相手段100で前記した各移相手段23、31、41に適用可能な構成例を示している。   FIG. 6 shows a configuration example applicable to each of the phase shift means 23, 31, 41 described above with the phase shift means 100 realizing the processing of FIG. 5.

この移相手段100は、X(k)、Y(k)、Z(k)のいずれかの入力信号を、1段のヒルベルト変換器101で90°移相して、ヒルベルト変換器1段分の遅延を遅延手段102で与えた信号Iと、入力信号を2段のヒルベルト変換器103、104で180゜移相した信号Qとで、直交IQ信号を生成し、その直交信号I、Qを位相・周波数算出手段105および振幅算出手段106に与えて、雑音成分の瞬時周波数f、瞬時位相φ、瞬時振幅Aを求め、加算手段107で位相φにπ/4を加え、得られた位相φ′を瞬時位相とする振幅1の直交信号成分I′、Q′を直交信号生成手段108により生成し、合成手段109において、振幅Aを乗算して加算合成することで、入力信号に含まれる雑音成分を180゜移相した信号を合成して出力する。   This phase shift means 100 shifts an input signal of any one of X (k), Y (k), and Z (k) by 90 ° with one stage Hilbert transformer 101, and outputs one stage of Hilbert transformer. The signal I given by the delay means 102 and the signal Q obtained by shifting the input signal by 180 ° by the two-stage Hilbert transformers 103 and 104 are used to generate a quadrature IQ signal. The instantaneous frequency f, instantaneous phase φ, and instantaneous amplitude A of the noise component are obtained by giving to the phase / frequency calculating means 105 and the amplitude calculating means 106, and π / 4 is added to the phase φ by the adding means 107, and the obtained phase φ The quadrature signal components I ′ and Q ′ having the amplitude 1 with ′ as the instantaneous phase are generated by the quadrature signal generation means 108, and the synthesis means 109 multiplies the amplitude A to add and synthesize the noise. Combining signals with 180 ° phase shift Output.

次に、上記図6の移相処理を用いた場合の実施形態のシミュレーションを図7〜図9に示す。なお、図7〜図9の縦軸の単位はグラム、横軸の単位は秒であり、シミュレーション条件は、以下の通りである。   Next, simulations of the embodiment in the case where the phase shift process of FIG. 6 is used are shown in FIGS. 7 to 9, the unit of the vertical axis is grams, the unit of the horizontal axis is seconds, and the simulation conditions are as follows.

自由度バネマスダンパ系に0.3秒の台形波を入力(この振幅を100パーセントとする)
固有振動数 約45Hz(振幅20パーセント)
第2の周波数範囲の低域雑音 5Hz(振幅5パーセント)
第1の周波数範囲の低域雑音 21Hz、23Hz(ともに振幅1パーセント)
高域雑音 51Hz、61Hz、63Hz、71Hz(ともに振幅3パーセント)
サンプリング時間5ms
A trapezoidal wave of 0.3 seconds is input to the spring mass damper system with a degree of freedom (this amplitude is assumed to be 100%)
Natural frequency about 45Hz (20% amplitude)
Low frequency noise in the second frequency range 5 Hz (5% amplitude)
Low frequency noise in the first frequency range 21 Hz, 23 Hz (both amplitudes are 1 percent)
High frequency noise 51Hz, 61Hz, 63Hz, 71Hz (both amplitudes are 3%)
Sampling time 5ms

図7の(a)は、センサの出力X(k)とその信号に対して高域雑音除去処理を行った結果Y(k)を示し、図7の(b)は、信号Y(k)と、比較のために線形時不変の直線位相のFIR型のLPFを用いて高域を除去した結果(LPFと示す)とを拡大したものである。   7A shows the output X (k) of the sensor and the result Y (k) obtained by performing high-frequency noise removal processing on the signal, and FIG. 7B shows the signal Y (k). For comparison, a result obtained by removing a high frequency band using a linear phase invariant linear phase FIR type LPF (denoted as LPF) is enlarged.

ここで、高域雑音除去処理の下限周波数Faを40Hzとし、それ以上で測定精度が1/5000になる周波数平坦度を有するタップ数100のヒルベルト変換処理を用いている。   Here, the lower limit frequency Fa of the high-frequency noise removal process is 40 Hz, and a Hilbert transform process with 100 taps having frequency flatness at which the measurement accuracy becomes 1/5000 or more is used.

図7から、低周波の5Hz、21Hz、23Hzの雑音が残っていることが判る。また、LPFの特性には、実施形態の処理に比べて急峻に上に延びた応答が見られている。   From FIG. 7, it can be seen that low frequency noises of 5 Hz, 21 Hz, and 23 Hz remain. Further, in the characteristics of the LPF, a response that extends sharply as compared with the processing of the embodiment is seen.

図8は、第2処理信号Z(k)と、前記LPF出力を拡大したものである。この図8から、第2処理信号Z(k)には、低周波の第1の周波数範囲の21Hz、23Hzの雑音が除去されているが、5Hzの雑音が残留していることが判る。   FIG. 8 is an enlarged view of the second processing signal Z (k) and the LPF output. From FIG. 8, it can be seen that noise of 21 Hz and 23 Hz in the first low frequency range is removed from the second processed signal Z (k), but noise of 5 Hz remains.

図9は、前記した補正係数を求めてフィルタで補正することで得られた第3処理信号W(k)の拡大図である。5Hzの雑音が除去され、上部がほぼ平坦な台形波が得られており、低周波雑音は十分除去されていることが判る。   FIG. 9 is an enlarged view of the third processed signal W (k) obtained by obtaining the correction coefficient and correcting it with a filter. It can be seen that 5 Hz noise is removed, and a trapezoidal wave having a substantially flat top is obtained, and low frequency noise is sufficiently removed.

本発明の実施形態の信号処理方法の手順を示すフローチャートThe flowchart which shows the procedure of the signal processing method of embodiment of this invention. 本発明の実施形態の動作例を示す信号図The signal diagram which shows the operation example of embodiment of this invention ヒルベルト変換器の周波数特性図Frequency characteristics of Hilbert converter 本発明の実施形態の信号処理装置の構成図Configuration diagram of a signal processing apparatus according to an embodiment of the present invention 移相処理の別の方法例を示す図Diagram showing another example of phase shift processing 図5の移相処理の実現する具体的な構成例を示す図The figure which shows the specific structural example which implement | achieves the phase-shift process of FIG. 高域雑音を除去した後の信号図Signal diagram after removing high-frequency noise 低域の第1の周波数範囲の雑音を除去した後の信号図Signal diagram after removing noise in the first low frequency range 低域の第2の周波数範囲の雑音を除去した後の信号図Signal diagram after removing noise in the second low frequency range

符号の説明Explanation of symbols

11……センサ、20……信号処理装置、21……A/D変換器、22……高域雑音除去部、23……移相手段、24……遅延手段、25……加算手段、26……スペクトラム解析手段、27……雑音分布判定手段、30……低域雑音除去部、31……移相手段、32……時間応答係数算出手段、33……補正手段、34……遅延手段、35……加算手段、41……移相手段、42……補正手段、43……補正係数算出手段、44……遅延手段、45……加算手段、46……雑音信号生成手段、100……移相手段、101、103、104……ヒルベルト変換器、102……遅延手段、105……位相・周波数算出手段、106……振幅算出手段、107……加算手段、108……直交信号生成手段、109……合成手段   DESCRIPTION OF SYMBOLS 11 ... Sensor, 20 ... Signal processing apparatus, 21 ... A / D converter, 22 ... High frequency noise removal part, 23 ... Phase shift means, 24 ... Delay means, 25 ... Adder means, 26 …… Spectrum analysis means 27 …… Noise distribution determination means 30 …… Low frequency noise removing unit 31 …… Phase shift means 32 ‘Time response coefficient calculation means’ 33 …… Correction means 34 ≦ Delay means 35... Addition means 41... Phase shift means 42... Correction means 43... Correction coefficient calculation means 44. ... Phase shift means 101, 103, 104 ... Hilbert transformer 102 ... Delay means 105 ... Phase / frequency calculation means 106 ... Amplitude calculation means 107 ... Addition means 108 ... Quadrature signal generation Means, 109 ... Synthesis means

Claims (10)

センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の移相処理を行う段階(S5)と、
前記移相処理で得られた信号(Y(k)′)に基づいて、該移相処理の前記所定周波数以下の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記所定周波数以下の振幅を補正し、前記第1処理信号に含まれる低域雑音成分を180゜移相した雑音信号(NL1(k))を生成する段階(S7)と、
前記第1処理信号と前記雑音信号とを加算して、前記第1処理信号から前記所定周波数以下の低域雑音成分を除去した信号(Z(k))を求める段階(S8)とを含み、
さらに、前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含んでいることを特徴とする信号処理方法。
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a phase shift process of 180 degrees on the first processed signal (S5);
Obtaining a time response coefficient (α) that causes a low-frequency amplitude error equal to or lower than the predetermined frequency of the phase shift process based on the signal (Y (k) ′) obtained by the phase shift process (S6); ,
Based on the obtained time response coefficient, an amplitude of the phase-shifted signal that is equal to or lower than the predetermined frequency is corrected, and a low-frequency noise component included in the first processed signal is phase-shifted by a noise signal (N L1 (k)) is generated (S7);
By adding said noise signal and the first processed signal, seen including a first processed signal from the signal obtained by removing the predetermined frequency below the low frequency noise component (Z (k)) determining a (S8) ,
Furthermore, the phase shift process includes:
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
And a step (S101) of generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude .
センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の第1の移相処理を行う段階(S5)と、
前記第1の移相処理で得られた信号(Y(k)′)に基づいて、該第1の移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(NL1(k))を生成する段階(S7)と、
前記第1処理信号と前記第1の雑音信号とを加算して、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める段階(S8)と、
前記第2処理信号に対する180度の第2の移相処理を行う段階(S11)と、
前記第2の移相処理で得られた信号(Z(k)′)に対して、該第2の移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲における周波数対振幅の誤差を補正して、前記第2処理信号の前記第2の周波数範囲に含まれる低域雑音成分を180度移相した第2の雑音信号(NL2(k))を生成する段階(S13)と、
前記第2処理信号と前記第2の雑音信号とを加算して、前記第2処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める段階(S14)とを含み、
さらに、前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含むことを特徴とする信号処理方法。
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a first phase shift process of 180 degrees on the first processed signal (S5);
A first frequency range from the predetermined frequency of the first phase shift processing to a lower boundary frequency (Fb) based on the signal (Y (k) ′) obtained by the first phase shift processing. Obtaining a time response coefficient (α) that causes a low-frequency amplitude error (S6),
Based on the obtained time response coefficient, the amplitude of the first frequency range of the phase-shifted signal is corrected, and a low frequency noise component included in the first frequency range of the first processed signal is corrected. Generating a first noise signal (N L1 (k)) phase shifted by 180 ° (S7);
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. Step (S8);
Performing a second phase shift process of 180 degrees on the second processed signal (S11);
The frequency in the second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the second phase shift process with respect to the signal (Z (k) ′) obtained by the second phase shift process A step of generating a second noise signal (N L2 (k)) in which a low-frequency noise component included in the second frequency range of the second processed signal is phase-shifted by 180 degrees by correcting an error in the pair amplitude. (S13),
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the second processed signal. look including a step (S14),
Furthermore, the phase shift process includes:
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
Calculated instantaneous phase and signal processing method generating a 180 ° phase-shifted signal to the processed signal to the input based on the instantaneous amplitude and (S101), characterized in including Mukoto.
センサの出力信号に対するA/D変換処理で得られた時系列の信号を入力信号として受け、該入力信号に含まれる所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分が除去された第1処理信号(Y(k))から前記所定周波数以下の低域雑音成分を除去して、前記入力信号の直流成分を求める信号処理方法であって、
前記低域雑音成分を除去する処理は、
前記第1処理信号に対する180度の第1の移相処理を行う段階(S5)と、
前記第1の移相処理で得られた信号(Y(k)′)に基づいて、該第1の移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める段階(S6)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(N L1 (k))を生成する段階(S7)と、
前記第1処理信号と前記第1の雑音信号とを加算して、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める段階(S8)と、
前記第2処理信号に対する180度の第2の移相処理を行う段階(S11)と、
前記第2の移相処理で得られた信号(Z(k)′)に対して、該第2の移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲における周波数対振幅の誤差を補正して、前記第2処理信号の前記第2の周波数範囲に含まれる低域雑音成分を180度移相した第2の雑音信号(N L2 (k))を生成する段階(S13)と、
前記第2処理信号と前記第2の雑音信号とを加算して、前記第2処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める段階(S14)とを含み、
前記第3処理信号を求める際には、該第3処理信号から抽出した雑音成分の振幅情報と周波数情報から生成した第2の雑音信号を用いて補正処理を行うことを特徴とする信号処理方法。
A time-series signal obtained by A / D conversion processing for the output signal of the sensor is received as an input signal, a high-frequency noise component higher than a predetermined frequency (Fa) included in the input signal is removed, and the high-frequency noise component A signal processing method for removing a low-frequency noise component having a frequency equal to or lower than the predetermined frequency from the first processed signal (Y (k)) from which a DC component of the input signal is obtained,
The process of removing the low-frequency noise component is:
Performing a first phase shift process of 180 degrees on the first processed signal (S5);
A first frequency range from the predetermined frequency of the first phase shift processing to a lower boundary frequency (Fb) based on the signal (Y (k) ′) obtained by the first phase shift processing. Obtaining a time response coefficient (α) that causes a low-frequency amplitude error (S6),
Based on the obtained time response coefficient, the amplitude of the first frequency range of the phase-shifted signal is corrected, and a low frequency noise component included in the first frequency range of the first processed signal is corrected. Generating a first noise signal (N L1 (k)) phase shifted by 180 ° (S7);
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. Step (S8);
Performing a second phase shift process of 180 degrees on the second processed signal (S11);
The frequency in the second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the second phase shift process with respect to the signal (Z (k) ′) obtained by the second phase shift process A step of generating a second noise signal (N L2 (k)) in which a low-frequency noise component included in the second frequency range of the second processed signal is phase-shifted by 180 degrees by correcting an error in the pair amplitude. (S13),
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the second processed signal. Including step (S14),
The third when obtaining the processed signal, the third amplitude information and signal you and performing correction by using the second noise signal generated from the frequency information of the noise component extracted from the processed signal Processing method.
前記入力信号または前記第1処理信号に対するスペクトラム解析により少なくとも前記所定周波数以下の雑音成分を求める段階(S3)と、
前記スペクトラム解析により得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲のいずれにあるかを判定する段階(S4、S9、S16)とを含み、
前記スペクトラム解析により得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲の両方にあるときには、前記第3処理信号を最終の処理結果とし、雑音成分が前記第1の周波数範囲にのみあるときには、前記第2処理信号を最終の処理結果とし、雑音成分が前記第2の周波数範囲にのみあるときには、前記第2処理信号の代わりに前記第1処理信号に対して前記第3処理信号を求める処理をおこない、その結果を最終処理結果として出力することを特徴とする請求項3記載の信号処理方法。
Obtaining a noise component of at least the predetermined frequency or less by spectrum analysis on the input signal or the first processing signal (S3);
Determining whether the noise component obtained by the spectrum analysis is in the first frequency range or the second frequency range (S4, S9, S16),
When the noise component obtained by the spectrum analysis is in both the first frequency range and the second frequency range, the third processing signal is set as a final processing result, and the noise component is in the first frequency range. The second processed signal is the final processed result, and when the noise component is only in the second frequency range, the third processed signal is replaced with the third processed signal instead of the second processed signal. performs processing for obtaining the processed signal, Motomeko 3 signal processing method according you and outputs the result as final processing result.
前記移相処理は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する段階(S100)と、
算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する段階(S101)とを含んでいることを特徴とする請求項3または請求項4記載の信号処理方法。
The phase shift process includes:
Generating an orthogonal signal having a phase difference of 90 ° from an input processing signal, and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal (S100);
5. The method according to claim 3 , further comprising a step (S101) of generating a signal shifted by 180 degrees with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude. Signal processing method.
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う移相手段(31)と、
前記移相処理で得られた信号(Y(k)′)に基づいて、該移相処理の前記所定周波数以下の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記移相処理された信号の前記所定周波数以下の振幅を補正し、前記第1処理信号に含まれる低域雑音成分を180゜移相した雑音信号(NL1(k))を生成する補正手段(33)と、
前記第1処理信号と前記雑音信号とを加算し、前記第1処理信号から前記所定周波数以下の低域雑音成分を除去した第2処理信号を求める加算手段(35)とを備え
さらに、前記移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする信号処理装置。
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the signal (Y (k) ′) obtained by the phase shift processing, time response coefficient calculation means for obtaining a time response coefficient (α) that causes a low-frequency amplitude error below the predetermined frequency of the phase shift processing. (32),
Based on the obtained time response coefficient, an amplitude of the phase-shifted signal that is equal to or lower than the predetermined frequency is corrected, and a low-frequency noise component included in the first processed signal is phase-shifted by a noise signal (N L1 (k)) generating correction means (33);
Adding means (35) for adding the first processed signal and the noise signal to obtain a second processed signal obtained by removing a low-frequency noise component of the predetermined frequency or less from the first processed signal ;
Further, the phase shift means includes
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
A signal processing apparatus comprising: means (107 to 109) for generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude .
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う第1の移相手段(31)と、
前記第1の移相手段の出力信号(Y(k)′)に基づいて、該移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記第1の移相手段の出力信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(NL1(k))を生成する第1の補正手段(33)と、
前記第1処理信号と前記第1の雑音信号とを加算し、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める第1の加算手段(35)と、
前記第2処理信号に対して180度の移相処理を行う第2の移相手段(41)と、
前記第2の移相手段の出力信号(Z(k)′)に対して、前記第1の移相手段によって移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲の周波数対振幅の誤差を補正して、前記第2処理信号に含まれる前記第2の周波数範囲の雑音成分を180度移相した第2の雑音信号(NL2(k))を生成する第2の補正手段(42)と、
前記第2処理信号と前記第2の雑音信号とを加算し、前記第1処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める第2の加算手段(45)とを備え
さらに、前記各移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする信号処理装置。
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A first phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the output signal (Y (k) ′) of the first phase shift means, the low-frequency amplitude error in the first frequency range from the predetermined frequency of the phase shift processing to the lower boundary frequency (Fb) A time response coefficient calculating means (32) for obtaining a time response coefficient (α) that causes
Based on the obtained time response coefficient, the amplitude of the first frequency range of the output signal of the first phase shifting means is corrected, and the low frequency range included in the first frequency range of the first processed signal First correcting means (33) for generating a first noise signal (N L1 (k)) having a noise component shifted by 180 °;
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. 1 addition means (35);
A second phase shift means (41) for performing a phase shift process of 180 degrees on the second processed signal;
A second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the phase shifting process by the first phase shifting means with respect to the output signal (Z (k) ′) of the second phase shifting means. To generate a second noise signal (N L2 (k)) that is 180 degrees phase-shifted from the noise component of the second frequency range included in the second processed signal. Two correction means (42);
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the first processed signal. 2 addition means (45) ,
Furthermore, each said phase shift means is
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
A signal processing apparatus comprising: means (107 to 109) for generating a signal shifted by 180 ° with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude .
センサ(11)の出力信号に対するA/D変換処理を行うA/D変換器(21)と、
前記A/D変換器の出力信号を受け、所定周波数(Fa)より高い高域雑音成分を除去し、該高域雑音成分を除去して得られた第1処理信号(Y(k))を出力する高域雑音除去部(22)と、
前記第1処理信号を受け、前記所定周波数以下の低域雑音成分を除去する低域雑音除去部(30)とを有する信号処理装置であって、
前記低域雑音除去部が、
前記第1処理信号に対して180度の移相処理を行う第1の移相手段(31)と、
前記第1の移相手段の出力信号(Y(k)′)に基づいて、該移相処理の前記所定周波数からそれより低い境界周波数(Fb)までの第1の周波数範囲の低域振幅誤差を生じさせる時間応答係数(α)を求める時間応答係数算出手段(32)と、
前記求めた時間応答係数に基づいて、前記第1の移相手段の出力信号の前記第1の周波数範囲の振幅を補正し、前記第1処理信号の前記第1の周波数範囲に含まれる低域雑音成分を180゜移相した第1の雑音信号(N L1 (k))を生成する第1の補正手段(33)と、
前記第1処理信号と前記第1の雑音信号とを加算し、前記第1処理信号から前記第1の周波数範囲の低域雑音成分を除去した第2処理信号(Z(k))を求める第1の加算手段(35)と、
前記第2処理信号に対して180度の移相処理を行う第2の移相手段(41)と、
前記第2の移相手段の出力信号(Z(k)′)に対して、前記第1の移相手段によって移相処理によって生じる前記境界周波数から下限周波数(Fc)までの第2の周波数範囲の周波数対振幅の誤差を補正して、前記第2処理信号に含まれる前記第2の周波数範囲の雑音成分を180度移相した第2の雑音信号(N L2 (k))を生成する第2の補正手段(42)と、
前記第2処理信号と前記第2の雑音信号とを加算し、前記第1処理信号から前記第2の周波数範囲の低域雑音成分を除去した第3処理信号(W(k))を求める第2の加算手段(45)とを備え、
前記第2の補正手段は、前記第3処理信号から抽出した雑音成分の振幅情報と周波数情報から生成した第2の雑音信号を用いて補正処理を行うこと特徴とする信号処理装置。
An A / D converter (21) that performs A / D conversion processing on the output signal of the sensor (11);
The output signal of the A / D converter is received, a high frequency noise component higher than a predetermined frequency (Fa) is removed, and a first processing signal (Y (k)) obtained by removing the high frequency noise component is obtained. An output high-frequency noise removal unit (22);
A signal processing device having a low-frequency noise removing unit (30) that receives the first processing signal and removes a low-frequency noise component of the predetermined frequency or less;
The low-frequency noise removing unit is
A first phase shift means (31) for performing a phase shift process of 180 degrees on the first processed signal;
Based on the output signal (Y (k) ′) of the first phase shift means, the low-frequency amplitude error in the first frequency range from the predetermined frequency of the phase shift processing to the lower boundary frequency (Fb) A time response coefficient calculating means (32) for obtaining a time response coefficient (α) that causes
Based on the obtained time response coefficient, the amplitude of the first frequency range of the output signal of the first phase shifting means is corrected, and the low frequency range included in the first frequency range of the first processed signal First correcting means (33) for generating a first noise signal (N L1 (k)) having a noise component shifted by 180 ° ;
The first processed signal and the first noise signal are added to obtain a second processed signal (Z (k)) obtained by removing the low frequency noise component in the first frequency range from the first processed signal. 1 addition means (35);
A second phase shift means (41) for performing a phase shift process of 180 degrees on the second processed signal;
A second frequency range from the boundary frequency to the lower limit frequency (Fc) generated by the phase shifting process by the first phase shifting means with respect to the output signal (Z (k) ′) of the second phase shifting means. To generate a second noise signal (N L2 (k)) that is 180 degrees phase-shifted from the noise component of the second frequency range included in the second processed signal . Two correction means (42);
The second processed signal and the second noise signal are added to obtain a third processed signal (W (k)) obtained by removing a low frequency noise component in the second frequency range from the first processed signal. 2 addition means (45),
It said second correction means, the third with the second noise signal generated from the amplitude information and frequency information of the noise component extracted from the processed signal correction signal processing device shall be the this and features to perform.
前記入力信号または前記第1処理信号に対するスペクトラム解析により少なくとも前記所定周波数以下の雑音成分を求めるスペクトラム解析手段(26)と、
前記スペクトラム解析手段で得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲のいずれにあるかを判定する雑音分布判定手段(27)と、
前記スペクトラム解析手段で得られた雑音成分が、前記第1の周波数範囲と第2の周波数範囲の両方にあるときには、前記第3処理信号を最終の処理結果として出力させ、雑音成分が前記第1の周波数範囲にのみあるときには、前記第2処理信号を最終の処理結果として出力させ、雑音成分が前記第2の周波数範囲にのみあるときには、前記第2処理信号の代わりに前記第1処理信号を前記第2の移相手段に入力させ、該第1処理信号に対して前記第2の加算手段で得られた第3処理信号を最終処理結果として出力させる信号切換手段(28a〜28c)とを有していることを特徴とする請求項8記載の信号処理装置。
Spectrum analysis means (26) for obtaining a noise component of at least the predetermined frequency or less by spectrum analysis on the input signal or the first processing signal;
Noise distribution determination means (27) for determining whether the noise component obtained by the spectrum analysis means is in the first frequency range or the second frequency range;
When the noise component obtained by the spectrum analysis means is in both the first frequency range and the second frequency range, the third processing signal is output as a final processing result, and the noise component is the first frequency range. The second processing signal is output as a final processing result when it is only in the frequency range, and when the noise component is only in the second frequency range, the first processing signal is used instead of the second processing signal. Signal switching means (28a to 28c) for inputting to the second phase shifting means and outputting the third processed signal obtained by the second adding means as a final processing result for the first processed signal. it has a signal processing device to that請 Motomeko 8 wherein said.
前記移相手段は、
入力する処理信号から位相が90゜異なる直交信号を生成し、該直交信号から瞬時位相と瞬時振幅を算出する手段(101〜106)と、
前記算出された瞬時位相と瞬時振幅に基づいて前記入力する処理信号に対して180゜移相した信号を生成する手段(107〜109)によって構成されていることを特徴とする請求項8または請求項9記載の信号処理装置。
Each of the phase shifting means includes
Means (101 to 106) for generating an orthogonal signal having a phase difference of 90 ° from an input processing signal and calculating an instantaneous phase and an instantaneous amplitude from the orthogonal signal;
9. The apparatus according to claim 8 , further comprising means (107 to 109) for generating a signal shifted by 180 degrees with respect to the input processing signal based on the calculated instantaneous phase and instantaneous amplitude. Item 10. The signal processing device according to Item 9 .
JP2007275796A 2007-10-23 2007-10-23 Signal processing method and signal processing apparatus Expired - Fee Related JP4729553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275796A JP4729553B2 (en) 2007-10-23 2007-10-23 Signal processing method and signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275796A JP4729553B2 (en) 2007-10-23 2007-10-23 Signal processing method and signal processing apparatus

Publications (2)

Publication Number Publication Date
JP2009103585A JP2009103585A (en) 2009-05-14
JP4729553B2 true JP4729553B2 (en) 2011-07-20

Family

ID=40705390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275796A Expired - Fee Related JP4729553B2 (en) 2007-10-23 2007-10-23 Signal processing method and signal processing apparatus

Country Status (1)

Country Link
JP (1) JP4729553B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2740195A4 (en) * 2011-08-04 2015-08-12 Michael Bank A single-wire electric system
JP6352117B2 (en) * 2014-09-01 2018-07-04 アンリツ株式会社 Filter device and filtering method
JP6373765B2 (en) * 2015-01-07 2018-08-15 アンリツ株式会社 Filter device and filtering method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171225A (en) * 2000-11-29 2002-06-14 Anritsu Corp Signal processor
JP2005274320A (en) * 2004-03-24 2005-10-06 Anritsu Corp Signal processing method and signal processor
JP2006300868A (en) * 2005-04-25 2006-11-02 Anritsu Corp Strain sensor signal processing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171225A (en) * 2000-11-29 2002-06-14 Anritsu Corp Signal processor
JP2005274320A (en) * 2004-03-24 2005-10-06 Anritsu Corp Signal processing method and signal processor
JP2006300868A (en) * 2005-04-25 2006-11-02 Anritsu Corp Strain sensor signal processing device

Also Published As

Publication number Publication date
JP2009103585A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US8073149B2 (en) Loudspeaker device
WO2007142234A1 (en) Active noise controller
KR100926983B1 (en) Adaptive digital filter, FM receiver, signal processing method and program
JP2005295542A (en) Linearity compensation circuit
US20090285335A1 (en) Adaptive Digital Filter, FM Receiver, Signal Processing Method, and Program
JP4729553B2 (en) Signal processing method and signal processing apparatus
JP2007288463A (en) Characteristics acquiring device, method and program
JP5021390B2 (en) Signal extracting device and reactive power compensator including the same
JP4311043B2 (en) Electric motor control device
JP2009038885A5 (en)
JP4819742B2 (en) Signal processing method and signal processing apparatus
JP2008250131A (en) Active noise controller
JP5155733B2 (en) Signal processing method and signal processing apparatus
JP4488496B2 (en) Signal processing method and signal processing apparatus
US11335356B2 (en) Digital audio processing device, digital audio processing method, and digital audio processing program
WO2013108590A1 (en) Orthogonal transformation error correction device
JP2019117999A (en) Noise removal filter device and noise removal method
US20140379771A1 (en) Digital filter circuit and digital filter processing method
CN116438597A (en) System and method for adapting an estimated secondary path
JP4643350B2 (en) Strain sensor signal processing device
JP4814136B2 (en) Signal processing method and signal processing apparatus
JP2012005060A (en) Noise cancellation apparatus
JP2010245629A (en) Adaptive equalizer and the adaptive equalization method
JP6265870B2 (en) Digital protection relay device
JP5670301B2 (en) Active vibration noise control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees