JPH0350830B2 - - Google Patents

Info

Publication number
JPH0350830B2
JPH0350830B2 JP57135851A JP13585182A JPH0350830B2 JP H0350830 B2 JPH0350830 B2 JP H0350830B2 JP 57135851 A JP57135851 A JP 57135851A JP 13585182 A JP13585182 A JP 13585182A JP H0350830 B2 JPH0350830 B2 JP H0350830B2
Authority
JP
Japan
Prior art keywords
cylinder
ceramic layer
layer
wear
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57135851A
Other languages
Japanese (ja)
Other versions
JPS5925058A (en
Inventor
Haratsugu Koyama
Shoji Myazaki
Joji Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57135851A priority Critical patent/JPS5925058A/en
Publication of JPS5925058A publication Critical patent/JPS5925058A/en
Publication of JPH0350830B2 publication Critical patent/JPH0350830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、内燃機関用シリンダ、特に、ピスト
ンとの摺動面における耐摩耗性および耐焼付性と
ともに、断熱性をも有するシリンダに関するもの
である。 近年、内燃機関における熱損失を低減させて、
エネルギ効率を向上させる目的で、燃焼室周辺を
断熱することが種々検討されている。その一つと
してシリンダの断熱化がある。シリンダ部位にお
ける熱損失は非常に大きく、その断熱化によつて
もたらされる熱損失の低減率が大であり、エネル
ギ効率の向上に大きく貢献することから、この断
熱化は各方面にて検討されている。このシリンダ
の断熱化の手段として最も一般的に行なわれてい
るのは、シリンダライナを従来の鋳鉄などの金属
材料に代えてある種のセラミツク材料によつて構
成するという手段であり、該手段によれば、熱損
失をかなり低減しうるが、一方において、次のよ
うな問題点があり、実用的なものとは云えない。
すなわち、 (1) シリンダライナ材料には、高い機械的強度、
耐摩耗性および耐衝撃性が要求されるが、これ
らの特性を満足させるにはセラミツク材料とし
てSi3N4またはSiCなどの高級材を必要とし、
コスト的に相当高価になるとともに、それらの
耐久信頼性も充分に確立されていない。 (2) シリンダライナは、外周部はシリンダブロツ
クとの嵌合、内周部はピストンとの摺動に供さ
れるものであるから、その外周面および内周面
ともに高い寸法精度が要求されるほか、内周面
については良好な表面粗度も必要となる。しか
しながら、セラミツク材料は一般に加工が難し
いことから、高い製造技術が必要であり、また
生産性も低い。 (3) SiN4またはSiCなどのセラミツク材料は、金
属材料に比べて熱膨張係数が低く、セラミツク
材料を用いて製造されるシリンダライナと金属
材料を用いて製造されるピストン(またはピス
トンリング)との間に相当大きなクリアランス
を必要とし、エンジン性能の低下をきたす。 また、このようにシリンダライナ全体をセラミ
ツク材料によつて構成するのではなく、溶射など
のコーテイング法によつて、シリンダの内周面に
セラミツク層を形成することも研究されている
が、従来の方法はある一つのセラミツク材料より
なる単一セラミツク層であるため、各種特性の要
求されるシリンダとして満足のいくものは得られ
ていないのが現状である。 本発明は、こうして事情を鑑みてなされたもの
であり、その目的とするところは、セラミツク材
料を利用することによつても、上記各種問題を生
ぜず、しかも、上記各種特性を同時に満足しうる
内燃機関用シリンダを提供することになる。本発
明は、シリンダ本体を金属材料によつて構成し、
該シリンダ本体の内周面にセラミツク層を形成せ
しめ、しかも、該セラミツク層を二層とし、該二
層のうちの一の層すなわち摺動面となる層を主と
して耐摩耗性を付与するセラミツク材料によつて
構成し、他の層を主として断熱性を付与するセラ
ミツク材料によつて構成するとともに、シリンダ
本体と前記セラミツク二層との間に、金属材料と
セラミツク材料の結合性を高めかつ両材料の中間
的な熱膨張係数を有する材料からなる結合材層を
介在せしめた構成としたものである。 より具体的には、本発明による内燃機関用シリ
ンダは、金属材料からなるシリンダ本体の内周面
に、溶射たとえばプラズマ溶射によつて、 Ni−Al合金、Ni−Cr合金、Ni−Cr−Al合金
またはNi−Cr−Mo合金の群から選ばれた材料よ
りなる結合材層、 Y2O3安定化ZrO2、CaO安定化ZrO2および
MgO安定化ZrO2の群から選ばれた材料よりなる
断熱性セラミツク層、そして Al2O3・TiO2およびCr2O3の群から選ばれた材
料よりなる耐摩耗性セラミツク層を順次積層して
なるものである。こうした各層の配置関係をわか
り易くするために、本発明シリンダの軸方向断面
を図に示す。図において、1はシリンダ本体、2
は結合材層、3は断熱性セラミツク層そして4は
耐摩耗性セラミツク層をそれぞれ示す。 以下、各構成要件について説明する。 (イ) シリンダ本体: 金属材料たとえば鋳鉄、鋼またはアルミニウ
ムが使用できる。なお、シリンダ本体は、シリ
ンダを構成する部分であつて各層(すなわち結
合材層、断熱性セラミツク層および耐摩耗性セ
ラミツク層)を除いた部分を指し、シリンダラ
イナ単独またはシリンダブロツクを含めた概念
として理解されたい。 (ロ) 結合材層: 該層を構成する材料としては、シリンダ本体
と断熱性セラミツク層との結合性を高め、か
つ、シリンダ本体を構成する材料と断熱性セラ
ミツク層を構成する材料との中間的な熱膨張係
数を有することが要件とされる。また、断熱性
シリンダを目的としていることから、熱伝導性
の低い材料であることが好ましい。こうしたこ
とから、本発明は、結合材層としてNi−Al合
金、Ni−Cr合金、Ni−Cr−Al合金またはNi−
Cr−Mo合金の群から選択した材料、より好ま
しくは80Ni−20Cr合金、95Ni−5Al合金また
は(80Ni−20Cr)−5Al合金の群から選択した
材料を適用するものである。 (ハ) 断熱性セラミツク層: 該層を構成する材料としては、断熱性に優れ
た換言すれば熱伝導性の低いことが要件とされ
る。また、合わせて、該断熱性セラミツク層の
両面側に位置することとなる結合材層および耐
摩耗性セラミツク層をそれぞれ構成する材料と
の熱膨張差が小さい材料であることが好まし
い。こうしたことから、本発明は、断熱性セラ
ミツク層として、Y2O3安定化ZrO2、CaO安定
化ZrO2およびMgO安定化ZrO2の群から選択し
た材料を適用するものである。 (ニ) 耐摩耗性セラミツク層: 該層を構成する材料としては、耐摩耗性およ
び耐焼付性に優れていることが要件とされる。
また、合わせて、断熱性に優れ、そして断熱性
セラミツク層を構成する材料との熱膨張差が小
さい材料であることが望まれる。こうしたこと
から、本発明は、耐摩耗性セラミツク層とし
て、Al2O3・TiO2およびCr2O3の群から選択し
た材料を適用するものである。 また、各層(ロ)〜(ニ)の厚みは、それぞれ次のよう
な範囲が好ましい。 (ロ) 結合材層: 20〜100μ (ハ) 断熱性セラミツク層: 100〜1500μ (ニ) 耐摩耗性セラミツク層: 50〜200μ この場合、(ハ)について言及すると、断熱性は厚
みを厚くすればする程高められるが、前述した如
く一方において、断熱性以外のシリンダとして要
求される特性たとえば耐摩耗性の低下をきたし、
しかも、コスト高につながることから、低熱伝導
性の材料(すなわち断熱性を付与する材料)を使
用する限りにおいて、上記範囲が好ましい。 次に、本発明を実施例に基づいて説明する。 実施例 1 内径:91mm、外形:95mm、長さ:180mmの鋳鉄
製シリンダライナ1の内周面に、まず結合材層2
としてNi−4.5%Al複合粉末を0.07mm、断熱性セ
ラミツク層3として5%CaO安定化ZrO2粉末を
0.33mm、そして耐摩耗性セラミツク層4として
Cr2O3粉末を0.2mmの厚みになるように溶射した。
溶射はMETCO社製内周面プラズマ溶射装置
(7M−T型)によつて行ない、プラズマ用ガスと
してはAr−H2を使用した。溶射後、内周面を研
摩およびホーニングして内径:90mmに仕上げた。
この結果、Cr2O3からなる耐摩耗性セラミツク層
4の仕上げ後における厚みは0.1mmとなる。また、
仕上げ後の表面粗さは、0.5〜0.8Zであつた。 実施例 2 耐摩耗性セラミツク層4の材料として、Cr2O3
粉末の代りに、Al2O3−30%TiO2粉末を用いる以
外、実施例1と同様の方法でシリンダライナを作
製した。 比較例 1 Cr2O3粉末からなる耐摩耗性セラミツク層を存
在させず、該当する部分にも5%CaO安定化
ZrO2からなる断熱性セラミツク層3を存在させ
る以外、実施例1と同様の方法でシリンダライナ
を作製した。この場合、断熱性セラミツク層につ
いては、溶射は0.53mmの厚みになるように行なわ
れ、また仕上げ後の厚みは0.43mmとなる。 比較例 2 ZrO2粉末からなる断熱性セラミツク層3を存
在させず、該当する部分にCr2O3粉末からなる耐
摩耗性セラミツク層4を存在させる以外は、実施
例1と同様の方法でシリンダライナを作製した。
この場合、耐摩耗性セラミツク層4については、
溶射は0.53mmの厚みになるように行なわれ、また
仕上げ後の厚みは0.43mmとなる。 比較例 3 実施例1の仕上げ形状と同一のシリンダライナ
を鋳鉄だけによつて作製した。 比較例 4 実施例1の仕上げ形状と同一のシリンダライナ
をSi3N4焼結体だけによつて作製した。 これらの実施例および比較例のシリンダライナ
を2.2のデイーゼル機関に挿入し、性能試験を
行なつた。なお、ピストンリングには第1圧縮リ
ング、第2圧縮リングおよび油リングともに摺動
面にCr2O3溶射したものを使用した。 この結果を第1表に示す。
The present invention relates to a cylinder for an internal combustion engine, and particularly to a cylinder that has not only wear resistance and seizure resistance on a sliding surface with a piston, but also heat insulation properties. In recent years, by reducing heat loss in internal combustion engines,
Various studies have been made to insulate the area around the combustion chamber for the purpose of improving energy efficiency. One of these is to insulate the cylinder. The heat loss in the cylinder part is extremely large, and the reduction rate of heat loss brought about by insulation is large and contributes greatly to improving energy efficiency, so this insulation is being studied in various fields. There is. The most commonly used means for insulating cylinders is to construct the cylinder liner from a certain type of ceramic material instead of conventional metal materials such as cast iron. According to this method, heat loss can be considerably reduced, but on the other hand, it has the following problems and cannot be said to be practical.
(1) The cylinder liner material has high mechanical strength,
Abrasion resistance and impact resistance are required, but to satisfy these properties, high-grade ceramic materials such as Si 3 N 4 or SiC are required.
In addition to being quite expensive in terms of cost, their durability and reliability have not been sufficiently established. (2) The outer circumferential part of the cylinder liner is used for fitting with the cylinder block, and the inner circumferential part is used for sliding on the piston, so high dimensional accuracy is required for both the outer and inner circumferential surfaces. In addition, good surface roughness is also required for the inner peripheral surface. However, ceramic materials are generally difficult to process, requiring advanced manufacturing techniques and having low productivity. (3) Ceramic materials such as SiN 4 or SiC have a lower coefficient of thermal expansion than metal materials, and cylinder liners manufactured using ceramic materials and pistons (or piston rings) manufactured using metal materials are different from each other. A considerably large clearance is required between the two, resulting in a decrease in engine performance. Furthermore, instead of constructing the entire cylinder liner from ceramic material in this way, research is being conducted on forming a ceramic layer on the inner peripheral surface of the cylinder using a coating method such as thermal spraying. Since the method uses a single ceramic layer made of a certain ceramic material, it is currently not possible to obtain a cylinder that satisfies the requirements for various properties. The present invention has been made in view of the above circumstances, and its purpose is to avoid the various problems described above and to simultaneously satisfy the various characteristics described above even by using ceramic materials. A cylinder for an internal combustion engine will be provided. The present invention comprises a cylinder body made of a metal material,
A ceramic material in which a ceramic layer is formed on the inner circumferential surface of the cylinder body, the ceramic layer is two layers, and one of the two layers, that is, the layer serving as the sliding surface, mainly imparts wear resistance. The other layer is mainly composed of a ceramic material that provides heat insulation properties, and a layer of ceramic material is provided between the cylinder body and the two ceramic layers to enhance the bond between the metal material and the ceramic material. The structure includes a binder layer made of a material having an intermediate coefficient of thermal expansion. More specifically, in the cylinder for an internal combustion engine according to the present invention, Ni-Al alloy, Ni-Cr alloy, Ni-Cr-Al alloy is coated on the inner circumferential surface of the cylinder body made of a metal material by thermal spraying, for example, plasma spraying. a binder layer consisting of a material selected from the group of alloys or Ni-Cr-Mo alloys, Y 2 O 3 stabilized ZrO 2 , CaO stabilized ZrO 2 and
A heat-insulating ceramic layer made of a material selected from the group of MgO-stabilized ZrO 2 and a wear-resistant ceramic layer made of a material selected from the group of Al 2 O 3・TiO 2 and Cr 2 O 3 are successively laminated. That's what happens. In order to make it easier to understand the arrangement of these layers, an axial cross section of the cylinder of the present invention is shown in the figure. In the figure, 1 is the cylinder body, 2
3 represents a bonding material layer, 3 represents a heat insulating ceramic layer, and 4 represents a wear-resistant ceramic layer. Each component will be explained below. (a) Cylinder body: Metal materials such as cast iron, steel or aluminum can be used. Note that the cylinder body refers to the part that constitutes the cylinder excluding each layer (i.e., the binder layer, the heat insulating ceramic layer, and the wear-resistant ceramic layer), and is a concept that includes the cylinder liner alone or the cylinder block. I want to be understood. (b) Binding material layer: The material constituting this layer is one that enhances the bond between the cylinder body and the heat insulating ceramic layer, and is an intermediate material between the material constituting the cylinder body and the material constituting the heat insulating ceramic layer. It is required to have a coefficient of thermal expansion of Furthermore, since the cylinder is intended to be a heat insulating cylinder, it is preferably made of a material with low thermal conductivity. For these reasons, the present invention provides Ni-Al alloy, Ni-Cr alloy, Ni-Cr-Al alloy or Ni-
A material selected from the group of Cr-Mo alloys, more preferably a material selected from the group of 80Ni-20Cr alloys, 95Ni-5Al alloys or (80Ni-20Cr)-5Al alloys is applied. (c) Heat-insulating ceramic layer: The material constituting this layer is required to have excellent heat-insulating properties, in other words, low thermal conductivity. In addition, it is preferable that the material has a small difference in thermal expansion from the materials constituting the binder layer and the wear-resistant ceramic layer, which are located on both sides of the heat-insulating ceramic layer. For this reason, the present invention applies a material selected from the group of Y2O3 - stabilized ZrO2 , CaO-stabilized ZrO2 and MgO-stabilized ZrO2 as the heat-insulating ceramic layer. (d) Wear-resistant ceramic layer: The material constituting this layer is required to have excellent wear resistance and seizure resistance.
Additionally, it is desired that the material has excellent heat insulation properties and has a small difference in thermal expansion from the material constituting the heat insulating ceramic layer. For this reason, the present invention applies a material selected from the group of Al 2 O 3 .TiO 2 and Cr 2 O 3 as the wear-resistant ceramic layer. Further, the thickness of each layer (b) to (d) is preferably within the following range. (b) Binder layer: 20-100μ (c) Heat-insulating ceramic layer: 100-1500μ (d) Abrasion-resistant ceramic layer: 50-200μ However, as mentioned above, on the other hand, properties required for a cylinder other than heat insulation, such as wear resistance, may be reduced.
Moreover, since it leads to high costs, the above range is preferable as long as a material with low thermal conductivity (that is, a material that provides heat insulation) is used. Next, the present invention will be explained based on examples. Example 1 A binder layer 2 was first applied to the inner peripheral surface of a cast iron cylinder liner 1 with an inner diameter of 91 mm, an outer diameter of 95 mm, and a length of 180 mm.
0.07 mm of Ni-4.5% Al composite powder as the heat insulating ceramic layer 3, and 5% CaO stabilized ZrO 2 powder as the heat insulating ceramic layer 3.
0.33mm, and as wear-resistant ceramic layer 4
Cr 2 O 3 powder was sprayed to a thickness of 0.2 mm.
Thermal spraying was carried out using an inner circumferential surface plasma spraying device (Model 7M-T) manufactured by METCO, and Ar-H 2 was used as the plasma gas. After thermal spraying, the inner circumferential surface was polished and honed to an inner diameter of 90 mm.
As a result, the thickness of the wear-resistant ceramic layer 4 made of Cr 2 O 3 after finishing is 0.1 mm. Also,
The surface roughness after finishing was 0.5-0.8Z. Example 2 As the material of the wear-resistant ceramic layer 4, Cr 2 O 3
A cylinder liner was produced in the same manner as in Example 1 except that Al 2 O 3 -30%TiO 2 powder was used instead of the powder. Comparative Example 1 No wear-resistant ceramic layer made of Cr 2 O 3 powder, and 5% CaO stabilization in the corresponding area
A cylinder liner was produced in the same manner as in Example 1 except for the presence of the heat insulating ceramic layer 3 made of ZrO 2 . In this case, the heat-insulating ceramic layer is thermally sprayed to a thickness of 0.53 mm, and the finished thickness is 0.43 mm. Comparative Example 2 A cylinder was prepared in the same manner as in Example 1, except that the heat-insulating ceramic layer 3 made of ZrO 2 powder was not present and the wear-resistant ceramic layer 4 made of Cr 2 O 3 powder was present in the corresponding part. A liner was prepared.
In this case, regarding the wear-resistant ceramic layer 4,
Thermal spraying was done to a thickness of 0.53mm, and the finished thickness was 0.43mm. Comparative Example 3 A cylinder liner having the same finished shape as in Example 1 was manufactured only from cast iron. Comparative Example 4 A cylinder liner having the same finished shape as in Example 1 was produced using only a Si 3 N 4 sintered body. The cylinder liners of these Examples and Comparative Examples were inserted into a 2.2 diesel engine and a performance test was conducted. The piston rings used were those whose sliding surfaces were thermally sprayed with Cr 2 O 3 for the first compression ring, the second compression ring, and the oil ring. The results are shown in Table 1.

【表】【table】

【表】 の深さの位置にて測定
** 4000r.p.m.×Full×100時間の耐久試験後にお
いて測定
上記第1表の結果から、本発明のシリンダ(実
施例1,2)は、金属材料だけからなるシリンダ
(比較例3)に比較して、約100℃の壁温上昇すな
わち断熱効果がみられ、セラミツク材料だけから
なるシリンダ(比較例4)と同等の効果となつ
た。そして、耐久性についてみると、100時間耐
久試験をパスし、しかも、シリンダライナ摩耗量
およびピストンリング摩耗量ともに軽微であつ
た。また、比較例1のように耐摩耗性セラミツク
層を存在させないものは、断熱効果は大きいがシ
リンダライナの耐摩耗性に難点があり、比較例2
のように断熱性セラミツク層を存在させないもの
は、シリンダライナの耐摩耗性は良好であるが断
熱性の点で劣る。 本発明によれば、シリンダを金属材料だけでな
くセラミツク材料によつても構成したことから、
シリンダの断熱性が向上する。しかも、シリンダ
の大部分を占めるシリンダ本体は金属材料によつ
て構成していることから、シリンダに対する摺動
部材であるピストン(ピストンリングも含む)と
の熱膨張差について、セラミツク材料を使用して
いるにも拘らず、あまり考慮しなくてよい。セラ
ミツク材料として二種の材料を使用し、各材料に
よつてそれぞれセラミツク層を構成せしめ、該セ
ラミツク層のうち一の層に主として断熱性を、他
の層に主として耐摩耗性を担当せしめたことか
ら、各特性について最適な材料を広範囲なセラミ
ツク材料から自由に選択できるとともに、シリン
ダの各特性がともに大きく向上される。金属材料
からなるシリンダ本体とセラミツク材料からなる
セラミツク層との間に、これら各材料の結合性を
高めかつ熱膨張差を吸収しうる材料、すなわち、
金属材料とセラミツク材料との中間的な熱膨張係
数を有する材料からなる結合材層を介在せしめた
ことから、シリンダの耐衝撃性の低下を抑制でき
る。
Measured at the depth of [Table] ** Measured after 4000r.pm x Full x 100 hours durability test From the results in Table 1 above, the cylinders of the present invention (Examples 1 and 2) are made of metal material. Compared to the cylinder made only of ceramic material (Comparative Example 3), the wall temperature increased by about 100°C, that is, the insulation effect was observed, and the effect was equivalent to that of the cylinder made only of ceramic material (Comparative Example 4). In terms of durability, it passed a 100-hour durability test, and the amount of cylinder liner wear and piston ring wear was minimal. In addition, a cylinder liner without a wear-resistant ceramic layer, such as Comparative Example 1, has a large heat insulating effect, but has a drawback in the wear resistance of the cylinder liner.
In cylinder liners without a heat insulating ceramic layer, the wear resistance of the cylinder liner is good, but the heat insulating properties are poor. According to the present invention, since the cylinder is made of not only metal material but also ceramic material,
Improves cylinder insulation. Moreover, since the cylinder body, which occupies most of the cylinder, is made of metal, ceramic material is used to reduce the difference in thermal expansion between the cylinder and the piston (including the piston ring), which is a sliding member. Even though it is there, you don't have to think about it too much. Two types of materials are used as ceramic materials, each material constitutes a ceramic layer, and one of the ceramic layers is primarily responsible for heat insulation, and the other layer is primarily responsible for wear resistance. Therefore, the optimum material for each characteristic can be freely selected from a wide range of ceramic materials, and each characteristic of the cylinder is greatly improved. Between the cylinder body made of a metal material and the ceramic layer made of a ceramic material, a material that can enhance the bonding properties of these materials and absorb the difference in thermal expansion, that is,
Since the bonding material layer made of a material having a coefficient of thermal expansion intermediate between that of a metal material and a ceramic material is interposed, a decrease in impact resistance of the cylinder can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係るシリンダの一部断面図を表わ
す。 1……シリンダ本体、2……結合材層、3……
断熱性セラミツク層、4……耐摩耗性セラミツク
層、なお、一点鎖線はシリンダの中心軸を示す。
The figure represents a partial sectional view of a cylinder according to the invention. 1...Cylinder body, 2...Binding material layer, 3...
Heat insulating ceramic layer, 4... Wear-resistant ceramic layer, the dashed line indicates the central axis of the cylinder.

Claims (1)

【特許請求の範囲】 1 金属材料からなるシリンダ本体の内周面に、
溶射によつて、 Ni−Al合金、Ni−Cr合金、Ni−Cr−Al合金
またはNi−Cr−Mo合金の群から選ばれた材料よ
りなる結合材層、 Y2O3安定化ZrO2、CaO安定化ZrO2および
MgO安定化ZrO2の群から選ばれた材料よりなる
断熱性セラミツク層、そして Al2O3・TiO2およびCr2O3の群から選ばれた材
料よりなる耐摩耗性セラミツク層を順次積層して
なる内燃機関用シリンダ。
[Claims] 1. On the inner peripheral surface of the cylinder body made of a metal material,
By thermal spraying, a binder layer consisting of a material selected from the group of Ni-Al alloy, Ni-Cr alloy, Ni-Cr-Al alloy or Ni-Cr-Mo alloy, Y 2 O 3 stabilized ZrO 2 , CaO stabilized ZrO2 and
A heat-insulating ceramic layer made of a material selected from the group of MgO-stabilized ZrO 2 and a wear-resistant ceramic layer made of a material selected from the group of Al 2 O 3・TiO 2 and Cr 2 O 3 are successively laminated. A cylinder for internal combustion engines.
JP57135851A 1982-08-04 1982-08-04 Cylinder for internal combustion engine Granted JPS5925058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135851A JPS5925058A (en) 1982-08-04 1982-08-04 Cylinder for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135851A JPS5925058A (en) 1982-08-04 1982-08-04 Cylinder for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5925058A JPS5925058A (en) 1984-02-08
JPH0350830B2 true JPH0350830B2 (en) 1991-08-02

Family

ID=15161247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135851A Granted JPS5925058A (en) 1982-08-04 1982-08-04 Cylinder for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5925058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193622A (en) * 2007-04-17 2014-10-09 Sulzer Metco Us Inc Protective coating and method of forming the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134845U (en) * 1984-02-21 1985-09-07 株式会社小松製作所 engine cylinder device
JPS61142155U (en) * 1985-02-25 1986-09-02
JPS62126248A (en) * 1985-11-26 1987-06-08 Mazda Motor Corp Sliding contact member comprising combustion chamber of engine
JPH04353155A (en) * 1991-05-29 1992-12-08 Inax Corp Constructing concrete structure finished with mortar coating
JPH0533475A (en) * 1991-08-01 1993-02-09 Inax Corp Process of applying kneaded cement
JP2689780B2 (en) * 1991-08-21 1997-12-10 株式会社イナックス Floor construction method
WO2013035625A1 (en) * 2011-09-05 2013-03-14 ポリプラスチックス株式会社 Mold
JP5882176B2 (en) * 2012-10-16 2016-03-09 Tpr株式会社 Cylinder liner and manufacturing method thereof
DE112013005937B4 (en) * 2012-12-12 2022-06-09 Abb Schweiz Ag Wear resistant layer and method of making a wear resistant layer
JP6109106B2 (en) * 2014-03-20 2017-04-05 三島光産株式会社 Manufacturing method of continuous casting mold
JP6168034B2 (en) * 2014-11-21 2017-07-26 トヨタ自動車株式会社 Thermal spray coating, engine having the same, and method for forming thermal spray coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015243A (en) * 1973-06-15 1975-02-18
JPS5675940A (en) * 1979-11-21 1981-06-23 Toshiba Corp Cylinder for internal combustion engine
JPS5815742A (en) * 1981-07-21 1983-01-29 Nippon Kokan Kk <Nkk> Engine part having flamed surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131408U (en) * 1974-04-16 1975-10-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015243A (en) * 1973-06-15 1975-02-18
JPS5675940A (en) * 1979-11-21 1981-06-23 Toshiba Corp Cylinder for internal combustion engine
JPS5815742A (en) * 1981-07-21 1983-01-29 Nippon Kokan Kk <Nkk> Engine part having flamed surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193622A (en) * 2007-04-17 2014-10-09 Sulzer Metco Us Inc Protective coating and method of forming the same

Also Published As

Publication number Publication date
JPS5925058A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
US4798770A (en) Heat resisting and insulating light alloy articles and method of manufacture
EP0292040B1 (en) Cylinder liners
US4242948A (en) Insulated composite piston
JPH0350830B2 (en)
US4495684A (en) Process of joining a ceramic insert which is adapted to be embedded in a light metal casting for use in internal combustion engines
US20050016489A1 (en) Method of producing coated engine components
US4694735A (en) Piston for internal combustion engine
JPH03194157A (en) Light metal pistion for pressure cast internal combustion engine
JPS6055699B2 (en) Engine parts with contact surfaces
US4600038A (en) Engine part
CA1078274A (en) Insulated composite piston
JP2920004B2 (en) Cast-in composite of ceramics and metal
CN106715880B (en) Piston, piston machine with piston and automobile with piston machine
CN211549847U (en) Improved engine cylinder
JPH04147957A (en) Heat insulating aluminum-based member
JPH0723650Y2 (en) Cylinder and piston ring combination
JPS59150080A (en) Sliding member
JPH01172554A (en) Flame spraying material
JPS646274B2 (en)
JPS6245964A (en) Heat insulating piston and manufacture thereof
JPS635147A (en) Combination of piston ring with cylinder
JPH0633726B2 (en) Composite piston and method of manufacturing the same
JPH0694127A (en) Bearing structure of piston pin
JPH0512585B2 (en)
JPH0338337B2 (en)