JP2920004B2 - Cast-in composite of ceramics and metal - Google Patents

Cast-in composite of ceramics and metal

Info

Publication number
JP2920004B2
JP2920004B2 JP3205558A JP20555891A JP2920004B2 JP 2920004 B2 JP2920004 B2 JP 2920004B2 JP 3205558 A JP3205558 A JP 3205558A JP 20555891 A JP20555891 A JP 20555891A JP 2920004 B2 JP2920004 B2 JP 2920004B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
cast
ceramics
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3205558A
Other languages
Japanese (ja)
Other versions
JPH04356344A (en
Inventor
克美 鈴木
理夫 小澤
庄作 郷治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP3205558A priority Critical patent/JP2920004B2/en
Publication of JPH04356344A publication Critical patent/JPH04356344A/en
Application granted granted Critical
Publication of JP2920004B2 publication Critical patent/JP2920004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセラミックスと金属の鋳
ぐるみ複合体に係り、さらに詳しくは、高温においても
高いセラミックス−金属間の接合強度を有し、かつ低温
においてもセラミックスに発生する応力が低くて強度信
頼性が高く、しかも製造工程が単純で低コストのセラミ
ックスと金属の鋳ぐるみ複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cast-in composite of a ceramic and a metal, and more particularly, to a ceramic-metal joint having a high strength even at a high temperature and a stress generated in the ceramic at a low temperature. The present invention relates to a cast-in composite of a ceramic and a metal which has a low strength, a high strength reliability, a simple manufacturing process and a low cost.

【0002】[0002]

【従来の技術】近年、セラミックスの有する優れた耐熱
性、耐摩耗性、軽量性、断熱性等を利用した機械構造部
品の研究開発が盛んに行なわれている。セラミック材料
の多くは金属に比較して脆いため、セラミック材料単独
で機械構造部品として用いることは困難な場合が多く、
従って一般的には金属との複合体の形として用いること
が知られている。しかしながら、前記のような優れた特
性を有するセラミック材料の多くは熱膨張係数が通常の
機械構造用金属材料に比較して小さいため、使用温度が
変化する部品、特に高温で使用する部品においては高温
時に金属とセラミックス間の保持力が低下したり、隙間
が生じたりする問題がある。また、逆に高温での保持力
を充分に得ようとすると、常温においてセラミックスに
過大な応力が発生し、セラミックスが破壊する問題があ
った。
2. Description of the Related Art In recent years, research and development of mechanical structural parts utilizing the excellent heat resistance, wear resistance, light weight, heat insulation properties, etc. of ceramics have been actively conducted. Many ceramic materials are brittle compared to metals, so it is often difficult to use ceramic materials alone as mechanical structural parts.
Therefore, it is generally known to use it in the form of a composite with a metal. However, many of the ceramic materials having the above-mentioned excellent properties have a small coefficient of thermal expansion as compared with ordinary metal materials for mechanical structures. Sometimes, there is a problem that the holding force between the metal and the ceramic is reduced or a gap is generated. Conversely, if a sufficient holding force at a high temperature is to be obtained, there is a problem that excessive stress is generated in the ceramic at normal temperature and the ceramic is broken.

【0003】これらの対策としてセラミックスと熱膨張
係数の近いチタン、コバール等の低熱膨張金属を鋳鉄あ
るいはアルミニウム合金等の鋳ぐるみ金属とセラミック
スの間に中間層として設ける方法が提案されているが、
これらの中間層部材はセラミックスに焼ばめ、圧入、ろ
う付などで接合する必要があり、セラミックスの機械加
工、ろう付等のため工程が多く高コストである問題があ
った。また、中間層としてセラミックウール、低密度の
セラミック仮焼層、あるいは銅等の低剛性の材料を用い
る方法も提案されているが、充分な強度が得られない問
題があった。特に軽量化を必要とする運動部品等におい
ては、金属材料としてアルミニウム合金を用いることが
軽量化の観点からは有利であるが、アルミニウム合金は
鉄系材料よりさらに熱膨張係数が高いため、上記のセラ
ミックスとの熱膨張係数の差による問題は鉄系材料を用
いる場合よりさらに深刻であった。
As a countermeasure, a method has been proposed in which a low thermal expansion metal such as titanium or kovar having a thermal expansion coefficient close to that of ceramics is provided as an intermediate layer between a cast-in metal such as cast iron or an aluminum alloy and ceramics.
These intermediate layer members need to be fitted to the ceramics by means of shrink fitting, press-fitting, brazing, and the like, and there has been a problem that the machining and brazing of the ceramics require many steps and are expensive. In addition, although a method using a ceramic wool, a low-density ceramic calcined layer, or a low-rigidity material such as copper as the intermediate layer has been proposed, there was a problem that sufficient strength could not be obtained. Particularly in the case of moving parts requiring weight reduction, it is advantageous to use an aluminum alloy as a metal material from the viewpoint of weight reduction.However, since the aluminum alloy has a higher thermal expansion coefficient than an iron-based material, The problem due to the difference in thermal expansion coefficient from ceramics was even more serious than when an iron-based material was used.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は上記
のような従来の問題を解決して、常温でのセラミックス
の応力が低く、かつ、セラミックスの金属との結合部分
の機械加工を行なわずに作製可能な、製造工程が少なく
低コストであり、しかも充分な強度を有するセラミック
スと金属の鋳ぐるみ複合体を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned conventional problems and has a low stress of ceramics at room temperature and does not perform machining of a joint portion of ceramics with metal. It is an object of the present invention to provide an as-cast composite of a ceramic and a metal, which can be manufactured at a low cost with a small number of manufacturing steps and has a sufficient strength.

【0005】[0005]

【課題を解決するための手段】 そしてその目的は、本
発明によれば、セラミックスを、重量比で、C 0.3
〜2.0%、Ni 25〜32%、Co 12〜20
%、Si 0.3〜2.0%、Nb 0.2〜0.8
%、Mg又はCa0.01〜0.2%、Mn 1.0%
以下、残部は不純物を含むFeの組成を有し、室温〜4
00℃の熱膨張係数が3.5×10-6/℃〜9.0×1
-6/℃である低膨張鋳鉄、あるいは、重量比で、C
0.8〜3.0%、Ni 30〜34%、Co 4.0
〜6.0%、Si 1.0〜3.0%、Mn 2.0%
以下、硫黄1.0%以下、リン 1.5%以下、Mg
1.0%以下、残部は不純物を含むFeの組成を有し、
室温〜400℃の熱膨張係数が9×10 -6 /℃以下、室
温〜200℃の熱膨張係数が2×10 -6 /℃〜3×10
-6 /℃である低膨張鋳鉄で鋳ぐるんでなるセラミックス
と金属の鋳ぐるみ複合体により達成することができる。
また、本発明では、上記した低膨張鋳鉄側をさらにアル
ミニウム合金で鋳ぐるんでなるセラミックスと金属の鋳
ぐるみ複合体が提供される。さらに本発明の鋳ぐるみ複
合体は、セラミックスを熱負荷の厳しい部位、例えば、
燃焼室開口リップ部、燃焼室中心部等のみに用い、その
セラミックスを低膨張鋳鉄で鋳ぐるんだセラミック鋳ぐ
るみピストンとして適用すると好ましい。
And its object Means for Solving the Problems], according to the present invention, a ceramic, a weight ratio, C 0.3
~ 2.0%, Ni 25-32%, Co 12-20
%, Si 0.3 to 2.0%, Nb 0.2 to 0.8
%, Mg or Ca 0.01 to 0.2%, Mn 1.0%
Hereinafter, the remainder has a composition of Fe containing impurities, and is from room temperature to 4
The thermal expansion coefficient at 00 ° C. is 3.5 × 10 −6 / ° C. to 9.0 × 1
Low expansion cast iron is 0 -6 / ° C. or, in a weight ratio, C
0.8-3.0%, Ni 30-34%, Co 4.0
~ 6.0%, Si 1.0 ~ 3.0%, Mn 2.0%
Below, sulfur 1.0% or less, phosphorus 1.5% or less, Mg
1.0% or less, the balance has a composition of Fe containing impurities,
Thermal expansion coefficient from room temperature to 400 ° C is less than 9 × 10 -6 / ° C.
Thermal expansion coefficient from temperature to 200 ° C is 2 × 10 −6 / ° C to 3 × 10
This can be achieved by an insert-molded composite of a ceramic and a metal, which is made of low-expansion cast iron at -6 / ° C.
Further, in the present invention, there is provided a cast-in composite of a ceramic and a metal, in which the above-mentioned low expansion cast iron side is further cast with an aluminum alloy. In addition, the cast-in composite of the present invention, ceramics at a severe heat load site, for example,
It is preferable to use only the lip portion of the combustion chamber opening, the central portion of the combustion chamber, etc., and to apply the ceramic as a ceramic insert piston made of low expansion cast iron.

【0006】 以下、本発明を詳しく説明する。本発明
におけるセラミックスと金属の鋳ぐるみ複合体は、その
複合構造の中に、重量比で、C 0.3〜2.0%、N
i 25〜32%、Co 12〜20%、Si 0.3
〜2.0%、Nb 0.2〜0.8%、Mg又はCa
0.01〜0.2%、Mn 1.0%以下、残部は不純
物を含むFeの組成を有し、室温〜400℃の熱膨張係
数が3.5×10 -6 /℃〜9.0×10 -6 /℃である低
膨張鋳鉄、あるいは、重量比で、C 0.8〜3.0
%、Ni 30〜34%、Co 4.0〜6.0%、S
i 1.0〜3.0%、Mn 2.0%以下、硫黄1.
0%以下、リン 1.5%以下、Mg 1.0%以下、
残部は不純物を含むFeの組成を有し、室温〜400℃
の熱膨張係数が9×10 -6 /℃以下、室温〜200℃の
熱膨張係数が2×10 -6 /℃〜3×10 -6 /℃である
膨張鋳鉄によりセラミックスを鋳ぐるんだ部分を有する
ことを特徴とする
Hereinafter, the present invention will be described in detail. The cast-in composite of ceramics and metal in the present invention has a composite structure in which C 0.3-2.0% by weight and N
i 25-32%, Co 12-20%, Si 0.3
~ 2.0%, Nb 0.2 ~ 0.8%, Mg or Ca
0.01-0.2%, Mn 1.0% or less, balance is impure
Having a composition of Fe containing material, and having a thermal expansion coefficient of from room temperature to 400 ° C.
Low number is 3.5 × 10 -6 /℃~9.0×10 -6 / ℃
Expanded cast iron, or C 0.8-3.0 by weight ratio
%, Ni 30-34%, Co 4.0-6.0%, S
i 1.0-3.0%, Mn 2.0% or less, sulfur 1.
0% or less, phosphorus 1.5% or less, Mg 1.0% or less,
The balance has a composition of Fe containing impurities, and is between room temperature and 400 ° C.
Has a coefficient of thermal expansion of 9 × 10 −6 / ° C. or less, from room temperature to 200 ° C.
Thermal expansion coefficient and having a low expansion Guru I I part cast ceramic by cast iron which is 2 × 10 -6 / ℃ ~3 × 10 -6 / ℃.

【0007】上記組成の鋳鉄の使用が望ましい理由は、
これらの鋳鉄では凝固時に黒鉛(密度約2g/cm3 )が液
体金属(密度約8g/cm3 )から析出して凝固収縮が低減
し、温度低下により常温に至るまでの全収縮がインバー
合金やコバールなどの低熱膨張合金より小さいこと、ま
た、上記組成の低膨張鋳鉄以外の金属では、通常の鉄系
材料より熱膨張係数がセラミックスに近く、かつ鋳ぐる
みが可能であるという上記組成の低膨張鋳鉄のような好
適な特性を有さないからである。又ここでいうセラミッ
クスとは、耐熱性、耐熱衝撃性、耐摩耗性、軽量性、断
熱性等において金属より優れ、かつ、機械構造部材とし
て必要な強度を有する窒化珪素(シリコンナイトライ
ド)、サイアロン、炭化珪素、アルミナ、チタン酸アル
ミニウム等を指す。
The reason why it is desirable to use cast iron having the above composition is as follows.
These cast iron graphite during solidification (density of about 2 g / cm 3) is reduced precipitated solidification shrinkage from a liquid metal (density: about 8g / cm 3), the total shrinkage of up to ambient temperature by the temperature drop Ya Invar alloy It is smaller than low thermal expansion alloys such as Kovar, and in metals other than the low expansion cast iron having the above composition, the thermal expansion coefficient is closer to that of ceramics than ordinary iron-based materials, and the low expansion of the above composition is possible. This is because they do not have suitable characteristics such as cast iron. The term “ceramics” as used herein means silicon nitride (silicon nitride), sialon, which is superior to metal in heat resistance, thermal shock resistance, abrasion resistance, light weight, heat insulation, etc., and has the necessary strength as a mechanical structural member. , Silicon carbide, alumina, aluminum titanate and the like.

【0008】本発明において、セラミック部材の厚さと
まわりに鋳ぐるみ低膨張鋳鉄の厚さの関係としては、セ
ラミック部材の平均的な厚さより鋳ぐるみ鋳鉄の平均的
厚さが薄いことが望ましい。このような厚さの関係が望
ましい理由は、低膨張鋳鉄といえども熱膨張係数の広範
囲の温度領域の平均値はやはりセラミックスの熱膨張係
数よりも大きく、鋳ぐるみ後の冷却時にセラミック部材
内にセラミックス−金属の熱膨張係数の差による応力が
発生し、セラミックスが薄すぎるとこの応力が大きくな
りすぎてセラミックスが破壊するからである。同様の理
由によりセラミック部材および鋳鉄部材に発生する応力
をFEM解析等により把握し、応力が充分に小さくなる
よう設計すると更に好ましい。本発明においてセラミッ
ク部材の外形形状としては、開口部の直径を他の部分の
直径よりも小さくすることが望ましい。このような外形
形状が望ましい理由は、低膨張鋳鉄といえども高温時に
おいては、セラミック部材よりも熱膨張係数が大きいた
め、セラミック部材と低膨張鋳鉄との結合力が低下す
る。このような高温時においてもセラミック部材が低膨
張鋳鉄から容易に抜け出さないようにするためである。
In the present invention, as for the relationship between the thickness of the ceramic member and the thickness of the cast-in low-expansion cast iron around it, it is desirable that the average thickness of the cast-in cast iron be smaller than the average thickness of the ceramic member. The reason why such a thickness relationship is desirable is that even in low-expansion cast iron, the average value of the thermal expansion coefficient over a wide temperature range is still larger than the thermal expansion coefficient of ceramics, so that the average This is because a stress is generated due to a difference in the coefficient of thermal expansion between the ceramic and the metal. If the ceramic is too thin, the stress becomes too large and the ceramic is broken. For the same reason, it is more preferable that the stress generated in the ceramic member and the cast iron member is grasped by FEM analysis or the like, and the stress is designed to be sufficiently small. In the present invention, as the outer shape of the ceramic member, it is desirable that the diameter of the opening be smaller than the diameter of the other part. The reason why such an outer shape is desirable is that even at the time of high temperature, the low expansion cast iron has a larger coefficient of thermal expansion than the ceramic member, so that the bonding force between the ceramic member and the low expansion cast iron is reduced. This is to prevent the ceramic member from easily coming out of the low expansion cast iron even at such a high temperature.

【0009】セラミックスを低膨張鋳鉄で鋳ぐるむ際
は、注湯時に熱衝撃によりセラミックスが破壊すること
がないようセラミック部材の耐熱衝撃温度を考慮してセ
ラミック部材を予加熱してセラミックスと金属溶湯との
温度差を小さくしておくことが好ましい。この理由から
セラミック部材を約600℃以上に予加熱しておくこと
が望ましく、約800℃以上に予加熱すればさらに好ま
しい。セラミック部材の予加熱に際しては、セラミック
スを鋳型にセットした状態で鋳型とともに予加熱するこ
とが作業能率上、さらにはセラミックスが冷えてしまう
ことを防止する観点から好ましく、また鋳型としては高
温に耐えるセラミック鋳型を用いることが好ましい。
When casting ceramics with low-expansion cast iron, the ceramic member is preheated in consideration of the thermal shock temperature of the ceramic member so that the ceramic is not destroyed by thermal shock during pouring. It is preferable to reduce the temperature difference between the two. For this reason, it is desirable to preheat the ceramic member to about 600 ° C. or more, and more preferably to about 800 ° C. or more. When preheating a ceramic member, it is preferable to preheat the ceramic member together with the mold in a state where the ceramic is set in the mold from the viewpoint of work efficiency and further from preventing the ceramic from cooling down. Preferably, a template is used.

【0010】さらに鋳ぐるみにおいては、セラミックス
と鋳鉄の密着性を良くするため溶湯を鋳型に注湯した直
後より溶湯を加圧するか、または鋳型内部を吸引、減圧
することが好ましい。鋳造後は、焼鈍炉にて徐冷し、特
に400℃〜600℃においては保持時間を長くとるこ
とが鋳物の応力除去に有効である。冷却が早すぎると熱
膨張差による応力のためにセラミックスの破損又は剥離
を生ずる。部品の軽量化の観点からは、セラミックス−
金属複合体の金属部分のできる限り多くの部分をアルミ
ニウム合金等の(強度/重量)比の高い材料で構成する
ことが望ましいため、セラミックスを低膨張鋳鉄で鋳ぐ
るんだ外側をさらにアルミニウム合金等で鋳ぐるむ構造
とすることが望ましい。
In addition, in order to improve the adhesion between the ceramics and the cast iron, it is preferable to pressurize the molten metal immediately after pouring the molten metal into the mold, or to suction and reduce the pressure inside the mold. After the casting, it is gradually cooled in an annealing furnace, and especially at 400 ° C. to 600 ° C., it is effective to increase the holding time to remove the stress of the casting. If the cooling is too fast, the ceramic may be damaged or peeled off due to the stress due to the difference in thermal expansion. From the viewpoint of weight reduction of parts, ceramics
Since it is desirable that as much of the metal part of the metal composite as possible be made of a material having a high (strength / weight) ratio, such as an aluminum alloy, the outside of the ceramic is cast with low expansion cast iron, and the outside is further made of an aluminum alloy or the like. It is desirable to have a structure that can be cast in.

【0011】低膨張鋳鉄の外側をアルミニウム合金で鋳
ぐるむ際には、低膨張鋳鉄の表面にアルフィン処理、又
はアルメルト処理を施すと、鋳鉄とアルミニウム合金が
化学的に結合し、界面に隙間の無い強固な結合を実現す
るのに有効である。セラミックス−低膨張鋳鉄複合体を
アルミニウム合金で鋳ぐるむ際には、ヒケス等が発生し
ないようにガス圧もしくは油圧にて2〜50kg/cm2の加
圧鋳造を行なうことが望ましい。
When the outside of the low-expansion cast iron is cast with an aluminum alloy, if the surface of the low-expansion cast iron is subjected to an alfin treatment or an alumet treatment, the cast iron and the aluminum alloy are chemically bonded to each other, and a gap is formed at the interface. It is effective for realizing no strong connection. When casting the ceramics-low expansion cast iron composite with an aluminum alloy, it is desirable to perform pressure casting at a pressure of 2 to 50 kg / cm 2 by gas pressure or oil pressure so as not to cause a cast or the like.

【0012】[0012]

【実施例】以下、図示の実施例に基づき本発明をさらに
詳しく説明するが、本発明はこれらの実施例に限られる
ものではない。 (実施例1) 図1は本発明のセラミックスと金属の鋳ぐるみ複合体を
直噴ディーゼルエンジンの2分割ピストンのクラウン部
に応用した例である。図1に示すように、ピストン燃焼
室のキャビティー1を重量当りの伝熱抵抗が大きく外形
形状としては、開口部の直径が他の部分の直径よりも小
さいシリコンナイトライド製の肉厚の部材で構成し、こ
れをピストン本体を構成する低膨張鋳鉄3で鋳ぐるむこ
とにより、燃焼室内の燃焼ガスから燃焼室壁面への伝熱
損失を低減可能とし、また、燃焼室開口部の耐熱性が向
上させて、金属製のピストンで問題になる開口部の焼
損、亀裂発生等のトラブルを防止することを目的とした
利用例である。このような構成としたことにより、使用
温度範囲全域でセラミックスの応力が低く、かつ、金属
−セラミックス間の結合強度の高い強度信頼性の高い部
品が得られた。
Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments, but the present invention is not limited to these embodiments. (Example 1) FIG. 1 shows an example in which the cast-in composite of a ceramic and a metal of the present invention is applied to a crown portion of a two-part piston of a direct injection diesel engine. As shown in FIG. 1, the cavity 1 of the piston combustion chamber has a large heat transfer resistance per weight and has an outer shape that is a thick member made of silicon nitride having an opening having a diameter smaller than that of other portions. By casting this with the low expansion cast iron 3 constituting the piston body, it is possible to reduce the heat transfer loss from the combustion gas in the combustion chamber to the combustion chamber wall surface, and to reduce the heat resistance of the opening of the combustion chamber. This is an example of use for the purpose of improving the problem and preventing problems such as burning and cracking of the opening, which are problems with metal pistons. By adopting such a configuration, a component having a low stress of the ceramics over the entire operating temperature range and a high strength-to-metal-ceramic bonding strength and high reliability can be obtained.

【0013】図2は、図1に示した実施例の鋳ぐるみ方
法の例を示すものである。外周面が焼成面のままで機械
加工を施していないシリコンナイトライド製ピストンキ
ャビティー部材1をセラミック製鋳型2の中にセットし
た後、セラミック鋳型2ごと加熱し、約900℃に予め
加熱した後に、重量比でC 1.2%、Si 1.2
%、Mn 0.3%以下、Ni 28%、Co 14
%、Mg 0.03%、Nb 0.3%の化学組成の低
膨張鋳鉄3の1400℃の溶湯を鋳型に注湯した。この
際、シリコンナイトライド製ピストンキャビティー部材
1と低膨張鋳鉄3との密着性を良くするため、下部チャ
ンバー4を通じて鋳型2の内部を吸引減圧した。溶湯温
度が約800℃に低下した時点で電気炉に鋳型2ごと移
し、常温まで除冷後、鋳型2より離型してセラミックス
−低膨張鋳鉄複合体を得た後、低膨張鋳鉄3の外周を機
械加工した。
FIG. 2 shows an example of the method of casting in the embodiment shown in FIG. After setting the piston cavity member 1 made of silicon nitride which has not been machined with the outer peripheral surface being a fired surface in a ceramic mold 2, the ceramic mold 2 is heated together and heated to about 900 ° C. in advance. , C 1.2% by weight, Si 1.2
%, Mn 0.3% or less, Ni 28%, Co 14
%, Mg 0.03%, and Nb 0.3% of a low expansion cast iron 3 having a chemical composition of 1400 ° C. were poured into a mold. At this time, in order to improve the adhesion between the silicon nitride piston cavity member 1 and the low expansion cast iron 3, the inside of the mold 2 was suctioned and depressurized through the lower chamber 4. When the temperature of the molten metal has dropped to about 800 ° C., the entire mold 2 is transferred to an electric furnace, cooled down to room temperature, released from the mold 2 to obtain a ceramic-low expansion cast iron composite, and the outer periphery of the low expansion cast iron 3 Was machined.

【0014】(実施例2)図3はディーゼルエンジンの
シリンダライナーに本発明のセラミックスと金属の鋳ぐ
るみ複合体を適用した例を示す。すなわち、シリンダラ
イナー5の内面を耐摩耗性に優れ、金属ピストンリング
との間の摩擦係数の小さいシリコンナイトライド6で構
成し、その外側を低膨張鋳鉄3で鋳ぐるむことによりシ
リンダライナー5の摩耗低減、及びエンジンの摩擦損失
の低減を目的とした利用例である。図4は図3の実施例
の部品作製方法を示す。内外面とも焼成面のままで機械
加工を施していない円筒状のシリコンナイトライド製部
材6を金型7内にセットし、表面をカーボン、ジルコン
等にて塗型したインサート金型(中子)8をセットした
後約400℃に予加熱し、重量比でC 2.0%、Si
2.3%、Mn0.3%以下、Ni 32.5%、C
o 5.4%、Mg 0.03%の化学組成の低膨張鋳
鉄3の約1300℃の溶湯を注湯した直後より、油圧約
40kg/cm2の圧力で上部よりピストン9にて加圧した。
その後、金型7ごと電気炉内で常温まで徐冷した後金型
7より離型して、セラミックスと金属の鋳ぐるみ複合体
を得た。この複合体の鋳鉄外周および上下面を機械加工
し、セラミックス内面を研削加工してシリンダライナー
5を得た。
(Embodiment 2) FIG. 3 shows an example in which the cast-in composite of ceramics and metal of the present invention is applied to a cylinder liner of a diesel engine. That is, the inner surface of the cylinder liner 5 is made of silicon nitride 6 having excellent wear resistance and a small coefficient of friction between the cylinder liner 5 and the metal piston ring, and the outer surface of the cylinder liner 5 is made of low-expansion cast iron 3. This is an application example for the purpose of reducing wear and reducing engine friction loss. FIG. 4 shows a method of manufacturing the component of the embodiment shown in FIG. An insert mold (core) in which a cylindrical silicon nitride member 6 that has not been machined but has been machined on the inner and outer surfaces is set in a mold 7 and the surface is coated with carbon, zircon, or the like. 8 and then preheated to about 400 ° C., C 2.0% by weight, Si
2.3%, Mn 0.3% or less, Ni 32.5%, C
Immediately after pouring a melt of low-expansion cast iron 3 having a chemical composition of 5.4% and Mg 0.03% at a temperature of about 1300 ° C., a pressure of about 40 kg / cm 2 was applied to the piston 9 from above with a hydraulic pressure of about 40 kg / cm 2 . .
Thereafter, the mold 7 was gradually cooled in an electric furnace to room temperature and then released from the mold 7 to obtain a cast-in composite of ceramic and metal. The outer periphery and upper and lower surfaces of the cast iron of the composite were machined, and the inner surface of the ceramic was ground to obtain a cylinder liner 5.

【0015】(実施例3)図5は小型直噴ディーゼルエ
ンジンのピストンに本発明のセラミックスと金属の鋳ぐ
るみ複合体を適用した例である。ピストン燃焼室開口に
設けられたリップ部11に耐熱性に優れたシリコンナイ
トライドを用いることにより、金属製ピストンでは問題
となるリップ部11の焼損、亀裂発生等を回避し、かつ
ピストン本体12は軽量のアルミニウム合金で構成する
ことにより、局部的な熱負荷対策を行ないつつ、かつ部
品全体の重量増加を抑えることを目的とした本発明の利
用例である。実施例1または実施例2と同様の方法によ
り、シリコンナイトライド製リング(リップ部)11と
低膨張鋳鉄リング3の複合リング状部材を得た後、低膨
張鋳鉄3の表面をアルメルト処理し、この複合リング状
部材を金属製鋳型内にセットして予熱した後、約600
〜700℃のアルミニウム合金溶湯を注湯した。この
際、ヒケスの発生を防止するため約5kg/cm2の加圧鋳造
を行なった。その後常温まで除冷後鋳型より離型し、外
周部、ピストンリング溝、ピストンピン穴加工を施して
ピストンを得た。
(Embodiment 3) FIG. 5 shows an example in which a cast-in composite of ceramics and metal of the present invention is applied to a piston of a small direct injection diesel engine. By using silicon nitride having excellent heat resistance for the lip portion 11 provided at the opening of the piston combustion chamber, burning and cracking of the lip portion 11 which are problems with a metal piston can be avoided. This is an application example of the present invention for the purpose of taking local countermeasures against heat load and suppressing an increase in the weight of the entire part by being made of a lightweight aluminum alloy. After obtaining a composite ring-shaped member of the silicon nitride ring (lip portion) 11 and the low-expansion cast iron ring 3 by the same method as in Example 1 or 2, the surface of the low-expansion cast iron 3 is subjected to alumet treatment, After setting this composite ring-shaped member in a metal mold and preheating,
The molten aluminum alloy at ~ 700 ° C was poured. At this time, pressure casting of about 5 kg / cm 2 was performed to prevent the occurrence of castes. Then, after cooling to room temperature, the mold was released from the mold, and an outer peripheral portion, a piston ring groove, and a piston pin hole were processed to obtain a piston.

【0016】(実施例4)図6はシリコンナイトライ
ド、低膨張鋳鉄、アルミ合金からなる本発明のセラミッ
クスと金属の鋳ぐるみ複合体を実施例3と同様の工程で
作製した例を示す。すなわち、シリコンナイトライドの
耐熱性、断熱性を利用してピストン上部の耐熱性向上、
熱損失低減を目的とし、アルミニウム合金製ピストン1
2の上部をシリコンナイトライド18で覆う形状で、小
型直噴ディーゼルエンジンのピストンに適用した例であ
る。
Embodiment 4 FIG. 6 shows an example in which a cast-in-mold composite of ceramics and metal of the present invention comprising silicon nitride, low-expansion cast iron, and aluminum alloy is manufactured in the same process as in Embodiment 3. In other words, using the heat resistance and heat insulation properties of silicon nitride to improve the heat resistance of the upper part of the piston,
Aluminum alloy piston 1 to reduce heat loss
2 is an example in which the upper part of the cylinder 2 is covered with a silicon nitride 18 and is applied to a piston of a small direct injection diesel engine.

【0017】(実施例5〜7)図7〜9はそれぞれセラ
ミックスを熱負荷の厳しい部位のみに用いた例で、直噴
ディーゼルエンジンの2分割ピストンに適用した例を示
す。図7は、ピストン燃焼室開口に設けられたリップ部
11に耐熱性に優れたシリコンナイトライドを用い、そ
れを低膨張鋳鉄3にて鋳ぐるんだ例である。尚、21は
アルミニウム製スカート部を示す。図8は、ピストン燃
焼室の中心部を含んだ下部全体の比較的広い部分20
に、耐熱性、断熱性に優れたシリコンナイトライドを用
いた例を示す。この構成により、熱負荷による溶損、亀
裂対策を行ないつつ燃焼室の断熱性を高め、燃焼室内の
ガス温度を上昇させ、燃費の改善、排ガスの清浄化を実
現することができる。図9は、前記図7および図8の例
を組合せることにより、熱負荷対策、燃焼室の断熱度を
更に向上させた例である。また、図9の実施例のよう
に、複数のセラミック部材で燃焼室を構成することは、
従来の焼ばめ法などでは困難であったが、本発明の鋳ぐ
るみ体により容易に実施可能となった。このように、セ
ラミックスを分割して用いるため、セラミック部材個々
の破壊を回避することができる。
(Embodiments 5 to 7) FIGS. 7 to 9 show examples in which ceramics are used only in portions where the thermal load is severe, and show examples in which the ceramics are applied to a two-part piston of a direct injection diesel engine. FIG. 7 shows an example in which silicon nitride having excellent heat resistance is used for the lip portion 11 provided at the opening of the piston combustion chamber, and the silicon nitride is cast with low expansion cast iron 3. Reference numeral 21 denotes an aluminum skirt. FIG. 8 shows a relatively large portion 20 of the entire lower part, including the center of the piston combustion chamber.
An example using silicon nitride having excellent heat resistance and heat insulation is shown below. With this configuration, it is possible to improve the heat insulation of the combustion chamber, increase the gas temperature in the combustion chamber, improve fuel efficiency, and purify exhaust gas while taking measures against erosion and cracks due to heat load. FIG. 9 shows an example in which measures against heat load and the degree of heat insulation of the combustion chamber are further improved by combining the examples of FIG. 7 and FIG. In addition, as in the embodiment of FIG. 9, composing the combustion chamber with a plurality of ceramic members is
Although it was difficult with the conventional shrink-fitting method or the like, the cast-in body of the present invention can be easily implemented. As described above, since the ceramics are divided and used, breakage of each ceramic member can be avoided.

【0018】(実施例8)図10は、ディーゼルエンジ
ンのシリンダヘッド本体13に設けられている排気ポー
トの内面14を管状のチタン酸アルミニウム部材で構成
するとともに、バルブガイド15をシリコンナイトライ
ド部材で構成し、またバルブシート16をシリコンナイ
トライドで構成し、さらに触火面であるシリンダーヘッ
ドプレート17をシリコンナイトライドの円板状部材で
構成することにより、排気ポートでの熱損失低減、バル
ブガイド15およびバルブシート16の摩耗低減、触火
面への熱損失低減を図った本発明のセラミックス−金属
の鋳ぐるみ複合部材の適用例である。
(Embodiment 8) FIG. 10 shows that an inner surface 14 of an exhaust port provided in a cylinder head body 13 of a diesel engine is formed of a tubular aluminum titanate member, and a valve guide 15 is formed of a silicon nitride member. In addition, the valve seat 16 is made of silicon nitride, and the cylinder head plate 17, which is the ignition surface, is made of a silicon nitride disk-shaped member. This is an application example of the ceramic-metal cast-in composite member of the present invention, which aims to reduce the wear of the valve seat 15 and the valve seat 16 and reduce the heat loss to the ignition surface.

【0019】[0019]

【発明の効果】以上説明したように、本発明のセラミッ
クスと金属の鋳ぐるみ複合体によれば、常温においてセ
ラミックスに発生する応力が低く、セラミックスの金属
との結合部の機械加工を行なわずに作製可能なため作業
工程が少なく低コストであり、しかも充分なセラミック
ス−金属間の結合強度を高温においても有するセラミッ
クス−金属複合体を得ることができる。また、本発明に
おいては、単独では脆性のため信頼性の低いセラミック
スを金属との複合構造で機械構造用部材として使用する
ことを容易にして、セラミックスの耐熱性、耐摩耗性、
軽量性、断熱性等を利用した機械構造用部品、特にセラ
ミック鋳ぐるみピストンとして実用化可能とするため、
産業上極めて有益である。
As described above, according to the cast-in-ceramic composite of the present invention, the stress generated in the ceramic at room temperature is low, and the machining of the joint between the ceramic and the metal can be performed without performing machining. Since it can be manufactured, it is possible to obtain a ceramic-metal composite which has a small number of work steps, is low in cost, and has sufficient ceramic-metal bond strength even at high temperatures. Further, in the present invention, it is easy to use ceramics having low reliability because of brittleness alone as a member for a mechanical structure in a composite structure with a metal, heat resistance, abrasion resistance,
In order to make it practical as a component for machine structure utilizing lightness, heat insulation, etc., especially a ceramic cast-in piston,
Very useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るセラミックスと金属の鋳ぐるみ複
合体の一実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of a composite of a cast-in ceramic and a metal according to the present invention.

【図2】図1に示した実施例の鋳ぐるみ方法の例を示す
概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of the method of casting in the embodiment shown in FIG.

【図3】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 3 is a schematic sectional view showing another embodiment of the insert-molded composite of the present invention.

【図4】図3の実施例の部品作製方法を示す概略断面図
である。
FIG. 4 is a schematic cross-sectional view illustrating a method of manufacturing the component of the embodiment of FIG.

【図5】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 5 is a schematic sectional view showing another embodiment of the insert-molded composite of the present invention.

【図6】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 6 is a schematic sectional view showing another embodiment of the insert-molded composite of the present invention.

【図7】熱負荷の厳しい部位のみにセラミックスを適用
した実施例を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing an embodiment in which ceramics is applied only to a portion where a thermal load is severe.

【図8】熱負荷の厳しい部位のみにセラミックスを適用
した他の実施例を示す概略断面図である。
FIG. 8 is a schematic cross-sectional view showing another embodiment in which ceramic is applied only to a portion where a thermal load is severe.

【図9】熱負荷の厳しい部位のみにセラミックスを適用
した他の実施例を示す概略断面図である。
FIG. 9 is a schematic cross-sectional view showing another embodiment in which ceramic is applied only to a portion where a thermal load is severe.

【図10】本発明の鋳ぐるみ複合体の他の実施例を示す
概略断面図である。
FIG. 10 is a schematic sectional view showing another embodiment of the insert-molded composite of the present invention.

【符号の説明】 1 ピストンキャビティー、2 セラミック製鋳型、3
低膨張鋳鉄、4 下部チャンバー、5 シリンダライ
ナー、6 シリコンナイトライド、7 金型、8インサ
ート金型、9 ピストン、11 リップ部、12 ピス
トン本体、13 シリンダヘッド本体、14 排気ポー
ト内面、15 バルブガイド、16 バルブシート、1
7 シリンダーヘッドプレート、18 シリコンナイト
ライド、20 燃焼室下部、21 アルミニウム製スカ
ート部
[Description of Signs] 1 piston cavity, 2 ceramic mold, 3
Low expansion cast iron, 4 lower chamber, 5 cylinder liner, 6 silicon nitride, 7 mold, 8 insert mold, 9 piston, 11 lip, 12 piston body, 13 cylinder head body, 14 exhaust port inner surface, 15 valve guide , 16 Valve seat, 1
7 cylinder head plate, 18 silicon nitride, 20 lower part of combustion chamber, 21 aluminum skirt

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−79112(JP,A) 特開 昭60−216966(JP,A) 特開 昭58−210149(JP,A) 特開 平2−298236(JP,A) 特開 平1−306540(JP,A) 実開 平1−80650(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-79112 (JP, A) JP-A-60-216966 (JP, A) JP-A-58-210149 (JP, A) JP-A-2- 298236 (JP, A) JP-A-1-306540 (JP, A) JP-A-1-80650 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックスを、重量比で、C 0.3
〜2.0%、Ni25〜32%、Co 12〜20%、
Si 0.3〜2.0%、Nb 0.2〜0.8%、M
g又はCa 0.01〜0.2%、Mn 1.0%以
下、残部は不純物を含むFeの組成を有し、室温〜40
0℃の熱膨張係数が3.5×10-6/℃〜9.0×10
-6/℃である低膨張鋳鉄で鋳ぐるんだことを特徴とする
セラミックスと金属の鋳ぐるみ複合体。
1. The method according to claim 1, wherein the ceramics is C 0.3 by weight.
~ 2.0%, Ni 25 ~ 32%, Co 12 ~ 20%,
Si 0.3-2.0%, Nb 0.2-0.8%, M
g or Ca 0.01 to 0.2%, Mn 1.0% or less
The lower part has a composition of Fe containing impurities, and is room temperature to 40%.
The coefficient of thermal expansion at 0 ° C. is 3.5 × 10 −6 / ° C. to 9.0 × 10
A cast-in composite of metal and ceramics, which is cast in low-expansion cast iron at -6 / ° C.
【請求項2】 セラミックスを、重量比で、C 0.8
〜3.0%、Ni30〜34%、Co 4.0〜6.0
%、Si 1.0〜3.0%、Mn 2.0%以下、硫
黄1.0%以下、リン 1.5%以下、Mg 1.0%
以下、残部は不純物を含むFeの組成を有し、室温〜4
00℃の熱膨張係数が9×10 -6 /℃以下、室温〜20
0℃の熱膨張係数が2×10 -6 /℃〜3×10 -6 /℃で
ある低膨張鋳鉄で鋳ぐるんだことを特徴とするセラミッ
クスと金属の鋳ぐるみ複合体。
2. A ceramic material, wherein C 0.8
-3.0%, Ni 30-34%, Co 4.0-6.0
%, Si 1.0 to 3.0%, Mn 2.0% or less, sulfur
Yellow 1.0% or less, phosphorus 1.5% or less, Mg 1.0%
Hereinafter, the remainder has a composition of Fe containing impurities, and is from room temperature to 4
Coefficient of thermal expansion at 00 ° C. is 9 × 10 −6 / ° C. or less, room temperature to 20
When the coefficient of thermal expansion at 0 ° C. is 2 × 10 −6 / ° C. to 3 × 10 −6 / ° C.
A composite body of ceramic and metal, which is made of low expansion cast iron .
【請求項3】 低膨張鋳鉄側をさらにアルミニウム合金
で鋳ぐるんだことを特徴とする請求項1又は2記載のセ
ラミックスと金属の鋳ぐるみ複合体。
3. A low-expansion cast iron side further characterized in that they insert casting of an aluminum alloy according to claim 1 or 2 ceramics and insert casting complex metal according.
JP3205558A 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal Expired - Fee Related JP2920004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205558A JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19445390 1990-07-23
JP2-194453 1990-07-23
JP3205558A JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Publications (2)

Publication Number Publication Date
JPH04356344A JPH04356344A (en) 1992-12-10
JP2920004B2 true JP2920004B2 (en) 1999-07-19

Family

ID=26508511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205558A Expired - Fee Related JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Country Status (1)

Country Link
JP (1) JP2920004B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707853B1 (en) 2013-03-15 2014-04-29 S.P.M. Flow Control, Inc. Reciprocating pump assembly
USD726224S1 (en) 2013-03-15 2015-04-07 S.P.M. Flow Control, Inc. Plunger pump thru rod
USD791192S1 (en) 2014-07-25 2017-07-04 S.P.M. Flow Control, Inc. Power end frame segment
US10316832B2 (en) 2014-06-27 2019-06-11 S.P.M. Flow Control, Inc. Pump drivetrain damper system and control systems and methods for same
US10352321B2 (en) 2014-12-22 2019-07-16 S.P.M. Flow Control, Inc. Reciprocating pump with dual circuit power end lubrication system
US10436766B1 (en) 2015-10-12 2019-10-08 S.P.M. Flow Control, Inc. Monitoring lubricant in hydraulic fracturing pump system
USD870157S1 (en) 2015-07-24 2019-12-17 S.P.M. Flow Control, Inc. Power end frame segment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379112A (en) * 1976-12-24 1978-07-13 Isuzu Motors Ltd Piston having a combustion chamber
JPS6051547B2 (en) * 1982-05-29 1985-11-14 新一 榎本 Low thermal expansion cast iron
JPS60216966A (en) * 1984-04-10 1985-10-30 Daido Steel Co Ltd Composite ceramic-iron-base alloy body
JPH0180650U (en) * 1987-11-20 1989-05-30
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02298236A (en) * 1989-05-12 1990-12-10 Shinichi Enomoto Low thermal expansion alloy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD726224S1 (en) 2013-03-15 2015-04-07 S.P.M. Flow Control, Inc. Plunger pump thru rod
US9695812B2 (en) 2013-03-15 2017-07-04 S.P.M. Flow Control, Inc. Reciprocating pump assembly
US8707853B1 (en) 2013-03-15 2014-04-29 S.P.M. Flow Control, Inc. Reciprocating pump assembly
US10316832B2 (en) 2014-06-27 2019-06-11 S.P.M. Flow Control, Inc. Pump drivetrain damper system and control systems and methods for same
US11181101B2 (en) 2014-06-27 2021-11-23 Spm Oil & Gas Inc. Pump drivetrain damper system and control systems and methods for same
US10393182B2 (en) 2014-07-25 2019-08-27 S.P.M. Flow Control, Inc. Power end frame assembly for reciprocating pump
US11204030B2 (en) 2014-07-25 2021-12-21 Spm Oil & Gas Inc. Support for reciprocating pump
US11898553B2 (en) 2014-07-25 2024-02-13 Spm Oil & Gas Inc. Power end frame assembly for reciprocating pump
US9879659B2 (en) 2014-07-25 2018-01-30 S.P.M. Flow Control, Inc. Support for reciprocating pump
US11746775B2 (en) 2014-07-25 2023-09-05 Spm Oil & Gas Inc. Bearing system for reciprocating pump and method of assembly
US10087992B2 (en) 2014-07-25 2018-10-02 S.P.M. Flow Control, Inc. Bearing system for reciprocating pump and method of assembly
USD791192S1 (en) 2014-07-25 2017-07-04 S.P.M. Flow Control, Inc. Power end frame segment
US10520037B2 (en) 2014-07-25 2019-12-31 S.P.M. Flow Control, Inc. Support for reciprocating pump
US10677244B2 (en) 2014-07-25 2020-06-09 S.P.M. Flow Control, Inc. System and method for reinforcing reciprocating pump
US11421682B2 (en) 2014-12-22 2022-08-23 Spm Oil & Gas Inc. Reciprocating pump with dual circuit power end lubrication system
US10352321B2 (en) 2014-12-22 2019-07-16 S.P.M. Flow Control, Inc. Reciprocating pump with dual circuit power end lubrication system
USD870156S1 (en) 2015-07-24 2019-12-17 S.P.M. Flow Control, Inc. Power end frame segment
USD870157S1 (en) 2015-07-24 2019-12-17 S.P.M. Flow Control, Inc. Power end frame segment
US10436766B1 (en) 2015-10-12 2019-10-08 S.P.M. Flow Control, Inc. Monitoring lubricant in hydraulic fracturing pump system

Also Published As

Publication number Publication date
JPH04356344A (en) 1992-12-10

Similar Documents

Publication Publication Date Title
JPH0250173B2 (en)
EP0261726B1 (en) Pistons
JPS6119952A (en) Piston for internal combustion engine
JPH0333428B2 (en)
EP0710729B1 (en) Fibre-reinforced metal pistons
US5144885A (en) Ceramic-metal friction welding member and ceramic cast-in bonded piston made thereof
JP2920004B2 (en) Cast-in composite of ceramics and metal
US4709621A (en) Internal combustion engine piston and a method of producing the same
US5511521A (en) Light-alloy piston with a combustion bowl
JPH0527706B2 (en)
JP2591872B2 (en) Silicon nitride cast-in piston
JPH028894B2 (en)
EP0468722B1 (en) Ceramic-metal insert composite
JPS63157741A (en) Mold for continuous casting
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPH05106506A (en) Cylinder head for internal combustion engine
JPS62191607A (en) Valve seat insert and cylinder head using said insert
JP2868164B2 (en) Ceramic insert piston and method of manufacturing the same
JPS60166156A (en) Production of ceramic-metal composite material
JPS6216184B2 (en)
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof
JP2614684B2 (en) Piston for internal combustion engine
JPH06272614A (en) Cylinder liner of internal combustion engine
JPS5982156A (en) Production of piston for internal-combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970902

LAPS Cancellation because of no payment of annual fees