JPH0350834A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0350834A
JPH0350834A JP18686289A JP18686289A JPH0350834A JP H0350834 A JPH0350834 A JP H0350834A JP 18686289 A JP18686289 A JP 18686289A JP 18686289 A JP18686289 A JP 18686289A JP H0350834 A JPH0350834 A JP H0350834A
Authority
JP
Japan
Prior art keywords
film
mask
emitter
opening
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18686289A
Other languages
Japanese (ja)
Inventor
Takuya Honda
卓也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18686289A priority Critical patent/JPH0350834A/en
Publication of JPH0350834A publication Critical patent/JPH0350834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce parasitic resistance in a bipolar transistor by forming a mask film at emitter and base electrodes formation parts, and forming openings, and stacking a semiconductor film and a flattening film on the openings and the mask films. CONSTITUTION:A mask film 7, which has windows at an emitter formation part and a base electrode formation part, is formed on insulating films 4 and 5, and with this as a mask, the insulating films 4 and 5 are removed selectively by etching so as to form openings. Next, on the openings and the mask film 7, a semiconductor film and, successively, a flattening film 9 for almost flattening the surface are stacked. Next, the semiconductor film 8 and the flattening film 9 on the region excluding the openings are removed by etching, and successively the mask 7 is removed. Next, with the semiconductor films 8 and the fattening films 9, left in the openings, as masks, opposite conductivity type impurities are introduced through the insulating films 4 and 5 so as to form an outer base layer 10. And with the insulating films 4 and 5 as masks, one conductivity type impurities are introduced selectively from the opening of the emitter electrode formation part into the semiconductor film 8 and the inner base layer 6 so as to form an emitter layer 12.

Description

【発明の詳細な説明】 〔概 要] バイポーラトランジスタの製造方法に関し、エミッタと
外部ベースを自己整合で形成して寄生ベース抵抗を低減
することを目的とし、−導電型半導体層表面に反対導電
型の内部ベース層及び該内部ベース層上を覆う絶縁膜を
形成する工程と、該絶縁膜上にエミッタ電極形成部及び
ベース電極形成部に窓を有するマスク膜を形成し、これ
をマスクとして該絶縁膜を選択的にエツチング除去して
開口部を形成する工程と、該開口部及びマスク膜上に半
導体膜、続いて表面をほぼ平坦化する平坦化用膜を堆積
する工程と、該開口部以外の領域上の該半導体膜及び平
坦化用膜をエツチング除去し、続いて該マスク膜を除去
する工程と、該開口部に残された半導体膜及び平坦化用
膜をマスクとし、該絶縁膜を通して反対導電型不純物を
導入し外部ベース層を形成する工程と、該開口部内の内
部ベース層に接続される半導体膜の部分を残して、上方
の半導体膜及び平坦化用膜をエツチング除去する工程と
、エミッタ電極形成部の開口部より該絶縁膜をマスクに
半導体膜及び内部ベース層に選択的に一導電型不純物を
導入しエミッタ層を形成する工程を含むように構成する
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a bipolar transistor, the purpose is to reduce parasitic base resistance by forming an emitter and an external base in self-alignment, and to reduce parasitic base resistance by forming an emitter and an external base in self-alignment. forming an internal base layer and an insulating film covering the internal base layer, and forming a mask film having windows in the emitter electrode forming part and the base electrode forming part on the insulating film, using this as a mask to form the insulating film. A step of selectively etching and removing a film to form an opening, a step of depositing a semiconductor film on the opening and the mask film, and then a planarizing film for substantially planarizing the surface, and a step of depositing a semiconductor film on the opening and the mask film, The semiconductor film and the planarization film on the area are etched away, and then the mask film is removed. a step of introducing impurities of opposite conductivity type to form an external base layer; and a step of etching away the upper semiconductor film and planarization film, leaving a portion of the semiconductor film connected to the internal base layer within the opening. , the step of selectively introducing impurities of one conductivity type into the semiconductor film and the internal base layer through the opening of the emitter electrode forming portion using the insulating film as a mask to form an emitter layer.

[産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特にバイポーラ
トランジスタの製造方法に関する。
[Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a bipolar transistor.

バイポーラトランジスタを含む半導体ICの高速化の実
現の為には寄生容量や寄生抵抗の低減が必要であり、特
にエミッタと外部ベース間距離の縮小による寄生ベース
抵抗の低減が要求される。
In order to realize higher speed semiconductor ICs including bipolar transistors, it is necessary to reduce parasitic capacitance and parasitic resistance, and in particular, it is required to reduce parasitic base resistance by reducing the distance between the emitter and the external base.

〔従来の技術〕[Conventional technology]

第3図は従来のバイポーラトランジスタの製造工程の要
部を示した断面図である。同図(a)に示すように、p
型St基板30上のn型エピタキシャル層31を素子分
離用絶縁膜32で分離し、この上に形成された熱酸化膜
33と窒化膜34を通してボロン(B)イオンの注入を
行い、熱処理して内部ベース拡散層35を形成する。つ
いで同図[有])に示すように、レジストパターン36
を形成し、これをマスクとしてBイオンを注入し熱処理
して外部ベース拡散層37を形成する。ついでレジスト
パターン36を除去した後同図(C)に示すように、エ
ミッタ電極形成用の開口部を有するレジストパターン3
8を形成し、これをマスクとして酸化膜33及び窒化膜
34を選択的にエツチングしエミッタ開口部を形成する
。ついでレジストパターン38を除去した後同図(d)
に示すように、エミッタ開口部上にn型子結晶Stから
なるエミッタ電極39を選択的に形成し、熱処理するこ
とによりエミッタ拡散層40を形成する。ついで同図(
e)に示すように外部ベース拡散層37上で酸化膜33
及び窒化膜34を孔開けしp型多結晶Siからなるベー
ス引き出し電極41を選択的に形成する。
FIG. 3 is a cross-sectional view showing the main part of the manufacturing process of a conventional bipolar transistor. As shown in figure (a), p
The n-type epitaxial layer 31 on the type St substrate 30 is separated by an insulating film 32 for element isolation, and boron (B) ions are implanted through the thermal oxide film 33 and nitride film 34 formed thereon, followed by heat treatment. An internal base diffusion layer 35 is formed. Next, as shown in the same figure [present], a resist pattern 36 is formed.
Using this as a mask, B ions are implanted and heat treated to form an external base diffusion layer 37. After removing the resist pattern 36, a resist pattern 3 having an opening for forming an emitter electrode is formed as shown in FIG.
8 is formed, and using this as a mask, the oxide film 33 and the nitride film 34 are selectively etched to form an emitter opening. After removing the resist pattern 38, the same figure (d) is shown.
As shown in FIG. 3, an emitter electrode 39 made of n-type child crystal St is selectively formed on the emitter opening, and an emitter diffusion layer 40 is formed by heat treatment. Next, the same figure (
As shown in e), the oxide film 33 is formed on the external base diffusion layer 37.
Then, a hole is made in the nitride film 34 to selectively form a base extraction electrode 41 made of p-type polycrystalline Si.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように従来の方法ではエミッタと外部ベースメ間
距離、即ち同図(e)に見られる外部ベース拡散層37
とエミッタ拡散層40の間隔りは、レジストパターン3
6と38を位置合わせすることによって決まり、設計上
、位置合わせ誤差を考慮した大きな値を設定しなければ
ならない。また、実際の製造に当たっても、ロフト間の
パターン位置合わせ誤差及びエミッタ開口部のエツチン
グ精度のバラツキにより一定しない。これは、エミッタ
と外部ベース間距離によって決まる寄生ベース抵抗の低
減を困難にするとともにそのバラツキを大きくし、素子
の高周波特性の低下及びロフト間の特性のバラツキをも
たらす。
As described above, in the conventional method, the distance between the emitter and the external base member, that is, the external base diffusion layer 37 shown in FIG.
The distance between the resist pattern 3 and the emitter diffusion layer 40 is
6 and 38, and a large value must be set in consideration of the alignment error in design. Further, even in actual manufacturing, the pattern is not constant due to pattern alignment errors between lofts and variations in etching accuracy of the emitter opening. This makes it difficult to reduce the parasitic base resistance determined by the distance between the emitter and the external base, and increases its dispersion, resulting in deterioration of the high frequency characteristics of the device and dispersion of the characteristics between lofts.

そこで本発明はエミッタと外部ベースを自己整合で形成
して寄生ベース抵抗を低減することを目的とする。
Therefore, an object of the present invention is to form an emitter and an external base in a self-aligned manner to reduce parasitic base resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、−導電型半導体層表面に反対導電型
の内部ベース層及び該内部ベース層上を覆う!!縁膜を
形成する工程と、該絶縁膜上にエミッタ電極形成部及び
ベース電極形成部に窓を有するマスク膜を形成し、これ
をマスクとして該絶縁膜を選択的にエツチング除去して
開口部を形成する工程と、該開口部及びマスク膜上に半
導体膜、続いて表面をほぼ平坦化する平坦化用膜を堆積
する工程と、該開口部以外の領域上の該半導体膜及び平
坦化用膜をエツチング除去し、続いて該マスク膜を除去
する工程と、該開口部に残された半導体膜及び平坦化用
膜をマスクとし、該絶縁膜を通して反対導電型不純物を
導入し外部ベース層を形成する工程と、該開口部内の内
部ベース層に接続される半導体膜の部分を残して、上方
の半導体膜及び平坦化用膜をエツチング除去する工程と
、エミッタ電極形成部の開口部より該絶縁膜をマスクに
半導体膜及び内部ベース層に選択的に一導電型不純物を
導入しエミッタ層を形成する工程を含むことを特徴とす
る半導体装置の製造方法によって達成される。
The solution to the above problem is to cover the inner base layer of the opposite conductivity type on the surface of the -conductivity type semiconductor layer and the inner base layer! ! A step of forming an edge film, and forming a mask film having windows in the emitter electrode forming part and the base electrode forming part on the insulating film, and using this as a mask, selectively etching away the insulating film to form an opening. a step of depositing a semiconductor film on the opening and the mask film, followed by a planarization film for substantially planarizing the surface, and a step of depositing the semiconductor film and the planarization film on a region other than the opening. and then removing the mask film, using the semiconductor film and planarization film left in the opening as a mask, and introducing impurities of opposite conductivity type through the insulating film to form an external base layer. a step of etching away the upper semiconductor film and planarization film while leaving a portion of the semiconductor film connected to the internal base layer within the opening; and a step of etching the insulating film from the opening of the emitter electrode formation region. This is achieved by a method for manufacturing a semiconductor device characterized by including a step of selectively introducing impurities of one conductivity type into a semiconductor film and an internal base layer using a mask to form an emitter layer.

〔作 用] 本発明に係る方法では、まず、エミッタ電極形成部とベ
ース電極形成部の開口部を一つのマスク膜、例えばレジ
ストパターンで同時に形成する。
[Function] In the method according to the present invention, first, the openings of the emitter electrode forming portion and the base electrode forming portion are simultaneously formed using one mask film, for example, a resist pattern.

そのためエミッタ及びベースとなる開口部の間隔をパタ
ーンの微細化の限度まで縮小することができ、ロット間
のバラツキによる変動も小さくすることができる。次に
、本発明では、上記レジストパターン上にレジストの硬
化温度以下の低温で半導体膜及び平坦化用膜を堆積させ
る。例えば、ECRプラズマCVD法を用い、半導体膜
としてシリコン膜、平坦化用膜として酸化膜を堆積させ
ることができる。ECRプラズマCVD法では、マイク
ロ波電力とともに磁界を加えて原料ガスをプラズマ化す
るものであり、サイクロトロン共鳴によりマイクロ波電
力を吸収して高エネルギーを得た電子がプラズマのイオ
ン化率を高めるため、通常の熱CVD法あるいはプラズ
マCVD法に比べて活性なプラズマを得ることができる
。そのため基板加熱を行うことな(レジストの硬化温度
以下で良質な膜を堆積させることが可能となる。従って
、上記開口部以外のレジストパターン上に堆積したシリ
コン膜及び酸化膜をエツチング除去した後、レジストパ
ターンをレジスト剥離液によって除去することが可能と
なる。
Therefore, the spacing between the emitter and base openings can be reduced to the limit of pattern miniaturization, and fluctuations due to lot-to-lot variations can also be reduced. Next, in the present invention, a semiconductor film and a planarization film are deposited on the resist pattern at a low temperature below the curing temperature of the resist. For example, an ECR plasma CVD method can be used to deposit a silicon film as a semiconductor film and an oxide film as a planarization film. In the ECR plasma CVD method, a magnetic field is applied along with microwave power to turn the raw material gas into plasma, and the electrons that have gained high energy by absorbing the microwave power through cyclotron resonance increase the ionization rate of the plasma, so A more active plasma can be obtained than with the thermal CVD method or the plasma CVD method. Therefore, it is possible to deposit a high-quality film without heating the substrate (below the curing temperature of the resist). Therefore, after etching away the silicon film and oxide film deposited on the resist pattern other than the openings, It becomes possible to remove the resist pattern with a resist stripping solution.

本発明では、以上のような方法でエミッタ電極形成部と
ベース電極形成部の開口部に半導体膜とその膜の凹部を
埋め込む平坦化用膜を形成し、これをマスクに不純物を
導入して外部ベース層を形成し半導体膜の上方部分及び
平坦化用膜を除去し、さらにエミッタ電極形成部の開口
部に不純物を導入してエミッタ層を形成することにより
エミッタと外部ベースが自己整合で形成できる。
In the present invention, a semiconductor film and a planarizing film that fills the recesses of the film are formed in the openings of the emitter electrode forming part and the base electrode forming part by the method described above, and this is used as a mask to introduce impurities and externally. The emitter and external base can be formed in self-alignment by forming a base layer, removing the upper part of the semiconductor film and the planarization film, and then introducing impurities into the opening of the emitter electrode formation part to form the emitter layer. .

[実施例] 第1図(a)〜(5)は本発明の実施例に係る工程断面
図、第2図は本実施例において使用するECRプラズマ
CVD装置の断面図であり、以下に図面を参照して説明
する。
[Example] Figures 1 (a) to (5) are process cross-sectional views according to examples of the present invention, and Figure 2 is a cross-sectional view of an ECR plasma CVD apparatus used in this example. Refer to and explain.

まず同図(a)に示すように、通常のバイポーラトラン
ジスタの製造工程に従いp型Si基板1上のn型エピタ
キシャルN2を素子分離用絶縁膜3で分離し、この上に
膜厚3(100人の熱酸化膜4、続いて通常の熱CVD
法により膜厚5(10人の窒化膜5を形成する。ついで
該熱酸化膜4及び窒化膜5をマスクにして加速電圧16
0 keV、  ドーズ量1×1014cm−2の条件
でBイオンを注入し熱処理して内部ベース拡散層6を形
成する。ついで同図(b)に示すように、エミッタ電極
及びベース電極形成用の開口部を有する厚さ1μmのポ
ジ型レジストパターン7を形成する。ついで以下に述べ
るECRプラズマCVD法を用い基板加熱を行うことな
く同図(C)に示すように、膜厚1(100人のシリコ
ン膜8を堆積させ、さらに続けて上記開口部が埋め込ま
れるまで酸化膜9を堆積させる。
First, as shown in Figure (a), an n-type epitaxial layer N2 on a p-type Si substrate 1 is separated by an element isolation insulating film 3 according to the normal manufacturing process of bipolar transistors, and a film thickness of 3 (100 thermal oxide film 4, followed by normal thermal CVD
A nitride film 5 with a thickness of 5 (10) is formed by a method. Then, using the thermal oxide film 4 and nitride film 5 as masks, an acceleration voltage of 16
B ions are implanted under the conditions of 0 keV and a dose of 1×10 14 cm −2 and heat treated to form the internal base diffusion layer 6 . Next, as shown in FIG. 2B, a positive resist pattern 7 having a thickness of 1 μm and having openings for forming an emitter electrode and a base electrode is formed. Next, a silicon film 8 with a thickness of 1 (100%) was deposited as shown in FIG. An oxide film 9 is deposited.

第2図は、シリコン膜8と酸化膜9を堆積させるために
用いるECRプラズマCVD装置の断面図を示したもの
である。同図において、試料室21に上記レジストパタ
ーン7の形成された試料をセットし、ガス導入口28及
び29より試料室21及びプラズマ室22に各々原料ガ
スを導入しガス圧を1×10− ’Torrに保持する
。この際、基板加熱は行わなかった。プラズマ室22に
は導波管24を通して外部より周波数2.45 GHz
のマイクロ波電力8(10 Wを供給しプラズマを発生
させるとともに、プラズマ室22の周囲に配置した磁気
コイル23によりプラズマ室22から試料室21方向に
発散する磁界を生じさせる。マイクロ波周波数とプラズ
マ中の電子の回転周期が一致するように磁界を決めると
電子がサイクロトロン共鳴を起こしてマイクロ波のエネ
ルギーを吸収し高エネルギーとなってプラズマのイオン
化を促進し活性なプラズマを作る。このようにして形成
されたプラズマが上記発散磁界によって試料室21に導
入され、基板上に膜堆積が行われる。原料ガスとして試
料室21にSiH4ガスを流し、プラズマ室22へAr
ガスを流した場合には多結晶状あるいはアモルファス状
のシリコン膜が得られ、試料室21にSiH4ガスを流
し、プラズマ室22へ0□ガスを流した場合には酸化膜
が得られる。
FIG. 2 shows a cross-sectional view of an ECR plasma CVD apparatus used to deposit silicon film 8 and oxide film 9. As shown in FIG. In the figure, a sample on which the resist pattern 7 has been formed is set in a sample chamber 21, and source gas is introduced into the sample chamber 21 and plasma chamber 22 through gas inlets 28 and 29, respectively, and the gas pressure is set to 1×10-'. Hold at Torr. At this time, the substrate was not heated. A frequency of 2.45 GHz is input into the plasma chamber 22 from the outside through a waveguide 24.
A microwave power of 8 (10 W) is supplied to generate plasma, and a magnetic coil 23 placed around the plasma chamber 22 generates a magnetic field that diverges from the plasma chamber 22 toward the sample chamber 21.Microwave frequency and plasma When the magnetic field is set so that the rotation period of the electrons in the microwave matches, the electrons cause cyclotron resonance, absorb microwave energy, become highly energetic, promote ionization of the plasma, and create active plasma. The formed plasma is introduced into the sample chamber 21 by the divergent magnetic field, and a film is deposited on the substrate.SiH4 gas is flowed into the sample chamber 21 as a raw material gas, and Ar gas is introduced into the plasma chamber 22.
When gas is flowed, a polycrystalline or amorphous silicon film is obtained, and when SiH4 gas is flowed into the sample chamber 21 and 0□ gas is flowed into the plasma chamber 22, an oxide film is obtained.

以上の方法により第1図(C)に見られるようにシリコ
ン膜8及び酸化膜9を堆積させた後、レジストパターン
7上のシリコン膜8表面が露出するまで酸化膜9の表面
をエツチングし、開口部内にのみ酸化膜9を残す。続い
て開口部内に残された酸化膜9をマスクとしてレジスト
パターン7の表面が露出するまでシリコン膜9をエツチ
ングし、さらに続けてレジストパターン7をレジスト剥
離液へ浸すかあるいはアッシングによって除去すると、
同図(d)に示すように、シリコン膜8及び酸化膜9は
開口部内にのみ残されることになる。前述したようにE
CRプラズマCVD法によりシリコン膜及び酸化膜を被
着したとき基板温度はレジスト硬化温度以下に保持する
ことができるためレジストパターン7は上述の方法によ
って簡単に除去することが可能となる。ついで開口部内
のシリコン膜8及び酸化膜9をマスクとして加速電圧1
60 keV、ドーズ量I Xl015cm−2の条件
でBイオンを注入し外部ベース拡散層10を形成する。
After depositing the silicon film 8 and the oxide film 9 as shown in FIG. 1(C) by the above method, the surface of the oxide film 9 is etched until the surface of the silicon film 8 on the resist pattern 7 is exposed. The oxide film 9 is left only within the opening. Next, using the oxide film 9 left in the opening as a mask, the silicon film 9 is etched until the surface of the resist pattern 7 is exposed, and then the resist pattern 7 is removed by immersion in a resist stripping solution or by ashing.
As shown in FIG. 2D, the silicon film 8 and the oxide film 9 are left only in the opening. As mentioned above, E
When the silicon film and oxide film are deposited by the CR plasma CVD method, the substrate temperature can be maintained below the resist curing temperature, so the resist pattern 7 can be easily removed by the above-mentioned method. Next, an acceleration voltage of 1 is applied using the silicon film 8 and oxide film 9 in the opening as a mask.
B ions are implanted under the conditions of 60 keV and a dose of IXl015 cm-2 to form the external base diffusion layer 10.

ついで同図(e)に示すように、開口部内の内部ベース
拡散層6上にのみシリコン膜8を残して開口部内の酸化
膜9及び開口部側壁のシリコン膜8をエツチング除去す
る。ついで同図げ)に示すように、エミッタ電極となる
開口部上が孔開けされたレジストパターン11を形成し
、これをマスクとして上記開口部内のシリコン膜8に加
速電圧40 keV、ドーズ量lXl0”cm−”の条
件でAsイオンを注入し熱処理してエミッタ拡散層12
を形成する。ついでレジストパターン11を除去した後
同図(g)に示すように、ベース電極となる開口部が孔
開けされたレジストパターン13を形成し、これをマス
クとして加速電圧40 keV、ドーズ11 XIOI
thcm−”の条件でBイオンを注入しベースコンタク
ト14を形成する。ついで同図th)に示すように、A
I膜からなるエミッタ電極15及びベース引き出し電極
16を形成するとバイポーラトランジスタを得ることが
できる。
Then, as shown in FIG. 3E, the oxide film 9 inside the opening and the silicon film 8 on the side walls of the opening are removed by etching, leaving the silicon film 8 only on the internal base diffusion layer 6 inside the opening. Next, as shown in Figure 1), a resist pattern 11 with a hole formed above the opening that will become the emitter electrode is formed, and using this as a mask, the silicon film 8 in the opening is exposed to an acceleration voltage of 40 keV and a dose of lXl0''. The emitter diffusion layer 12 is implanted with As ions and heat-treated under the condition of "cm-".
form. After removing the resist pattern 11, a resist pattern 13 with an opening that will become a base electrode is formed as shown in FIG.
A base contact 14 is formed by implanting B ions under the condition of ``thcm-''.
A bipolar transistor can be obtained by forming the emitter electrode 15 and the base lead-out electrode 16 made of an I film.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、エミッタと外部ベースを
自己整合で形成することができる。そのため、エミッタ
と外部ベース間距離を従来に比べて縮小することが可能
となり、これによって寄生ベース抵抗の低減が実現され
、バイポーラトランジスタの高速化を図ることができる
As described above, according to the present invention, the emitter and the external base can be formed in self-alignment. Therefore, it is possible to reduce the distance between the emitter and the external base compared to the conventional method, thereby reducing parasitic base resistance and increasing the speed of the bipolar transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(ハ)は本発明の実施例を示す工程断面
図、 第2図は本発明の実施例に用いたECRプラズマCVD
装置の断面図、 第3図は従来例の問題点を示す工程断面図、である。 図において、 1.30はSi基板、 2.31はエビクキシャル層、 3.32は素子分離用絶縁膜、 4.33は熱酸化膜、 5.34は窒化膜、 6.35は内部ベース拡散層、 7.11.13.36.38はレジストパターン、8は
シリコン膜、 9は酸化膜、 10.37は外部ベース拡散層、 12.40はエミッタ拡散層、 14はベース・コンタクト、 15.39はエミッタ電極、 16.41はベース引き出し電極、 21は試料室、 22はプラズマ室、 23は磁気コイル、 24は導波管、 25は排気口、 26は試料支持台、 27は試料、 28. 29はガス導入口、 である。 ゝ2 、イト、ピR≦a月/1つよ?之シEヨレブタリ1七オ
T−丁王程シごγ面図系 図 c子 2)
FIGS. 1(a) to (c) are process cross-sectional views showing embodiments of the present invention. FIG. 2 is an ECR plasma CVD process used in an embodiment of the present invention.
FIG. 3 is a cross-sectional view of the device, and a process cross-sectional view showing problems in the conventional example. In the figure, 1.30 is a Si substrate, 2.31 is an evixial layer, 3.32 is an insulating film for element isolation, 4.33 is a thermal oxide film, 5.34 is a nitride film, 6.35 is an internal base diffusion layer , 7.11.13.36.38 is a resist pattern, 8 is a silicon film, 9 is an oxide film, 10.37 is an external base diffusion layer, 12.40 is an emitter diffusion layer, 14 is a base contact, 15.39 is an emitter electrode, 16.41 is a base extraction electrode, 21 is a sample chamber, 22 is a plasma chamber, 23 is a magnetic coil, 24 is a waveguide, 25 is an exhaust port, 26 is a sample support stand, 27 is a sample, 28. 29 is a gas inlet.ゝ2、It、PiR≦a month/one? Noshi Eyorebutari 17o T-Ding-o-shigo-gamma side chart genealogy c child 2)

Claims (1)

【特許請求の範囲】 一導電型半導体層(2)表面に反対導電型の内部ベース
層(6)及び該内部ベース層(6)上を覆う絶縁膜(4
、5)を形成する工程と、 該絶縁膜(4、5)上にエミッタ電極形成部及びベース
電極形成部に窓を有するマスク膜(7)を形成し、これ
をマスクとして該絶縁膜(4、5)を選択的にエッチン
グ除去して開口部を形成する工程と、該開口部及びマス
ク膜(7)上に半導体膜(8)、続いて表面をほぼ平坦
化する平坦化用膜(9)を堆積する工程と、 該開口部以外の領域上の該半導体膜(8)及び平坦化用
膜(9)をエッチング除去し、続いて該マスク膜(7)
を除去する工程と、 該開口部に残された半導体膜(8)及び平坦化用膜(9
)をマスクとし、該絶縁膜(4、5)を通して反対導電
型不純物を導入し外部ベース層(10)を形成する工程
と、 該開口部内の内部ベース層(6)に接続される半導体膜
(8)の部分を残して、上方の半導体膜(8)及び平坦
化用膜(9)をエッチング除去する工程と、エミッタ電
極形成部の開口部より該絶縁膜(4、5)をマスクに半
導体膜(8)及び内部ベース層(6)に選択的に一導電
型不純物を導入しエミッタ層(12)を形成する工程を
含むことを特徴とする半導体装置の製造方法。
[Claims] An internal base layer (6) of the opposite conductivity type on the surface of the semiconductor layer (2) of one conductivity type and an insulating film (4) covering the internal base layer (6).
, 5), and forming a mask film (7) having a window in the emitter electrode forming part and the base electrode forming part on the insulating film (4, 5), and using this as a mask, forming the insulating film (4, 5). . ), etching away the semiconductor film (8) and the planarization film (9) on the area other than the opening, and then removing the mask film (7).
a step of removing the semiconductor film (8) and the planarization film (9) left in the opening.
) as a mask, introducing impurities of opposite conductivity type through the insulating films (4, 5) to form an external base layer (10), and forming a semiconductor film () connected to the internal base layer (6) in the opening. A process of etching away the upper semiconductor film (8) and planarization film (9), leaving the part 8), and removing the semiconductor film from the opening of the emitter electrode formation part using the insulating film (4, 5) as a mask. A method for manufacturing a semiconductor device, comprising the step of selectively introducing impurities of one conductivity type into a film (8) and an internal base layer (6) to form an emitter layer (12).
JP18686289A 1989-07-19 1989-07-19 Manufacture of semiconductor device Pending JPH0350834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18686289A JPH0350834A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18686289A JPH0350834A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0350834A true JPH0350834A (en) 1991-03-05

Family

ID=16195964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18686289A Pending JPH0350834A (en) 1989-07-19 1989-07-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0350834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066486A (en) * 2006-09-06 2008-03-21 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066486A (en) * 2006-09-06 2008-03-21 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP2809113B2 (en) Method for manufacturing semiconductor device
JPH03286536A (en) Semiconductor device and manufacture thereof
US20080079083A1 (en) Semiconductor device and a method of manufacture therefor
JPH0350834A (en) Manufacture of semiconductor device
US20090108359A1 (en) A semiconductor device and method of manufacture therefor
JPH04154162A (en) Manufacture of mos-type semiconductor device
JPH07161728A (en) Semiconductor device and its manufacture
JPH1064898A (en) Manufacturing method of semiconductor device
JPH05243262A (en) Manufacture of semiconductor device
JP3067340B2 (en) Semiconductor device
JPH06224416A (en) Mos field effect transistor and its manufacture, and semiconductor device using mos field effect transistor
JPH05175232A (en) Thin film transistor and its manufacture
JPH01155660A (en) Manufacture of semiconductor device
JPS6147670A (en) Manufacture of semiconductor device
JPS6022506B2 (en) Manufacturing method for semiconductor devices
JPH03209816A (en) Manufacture of semiconductor device
JPH0778979A (en) Fabrication of semiconductor device
JPS6077460A (en) Manufacture of semiconductor device
JPH0555585A (en) Manufacture of insulated-gate field-effect transistor
JPS62131538A (en) Manufacture of semiconductor device
JPH08241930A (en) Manufacture of semiconductor device
JPS59161070A (en) Manufacture of semiconductor device
JPS61242057A (en) Manufacture of polycrystalline silicon resistor
JPH10284615A (en) Semiconductor device and manufacture therefor
JPH0697189A (en) Manufacture semiconductor device