JPH04356344A - Cast-in composite body of ceramics and metal - Google Patents

Cast-in composite body of ceramics and metal

Info

Publication number
JPH04356344A
JPH04356344A JP20555891A JP20555891A JPH04356344A JP H04356344 A JPH04356344 A JP H04356344A JP 20555891 A JP20555891 A JP 20555891A JP 20555891 A JP20555891 A JP 20555891A JP H04356344 A JPH04356344 A JP H04356344A
Authority
JP
Japan
Prior art keywords
ceramic
metal
cast
ceramics
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20555891A
Other languages
Japanese (ja)
Other versions
JP2920004B2 (en
Inventor
Katsumi Suzuki
克美 鈴木
Michio Ozawa
小澤 理夫
Shiyousaku Gouji
郷治 庄作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3205558A priority Critical patent/JP2920004B2/en
Publication of JPH04356344A publication Critical patent/JPH04356344A/en
Application granted granted Critical
Publication of JP2920004B2 publication Critical patent/JP2920004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Abstract

PURPOSE:To obtain the ceramics-metal composite body in which a stress generat ed in ceramics is low in the normal temperature, the work process is small since it can be manufactured without executing a machine work of a coupling part of ceramics and a metal and the cost is low, and also, which has sufficient coupling strength between the ceramics and the metal even at a high tempera ture. CONSTITUTION:A cavity 1 of a piston combustion chamber is constituted of a silicon nitride member whose resistance of heat transfer per weight is large, and this cast-in composite body of ceramics and a metal is formed by casting in this member by low expansion cast iron 3 for constituting a piston main body. Also, it is possible to obtain a cast-in composite body formed by casting in furthermore the low expansion cast iron 3 side by an aluminum alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミックスと金属の鋳
ぐるみ複合体に係り、さらに詳しくは、高温においても
高いセラミックス−金属間の接合強度を有し、かつ低温
においてもセラミックスに発生する応力が低くて強度信
頼性が高く、しかも製造工程が単純で低コストのセラミ
ックスと金属の鋳ぐるみ複合体に関する。
[Field of Industrial Application] The present invention relates to a cast composite of ceramics and metal, and more specifically, it has high bonding strength between ceramics and metals even at high temperatures, and has low stress generated in ceramics even at low temperatures. This invention relates to a ceramic-metal casting composite that has low strength and high reliability, and has a simple manufacturing process and low cost.

【0002】0002

【従来の技術】近年、セラミックスの有する優れた耐熱
性、耐摩耗性、軽量性、断熱性等を利用した機械構造部
品の研究開発が盛んに行なわれている。セラミック材料
の多くは金属に比較して脆いため、セラミック材料単独
で機械構造部品として用いることは困難な場合が多く、
従って一般的には金属との複合体の形として用いること
が知られている。しかしながら、前記のような優れた特
性を有するセラミック材料の多くは熱膨張係数が通常の
機械構造用金属材料に比較して小さいため、使用温度が
変化する部品、特に高温で使用する部品においては高温
時に金属とセラミックス間の保持力が低下したり、隙間
が生じたりする問題がある。また、逆に高温での保持力
を充分に得ようとすると、常温においてセラミックスに
過大な応力が発生し、セラミックスが破壊する問題があ
った。
BACKGROUND OF THE INVENTION In recent years, research and development has been actively conducted on mechanical structural parts that take advantage of the excellent heat resistance, abrasion resistance, light weight, heat insulation properties, etc. of ceramics. Many ceramic materials are brittle compared to metals, so it is often difficult to use ceramic materials alone as mechanical structural parts.
Therefore, it is generally known to be used in the form of a composite with a metal. However, many of the ceramic materials that have the above-mentioned excellent properties have a smaller coefficient of thermal expansion than ordinary metal materials for mechanical structures, so they cannot be used in parts that are used at varying temperatures, especially parts that are used at high temperatures. Sometimes there is a problem that the holding force between the metal and the ceramic decreases or a gap occurs. On the other hand, when trying to obtain sufficient holding power at high temperatures, excessive stress is generated in the ceramics at room temperature, causing the ceramics to break.

【0003】これらの対策としてセラミックスと熱膨張
係数の近いチタン、コバール等の低熱膨張金属を鋳鉄あ
るいはアルミニウム合金等の鋳ぐるみ金属とセラミック
スの間に中間層として設ける方法が提案されているが、
これらの中間層部材はセラミックスに焼ばめ、圧入、ろ
う付などで接合する必要があり、セラミックスの機械加
工、ろう付等のため工程が多く高コストである問題があ
った。また、中間層としてセラミックウール、低密度の
セラミック仮焼層、あるいは銅等の低剛性の材料を用い
る方法も提案されているが、充分な強度が得られない問
題があった。特に軽量化を必要とする運動部品等におい
ては、金属材料としてアルミニウム合金を用いることが
軽量化の観点からは有利であるが、アルミニウム合金は
鉄系材料よりさらに熱膨張係数が高いため、上記のセラ
ミックスとの熱膨張係数の差による問題は鉄系材料を用
いる場合よりさらに深刻であった。
As a countermeasure to these problems, a method has been proposed in which a low thermal expansion metal such as titanium or Kovar, which has a coefficient of thermal expansion similar to that of the ceramic, is provided as an intermediate layer between the ceramic and a cast metal such as cast iron or aluminum alloy.
These intermediate layer members need to be joined to ceramics by shrink fitting, press fitting, brazing, etc., and there is a problem that the machining of ceramics, brazing, etc. requires many steps and high costs. Furthermore, methods using ceramic wool, a low-density ceramic calcined layer, or a low-rigidity material such as copper as an intermediate layer have also been proposed, but there is a problem in that sufficient strength cannot be obtained. Particularly in moving parts that require weight reduction, it is advantageous to use aluminum alloy as the metal material from the viewpoint of weight reduction, but since aluminum alloy has a higher coefficient of thermal expansion than iron-based materials, the above-mentioned The problem caused by the difference in thermal expansion coefficient with ceramics was even more serious than when iron-based materials were used.

【0004】0004

【発明が解決しようとする課題】従って、本発明は上記
のような従来の問題を解決して、常温でのセラミックス
の応力が低く、かつ、セラミックスの金属との結合部分
の機械加工を行なわずに作製可能な、製造工程が少なく
低コストであり、しかも充分な強度を有するセラミック
スと金属の鋳ぐるみ複合体を提供することを目的とする
[Problems to be Solved by the Invention] Therefore, the present invention solves the above-mentioned conventional problems, and provides a method in which the stress of ceramics at room temperature is low, and the joining part of ceramics with metal does not require machining. It is an object of the present invention to provide a cast composite of ceramics and metal that can be produced in a number of steps, requires few manufacturing steps, is low cost, and has sufficient strength.

【0005】[0005]

【課題を解決するための手段】そしてその目的は、本発
明によれば、セラミックスを低膨張鋳鉄で鋳ぐるんでな
るセラミックスと金属の鋳ぐるみ複合体により達成する
ことができる。また、本発明では、上記した低膨張鋳鉄
側をさらにアルミニウム合金で鋳ぐるんでなるセラミッ
クスと金属の鋳ぐるみ複合体が提供される。さらに本発
明の鋳ぐるみ複合体は、セラミックスを熱負荷の厳しい
部位、例えば、燃焼室開口リップ部、燃焼室中心部等の
みに用い、そのセラミックスを低膨張鋳鉄で鋳ぐるんだ
セラミック鋳ぐるみピストンとして適用すると好ましい
[Means for Solving the Problems] According to the present invention, the object can be achieved by a ceramic-metal cast composite body, which is made by casting ceramics with low expansion cast iron. Further, the present invention provides a ceramic-metal cast composite in which the above-described low expansion cast iron side is further cast with an aluminum alloy. Furthermore, the cast-in composite of the present invention uses ceramic only in areas subject to severe heat load, such as the opening lip of the combustion chamber, the center of the combustion chamber, etc., and the ceramic is cast in low-expansion cast iron to create a ceramic-cast piston. It is preferable to apply it as

【0006】以下、本発明を詳しく説明する。本発明に
おけるセラミックスと金属の鋳ぐるみ複合体は、その複
合構造の中に、好ましくは、室温〜400℃の熱膨張係
数が3.5×10−6/℃〜9.0×10−6/℃の範
囲にある低膨張鋳鉄によりセラミックスを鋳ぐるんだ部
分を有することを特徴とする。本発明で用いる低膨張鋳
鉄としては、例えば重量比で、C  0.3〜2.0%
、Ni  25〜32%、Co  12〜20%、Si
  0.3〜2.0%、Nb0.2〜0.8%、Mg又
はCa  0.01〜0.2%、Mn  1.0%以下
、残部は不純物を含むFeの組成を有し、室温〜400
℃の熱膨張係数が3.5×10−6〜5.5×10−6
/℃である鋳鉄、あるいは重量比でC  0.8〜3.
0%、Ni  30〜34%、Co  4.0〜6.0
%、Si  1.0〜3.0%、Mn  2.0%以下
、硫黄1.0%以下、リン  1.5%以下、Mg  
1.0%以下、残部は不純物を含むFeの組成を有し、
室温〜400℃の熱膨張係数が約9×10−6/℃以下
、室温〜200℃の熱膨張係数が約2×10−6〜3×
10−6/℃である鋳鉄等が望ましい。
The present invention will be explained in detail below. The ceramic-metal casting composite of the present invention preferably has a thermal expansion coefficient of 3.5 x 10-6/°C to 9.0 x 10-6/°C from room temperature to 400°C in its composite structure. It is characterized by having a part in which ceramics are cast with low expansion cast iron in the range of ℃. The low expansion cast iron used in the present invention has, for example, a weight ratio of C 0.3 to 2.0%.
, Ni 25-32%, Co 12-20%, Si
0.3 to 2.0%, Nb 0.2 to 0.8%, Mg or Ca 0.01 to 0.2%, Mn 1.0% or less, the balance being Fe containing impurities, and at room temperature ~400
Thermal expansion coefficient in °C is 3.5 x 10-6 to 5.5 x 10-6
/℃ cast iron, or C 0.8-3.
0%, Ni 30-34%, Co 4.0-6.0
%, Si 1.0-3.0%, Mn 2.0% or less, Sulfur 1.0% or less, Phosphorus 1.5% or less, Mg
1.0% or less, the remainder has a composition of Fe containing impurities,
The coefficient of thermal expansion from room temperature to 400°C is approximately 9 x 10-6/°C or less, and the coefficient of thermal expansion from room temperature to 200°C is approximately 2 x 10-6 to 3 x
Cast iron or the like having a temperature of 10-6/°C is preferable.

【0007】上記組成の鋳鉄の使用が望ましい理由は、
これらの鋳鉄では凝固時に黒鉛(密度約2g/cm3 
)が液体金属(密度約8g/cm3 )から析出して凝
固収縮が低減し、温度低下により常温に至るまでの全収
縮がインバー合金やコバールなどの低熱膨張合金より小
さいこと、また、上記組成の低膨張鋳鉄以外の金属では
、通常の鉄系材料より熱膨張係数がセラミックスに近く
、かつ鋳ぐるみが可能であるという上記組成の低膨張鋳
鉄のような好適な特性を有さないからである。又ここで
いうセラミックスとは、耐熱性、耐熱衝撃性、耐摩耗性
、軽量性、断熱性等において金属より優れ、かつ、機械
構造部材として必要な強度を有する窒化珪素(シリコン
ナイトライド)、サイアロン、炭化珪素、アルミナ、チ
タン酸アルミニウム等を指す。
The reason why it is desirable to use cast iron with the above composition is as follows.
These cast irons contain graphite (density approximately 2g/cm3) during solidification.
) is precipitated from the liquid metal (density approximately 8 g/cm3) and solidification shrinkage is reduced, and the total shrinkage up to room temperature is smaller than that of low thermal expansion alloys such as Invar alloy and Kovar. This is because metals other than low-expansion cast iron do not have the preferable characteristics of low-expansion cast iron of the above composition, such as having a coefficient of thermal expansion closer to that of ceramics than ordinary iron-based materials, and being able to be cast. Furthermore, the ceramics mentioned here include silicon nitride and sialon, which are superior to metals in terms of heat resistance, thermal shock resistance, abrasion resistance, lightness, heat insulation, etc., and also have the strength necessary for mechanical structural members. , silicon carbide, alumina, aluminum titanate, etc.

【0008】本発明において、セラミック部材の厚さと
まわりに鋳ぐるみ低膨張鋳鉄の厚さの関係としては、セ
ラミック部材の平均的な厚さより鋳ぐるみ鋳鉄の平均的
厚さが薄いことが望ましい。このような厚さの関係が望
ましい理由は、低膨張鋳鉄といえども熱膨張係数の広範
囲の温度領域の平均値はやはりセラミックスの熱膨張係
数よりも大きく、鋳ぐるみ後の冷却時にセラミック部材
内にセラミックス−金属の熱膨張係数の差による応力が
発生し、セラミックスが薄すぎるとこの応力が大きくな
りすぎてセラミックスが破壊するからである。同様の理
由によりセラミック部材および鋳鉄部材に発生する応力
をFEM解析等により把握し、応力が充分に小さくなる
よう設計すると更に好ましい。
In the present invention, as for the relationship between the thickness of the ceramic member and the thickness of the surrounding low expansion cast iron, it is desirable that the average thickness of the cast iron is thinner than the average thickness of the ceramic member. The reason why such a thickness relationship is desirable is that even though it is a low-expansion cast iron, the average value of the coefficient of thermal expansion over a wide temperature range is still larger than the coefficient of thermal expansion of ceramics. This is because stress is generated due to the difference in thermal expansion coefficient between ceramic and metal, and if the ceramic is too thin, this stress becomes too large and the ceramic breaks. For the same reason, it is more preferable to understand the stress generated in the ceramic member and the cast iron member by FEM analysis or the like, and to design such that the stress is sufficiently reduced.

【0009】セラミックスを低膨張鋳鉄で鋳ぐるむ際は
、注湯時に熱衝撃によりセラミックスが破壊することが
ないようセラミック部材の耐熱衝撃温度を考慮してセラ
ミック部材を予加熱してセラミックスと金属溶湯との温
度差を小さくしておくことが好ましい。この理由からセ
ラミック部材を約600℃以上に予加熱しておくことが
望ましく、約800℃以上に予加熱すればさらに好まし
い。セラミック部材の予加熱に際しては、セラミックス
を鋳型にセットした状態で鋳型とともに予加熱すること
が作業能率上、さらにはセラミックスが冷えてしまうこ
とを防止する観点から好ましく、また鋳型としては高温
に耐えるセラミック鋳型を用いることが好ましい。
When casting ceramics with low-expansion cast iron, the ceramic member is preheated in consideration of the thermal shock resistance temperature of the ceramic member to prevent the ceramic from being destroyed by thermal shock during pouring. It is preferable to keep the temperature difference between the For this reason, it is desirable to preheat the ceramic member to about 600°C or higher, and more preferably to about 800°C or higher. When preheating a ceramic member, it is preferable to preheat the ceramic together with the mold while it is set in the mold, in terms of work efficiency and to prevent the ceramic from cooling down. Preferably, a mold is used.

【0010】さらに鋳ぐるみにおいては、セラミックス
と鋳鉄の密着性を良くするため溶湯を鋳型に注湯した直
後より溶湯を加圧するか、または鋳型内部を吸引、減圧
することが好ましい。鋳造後は、焼鈍炉にて徐冷し、特
に400℃〜600℃においては保持時間を長くとるこ
とが鋳物の応力除去に有効である。冷却が早すぎると熱
膨張差による応力のためにセラミックスの破損又は剥離
を生ずる。部品の軽量化の観点からは、セラミックス−
金属複合体の金属部分のできる限り多くの部分をアルミ
ニウム合金等の(強度/重量)比の高い材料で構成する
ことが望ましいため、セラミックスを低膨張鋳鉄で鋳ぐ
るんだ外側をさらにアルミニウム合金等で鋳ぐるむ構造
とすることが望ましい。
Furthermore, in castings, in order to improve the adhesion between ceramics and cast iron, it is preferable to pressurize the molten metal immediately after pouring it into the mold, or to vacuum or reduce the pressure inside the mold. After casting, it is effective to slowly cool the casting in an annealing furnace and to hold it for a long time, especially at 400°C to 600°C, to relieve stress from the casting. Cooling too quickly can cause the ceramic to break or peel due to stress due to differential thermal expansion. From the perspective of reducing the weight of parts, ceramics
It is desirable to construct as many of the metal parts of a metal composite as possible with a material with a high (strength/weight) ratio, such as an aluminum alloy, so the ceramic is cast in low expansion cast iron and the outside is further covered with an aluminum alloy, etc. It is desirable to have a structure in which the material is cast inside.

【0011】低膨張鋳鉄の外側をアルミニウム合金で鋳
ぐるむ際には、低膨張鋳鉄の表面にアルフィン処理、又
はアルメルト処理を施すと、鋳鉄とアルミニウム合金が
化学的に結合し、界面に隙間の無い強固な結合を実現す
るのに有効である。セラミックス−低膨張鋳鉄複合体を
アルミニウム合金で鋳ぐるむ際には、ヒケス等が発生し
ないようにガス圧もしくは油圧にて2〜50kg/cm
2の加圧鋳造を行なうことが望ましい。
[0011] When casting the outside of low expansion cast iron with an aluminum alloy, if the surface of the low expansion cast iron is subjected to Alphine treatment or alumel treatment, the cast iron and aluminum alloy will chemically bond, creating a gap at the interface. This is effective in achieving strong connections where there is no When casting a ceramic-low-expansion cast iron composite with aluminum alloy, use gas pressure or hydraulic pressure of 2 to 50 kg/cm to prevent sink marks, etc.
It is desirable to perform pressure casting as shown in step 2.

【0012】0012

【実施例】以下、図示の実施例に基づき本発明をさらに
詳しく説明するが、本発明はこれらの実施例に限られる
ものではない。 (実施例1)図1は本発明のセラミックスと金属の鋳ぐ
るみ複合体を直噴ディーゼルエンジンの2分割ピストン
のクラウン部に応用した例である。図1に示すように、
ピストン燃焼室のキャビティー1を重量当りの伝熱抵抗
の大きいシリコンナイトライド製の肉厚の部材で構成し
、これをピストン本体を構成する低膨張鋳鉄3で鋳ぐる
むことにより、燃焼室内の燃焼ガスから燃焼室壁面への
伝熱損失を低減可能とし、また、燃焼室開口部の耐熱性
が向上させて、金属製のピストンで問題になる開口部の
焼損、亀裂発生等のトラブルを防止することを目的とし
た利用例である。このような構成としたことにより、使
用温度範囲全域でセラミックスの応力が低く、かつ、金
属−セラミックス間の結合強度の高い強度信頼性の高い
部品が得られた。
EXAMPLES The present invention will be explained in more detail below based on the illustrated embodiments, but the present invention is not limited to these embodiments. (Example 1) Fig. 1 shows an example in which the ceramic-metal casting composite of the present invention is applied to the crown portion of a two-part piston of a direct injection diesel engine. As shown in Figure 1,
The cavity 1 of the piston combustion chamber is made of a thick silicon nitride member with a high heat transfer resistance per weight, and this is surrounded by the low expansion cast iron 3 that makes up the piston body. It is possible to reduce heat transfer loss from the combustion gas to the combustion chamber wall, and the heat resistance of the combustion chamber opening is improved, preventing problems such as burnout and cracking of the opening, which are problems with metal pistons. This is an example of use for the purpose of By adopting such a structure, a component with high strength and reliability was obtained, in which the stress of the ceramic was low over the entire operating temperature range, and the bonding strength between the metal and the ceramic was high.

【0013】図2は、図1に示した実施例の鋳ぐるみ方
法の例を示すものである。外周面が焼成面のままで機械
加工を施していないシリコンナイトライド製ピストンキ
ャビティー部材1をセラミック製鋳型2の中にセットし
た後、セラミック鋳型2ごと加熱し、約900℃に予め
加熱した後に、重量比でC  1.2%、Si  1.
2%、Mn  0.3%以下、Ni  28%、Co 
 14%、Mg  0.03%、Nb  0.3%の化
学組成の低膨張鋳鉄3の1400℃の溶湯を鋳型に注湯
した。この際、シリコンナイトライド製ピストンキャビ
ティー部材1と低膨張鋳鉄3との密着性を良くするため
、下部チャンバー4を通じて鋳型2の内部を吸引減圧し
た。溶湯温度が約800℃に低下した時点で電気炉に鋳
型2ごと移し、常温まで除冷後、鋳型2より離型してセ
ラミックス−低膨張鋳鉄複合体を得た後、低膨張鋳鉄3
の外周を機械加工した。
FIG. 2 shows an example of a casting method for the embodiment shown in FIG. After setting the piston cavity member 1 made of silicon nitride, whose outer circumferential surface remains the fired surface and has not been machined, into the ceramic mold 2, the ceramic mold 2 is heated together, and after preheating to approximately 900°C. , C 1.2% by weight, Si 1.
2%, Mn 0.3% or less, Ni 28%, Co
A 1400° C. molten metal of low expansion cast iron 3 having a chemical composition of 14% Mg, 0.03% Mg, and 0.3% Nb was poured into a mold. At this time, in order to improve the adhesion between the silicon nitride piston cavity member 1 and the low expansion cast iron 3, the inside of the mold 2 was vacuumed and depressurized through the lower chamber 4. When the temperature of the molten metal has decreased to approximately 800°C, the mold 2 is transferred to an electric furnace, and after being gradually cooled to room temperature, the mold 2 is released to obtain a ceramic-low expansion cast iron composite, and then a low expansion cast iron 3
The outer periphery was machined.

【0014】(実施例2)図3はディーゼルエンジンの
シリンダライナーに本発明のセラミックスと金属の鋳ぐ
るみ複合体を適用した例を示す。すなわち、シリンダラ
イナー5の内面を耐摩耗性に優れ、金属ピストンリング
との間の摩擦係数の小さいシリコンナイトライド6で構
成し、その外側を低膨張鋳鉄3で鋳ぐるむことによりシ
リンダライナー5の摩耗低減、及びエンジンの摩擦損失
の低減を目的とした利用例である。図4は図3の実施例
の部品作製方法を示す。内外面とも焼成面のままで機械
加工を施していない円筒状のシリコンナイトライド製部
材6を金型7内にセットし、表面をカーボン、ジルコン
等にて塗型したインサート金型(中子)8をセットした
後約400℃に予加熱し、重量比でC  2.0%、S
i  2.3%、Mn0.3%以下、Ni  32.5
%、Co  5.4%、Mg  0.03%の化学組成
の低膨張鋳鉄3の約1300℃の溶湯を注湯した直後よ
り、油圧約40kg/cm2の圧力で上部よりピストン
9にて加圧した。 その後、金型7ごと電気炉内で常温まで徐冷した後金型
7より離型して、セラミックスと金属の鋳ぐるみ複合体
を得た。この複合体の鋳鉄外周および上下面を機械加工
し、セラミックス内面を研削加工してシリンダライナー
5を得た。
(Embodiment 2) FIG. 3 shows an example in which the ceramic-metal casting composite of the present invention is applied to a cylinder liner of a diesel engine. That is, the inner surface of the cylinder liner 5 is made of silicon nitride 6, which has excellent wear resistance and has a small coefficient of friction with the metal piston ring, and the outer surface is filled with low expansion cast iron 3. This is an example of use aimed at reducing wear and engine friction loss. FIG. 4 shows a method for manufacturing the parts of the embodiment shown in FIG. An insert mold (core) in which a cylindrical silicon nitride member 6, which is not machined and has both the inner and outer fired surfaces, is set in a mold 7, and the surface is coated with carbon, zircon, etc. 8, preheated to about 400℃, and heated to 2.0% C and S by weight.
i 2.3%, Mn 0.3% or less, Ni 32.5
%, Co 5.4%, Mg 0.03% molten low expansion cast iron 3 at about 1300°C was immediately pressurized from above with a piston 9 at a hydraulic pressure of about 40 kg/cm2. did. Thereafter, the mold 7 was slowly cooled to room temperature in an electric furnace and then released from the mold 7 to obtain a ceramic-metal cast composite. The cast iron outer periphery and upper and lower surfaces of this composite were machined, and the ceramic inner surface was ground to obtain a cylinder liner 5.

【0015】(実施例3)図5は小型直噴ディーゼルエ
ンジンのピストンに本発明のセラミックスと金属の鋳ぐ
るみ複合体を適用した例である。ピストン燃焼室開口に
設けられたリップ部11に耐熱性に優れたシリコンナイ
トライドを用いることにより、金属製ピストンでは問題
となるリップ部11の焼損、亀裂発生等を回避し、かつ
ピストン本体12は軽量のアルミニウム合金で構成する
ことにより、局部的な熱負荷対策を行ないつつ、かつ部
品全体の重量増加を抑えることを目的とした本発明の利
用例である。実施例1または実施例2と同様の方法によ
り、シリコンナイトライド製リング(リップ部)11と
低膨張鋳鉄リング3の複合リング状部材を得た後、低膨
張鋳鉄3の表面をアルメルト処理し、この複合リング状
部材を金属製鋳型内にセットして予熱した後、約600
〜700℃のアルミニウム合金溶湯を注湯した。この際
、ヒケスの発生を防止するため約5kg/cm2の加圧
鋳造を行なった。その後常温まで除冷後鋳型より離型し
、外周部、ピストンリング溝、ピストンピン穴加工を施
してピストンを得た。
(Embodiment 3) FIG. 5 shows an example in which the ceramic-metal casting composite of the present invention is applied to a piston of a small direct injection diesel engine. By using silicon nitride, which has excellent heat resistance, for the lip part 11 provided at the opening of the piston combustion chamber, the lip part 11 is prevented from burning out, cracking, etc., which are problems with metal pistons, and the piston body 12 is This is an example of the use of the present invention for the purpose of suppressing an increase in the weight of the entire component while taking measures against local heat load by constructing the component using a lightweight aluminum alloy. After obtaining a composite ring-shaped member of a silicon nitride ring (lip portion) 11 and a low expansion cast iron ring 3 by the same method as in Example 1 or Example 2, the surface of the low expansion cast iron 3 was subjected to alumel treatment, After setting this composite ring-shaped member in a metal mold and preheating it, approximately 600
A molten aluminum alloy of ~700°C was poured. At this time, pressure casting was carried out at approximately 5 kg/cm2 in order to prevent the occurrence of sink marks. Thereafter, it was cooled down to room temperature, then released from the mold, and the outer circumference, piston ring groove, and piston pin hole were machined to obtain a piston.

【0016】(実施例4)図6はシリコンナイトライド
、低膨張鋳鉄、アルミ合金からなる本発明のセラミック
スと金属の鋳ぐるみ複合体を実施例3と同様の工程で作
製した例を示す。すなわち、シリコンナイトライドの耐
熱性、断熱性を利用してピストン上部の耐熱性向上、熱
損失低減を目的とし、アルミニウム合金製ピストン12
の上部をシリコンナイトライド18で覆う形状で、小型
直噴ディーゼルエンジンのピストンに適用した例である
(Example 4) FIG. 6 shows an example in which a ceramic-metal casting composite of the present invention made of silicon nitride, low expansion cast iron, and aluminum alloy was produced in the same process as in Example 3. In other words, the aluminum alloy piston 12 is designed to improve the heat resistance of the upper part of the piston and reduce heat loss by utilizing the heat resistance and heat insulation properties of silicon nitride.
This is an example in which the upper part of the cylinder is covered with silicon nitride 18 and is applied to a piston of a small direct injection diesel engine.

【0017】(実施例5〜7)図7〜9はそれぞれセラ
ミックスを熱負荷の厳しい部位のみに用いた例で、直噴
ディーゼルエンジンの2分割ピストンに適用した例を示
す。図7は、ピストン燃焼室開口に設けられたリップ部
11に耐熱性に優れたシリコンナイトライドを用い、そ
れを低膨張鋳鉄3にて鋳ぐるんだ例である。尚、21は
アルミニウム製スカート部を示す。図8は、ピストン燃
焼室の中心部を含んだ下部全体の比較的広い部分20に
、耐熱性、断熱性に優れたシリコンナイトライドを用い
た例を示す。この構成により、熱負荷による溶損、亀裂
対策を行ないつつ燃焼室の断熱性を高め、燃焼室内のガ
ス温度を上昇させ、燃費の改善、排ガスの清浄化を実現
することができる。図9は、前記図7および図8の例を
組合せることにより、熱負荷対策、燃焼室の断熱度を更
に向上させた例である。また、図9の実施例のように、
複数のセラミック部材で燃焼室を構成することは、従来
の焼ばめ法などでは困難であったが、本発明の鋳ぐるみ
体により容易に実施可能となった。このように、セラミ
ックスを分割して用いるため、セラミック部材個々の破
壊を回避することができる。
(Embodiments 5 to 7) FIGS. 7 to 9 show examples in which ceramics are used only in areas subject to severe heat load, and are applied to a two-part piston of a direct injection diesel engine. FIG. 7 shows an example in which silicon nitride with excellent heat resistance is used for the lip portion 11 provided at the opening of the piston combustion chamber, and the lip portion 11 is cast with low expansion cast iron 3. Note that 21 indicates an aluminum skirt portion. FIG. 8 shows an example in which silicon nitride, which has excellent heat resistance and heat insulation properties, is used in a relatively wide portion 20 of the entire lower part including the center of the piston combustion chamber. With this configuration, it is possible to improve the heat insulation of the combustion chamber, increase the gas temperature in the combustion chamber, and improve fuel efficiency and purify exhaust gas while taking measures against melting damage and cracks caused by heat load. FIG. 9 shows an example in which the measures against heat load and the degree of insulation of the combustion chamber are further improved by combining the examples shown in FIGS. 7 and 8. Also, as in the example of FIG.
Although it was difficult to construct a combustion chamber with a plurality of ceramic members using conventional shrink fitting methods, it has become possible to easily construct the combustion chamber with the cast body of the present invention. In this way, since the ceramic is used in parts, it is possible to avoid destruction of individual ceramic members.

【0018】(実施例8)図10は、ディーゼルエンジ
ンのシリンダヘッド本体13に設けられている排気ポー
トの内面14を管状のチタン酸アルミニウム部材で構成
するとともに、バルブガイド15をシリコンナイトライ
ド部材で構成し、またバルブシート16をシリコンナイ
トライドで構成し、さらに触火面であるシリンダーヘッ
ドプレート17をシリコンナイトライドの円板状部材で
構成することにより、排気ポートでの熱損失低減、バル
ブガイド15およびバルブシート16の摩耗低減、触火
面への熱損失低減を図った本発明のセラミックス−金属
の鋳ぐるみ複合部材の適用例である。
(Embodiment 8) FIG. 10 shows that the inner surface 14 of the exhaust port provided in the cylinder head body 13 of a diesel engine is made of a tubular aluminum titanate member, and the valve guide 15 is made of a silicon nitride member. In addition, the valve seat 16 is made of silicon nitride, and the cylinder head plate 17, which is the contact surface, is made of a disc-shaped member made of silicon nitride, thereby reducing heat loss at the exhaust port and improving the valve guide. This is an application example of the ceramic-metal cast composite member of the present invention, which aims to reduce wear of valve seats 15 and 16 and reduce heat loss to the ignition surface.

【0019】[0019]

【発明の効果】以上説明したように、本発明のセラミッ
クスと金属の鋳ぐるみ複合体によれば、常温においてセ
ラミックスに発生する応力が低く、セラミックスの金属
との結合部の機械加工を行なわずに作製可能なため作業
工程が少なく低コストであり、しかも充分なセラミック
ス−金属間の結合強度を高温においても有するセラミッ
クス−金属複合体を得ることができる。また、本発明に
おいては、単独では脆性のため信頼性の低いセラミック
スを金属との複合構造で機械構造用部材として使用する
ことを容易にして、セラミックスの耐熱性、耐摩耗性、
軽量性、断熱性等を利用した機械構造用部品、特にセラ
ミック鋳ぐるみピストンとして実用化可能とするため、
産業上極めて有益である。
[Effects of the Invention] As explained above, according to the ceramic-metal cast composite of the present invention, the stress generated in the ceramic at room temperature is low, and the joint between the ceramic and the metal does not require machining. Since it can be produced, it is possible to obtain a ceramic-metal composite that requires few work steps and is low cost, and has sufficient ceramic-metal bond strength even at high temperatures. In addition, in the present invention, ceramics, which are brittle and unreliable when used alone, can be easily used as mechanical structural members in a composite structure with metal, and the heat resistance, wear resistance,
In order to make it possible to put it into practical use as mechanical structural parts that take advantage of its light weight and heat insulation properties, especially ceramic cast pistons,
It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係るセラミックスと金属の鋳ぐるみ複
合体の一実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a ceramic-metal casting composite according to the present invention.

【図2】図1に示した実施例の鋳ぐるみ方法の例を示す
概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of the casting method of the embodiment shown in FIG. 1;

【図3】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the casting composite of the present invention.

【図4】図3の実施例の部品作製方法を示す概略断面図
である。
FIG. 4 is a schematic cross-sectional view showing a method for manufacturing a component according to the embodiment of FIG. 3;

【図5】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 5 is a schematic cross-sectional view showing another embodiment of the casting composite of the present invention.

【図6】本発明の鋳ぐるみ複合体の他の実施例を示す概
略断面図である。
FIG. 6 is a schematic cross-sectional view showing another embodiment of the casting composite of the present invention.

【図7】熱負荷の厳しい部位のみにセラミックスを適用
した実施例を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing an example in which ceramics are applied only to areas subject to severe heat load.

【図8】熱負荷の厳しい部位のみにセラミックスを適用
した他の実施例を示す概略断面図である。
FIG. 8 is a schematic cross-sectional view showing another example in which ceramics are applied only to areas subject to severe heat load.

【図9】熱負荷の厳しい部位のみにセラミックスを適用
した他の実施例を示す概略断面図である。
FIG. 9 is a schematic cross-sectional view showing another example in which ceramics are applied only to areas subject to severe heat load.

【図10】本発明の鋳ぐるみ複合体の他の実施例を示す
概略断面図である。
FIG. 10 is a schematic cross-sectional view showing another embodiment of the casting composite of the present invention.

【符号の説明】[Explanation of symbols]

1  ピストンキャビティー、2  セラミック製鋳型
、3  低膨張鋳鉄、4  下部チャンバー、5  シ
リンダライナー、6  シリコンナイトライド、7  
金型、8インサート金型、9  ピストン、11  リ
ップ部、12  ピストン本体、13  シリンダヘッ
ド本体、14  排気ポート内面、15  バルブガイ
ド、16  バルブシート、17  シリンダーヘッド
プレート、18  シリコンナイトライド、20  燃
焼室下部、21  アルミニウム製スカート部
1 Piston cavity, 2 Ceramic mold, 3 Low expansion cast iron, 4 Lower chamber, 5 Cylinder liner, 6 Silicon nitride, 7
Mold, 8 insert mold, 9 piston, 11 lip part, 12 piston body, 13 cylinder head body, 14 exhaust port inner surface, 15 valve guide, 16 valve seat, 17 cylinder head plate, 18 silicon nitride, 20 combustion chamber Lower part, 21 Aluminum skirt part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  セラミックスを低膨張鋳鉄で鋳ぐるん
だことを特徴とするセラミックスと金属の鋳ぐるみ複合
体。
1. A cast composite of ceramics and metal, characterized in that ceramics are cast in low expansion cast iron.
【請求項2】  低膨張鋳鉄側をさらにアルミニウム合
金で鋳ぐるんだことを特徴とする請求項1記載のセラミ
ックスと金属の鋳ぐるみ複合体。
2. The ceramic-metal cast composite according to claim 1, wherein the low expansion cast iron side is further cast with an aluminum alloy.
【請求項3】  低膨張鋳鉄として、室温〜400℃の
熱膨張係数が3.5×10−6/℃〜9.0×10−6
/℃の範囲にあるものを用いる請求項1記載のセラミッ
クスと金属の鋳ぐるみ複合体。
3. As low expansion cast iron, the coefficient of thermal expansion from room temperature to 400°C is 3.5 x 10-6/°C to 9.0 x 10-6.
2. The ceramic-metal casting composite according to claim 1, wherein the ceramic-metal casting composite is made of a material having a temperature within the range of /°C.
【請求項4】  低膨張鋳鉄が、重量比で、C  0.
3〜2.0%、Ni  25〜32%、Co  12〜
20%、Si  0.3〜2.0%、Nb  0.2〜
0.8%、Mg又はCa  0.01〜0.2%、Mn
  1.0%以下、残部は不純物を含むFeの組成を有
し、室温〜400℃の熱膨張係数が3.5×10−6〜
5.5×10−6/℃である請求項1記載のセラミック
スと金属の鋳ぐるみ複合体。
4. The low expansion cast iron has a weight ratio of C 0.
3-2.0%, Ni 25-32%, Co 12-
20%, Si 0.3~2.0%, Nb 0.2~
0.8%, Mg or Ca 0.01-0.2%, Mn
1.0% or less, the remainder has a composition of Fe containing impurities, and the thermal expansion coefficient from room temperature to 400°C is 3.5 × 10-6 ~
The ceramic-metal casting composite according to claim 1, which has a temperature of 5.5 x 10-6/°C.
【請求項5】  低膨張鋳鉄が、重量比でC  0.8
〜3.0%、Ni  30〜34%、Co  4.0〜
6.0%、Si  1.0〜3.0%、Mn  2.0
%以下、硫黄1.0%以下、リン  1.5%以下、M
g  1.0%以下、残部は不純物を含むFeの組成を
有し、室温〜400℃の熱膨張係数が約9×10−6/
℃以下、室温〜200℃の熱膨張係数が約2×10−6
〜3×10−6/℃である請求項1記載のセラミックス
と金属の鋳ぐるみ複合体。
[Claim 5] The low expansion cast iron has a weight ratio of C 0.8.
~3.0%, Ni 30-34%, Co 4.0~
6.0%, Si 1.0-3.0%, Mn 2.0
% or less, sulfur 1.0% or less, phosphorus 1.5% or less, M
g 1.0% or less, the remainder has a composition of Fe containing impurities, and the coefficient of thermal expansion from room temperature to 400°C is approximately 9 x 10-6 /
℃ or less, the coefficient of thermal expansion from room temperature to 200℃ is approximately 2 x 10-6
The ceramic-metal casting composite according to claim 1, which has a temperature of ~3 x 10-6/°C.
【請求項6】  セラミック部材の平均的な厚さより鋳
ぐるみ鋳鉄の平均的厚さが薄い請求項1記載のセラミッ
クスと金属の鋳ぐるみ複合体。
6. The ceramic-metal cast composite according to claim 1, wherein the average thickness of the cast iron casting is smaller than the average thickness of the ceramic member.
【請求項7】  セラミック鋳ぐるみピストンとして用
いる請求項1記載のセラミックスと金属の鋳ぐるみ複合
体。
7. The ceramic-metal cast composite according to claim 1, which is used as a ceramic cast piston.
【請求項8】  燃焼室開口リップ部及び/又は燃焼室
中心部にセラミックスを用いる請求項7記載のセラミッ
クスと金属の鋳ぐるみ複合体。
8. The ceramic-metal casting composite according to claim 7, wherein ceramic is used for the opening lip of the combustion chamber and/or the center of the combustion chamber.
JP3205558A 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal Expired - Fee Related JP2920004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205558A JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19445390 1990-07-23
JP2-194453 1990-07-23
JP3205558A JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Publications (2)

Publication Number Publication Date
JPH04356344A true JPH04356344A (en) 1992-12-10
JP2920004B2 JP2920004B2 (en) 1999-07-19

Family

ID=26508511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205558A Expired - Fee Related JP2920004B2 (en) 1990-07-23 1991-07-22 Cast-in composite of ceramics and metal

Country Status (1)

Country Link
JP (1) JP2920004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421682B2 (en) 2014-12-22 2022-08-23 Spm Oil & Gas Inc. Reciprocating pump with dual circuit power end lubrication system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD726224S1 (en) 2013-03-15 2015-04-07 S.P.M. Flow Control, Inc. Plunger pump thru rod
US8707853B1 (en) 2013-03-15 2014-04-29 S.P.M. Flow Control, Inc. Reciprocating pump assembly
MX2017000021A (en) 2014-06-27 2017-05-01 Spm Flow Control Inc Pump drivetrain damper system and control systems and methods for same.
EA034261B1 (en) 2014-07-25 2020-01-22 Эс.Пи.Эм. ФЛОУ КОНТРОЛ, ИНК. Bearing system for reciprocating pump and method of assembly
USD759728S1 (en) 2015-07-24 2016-06-21 S.P.M. Flow Control, Inc. Power end frame segment
US10436766B1 (en) 2015-10-12 2019-10-08 S.P.M. Flow Control, Inc. Monitoring lubricant in hydraulic fracturing pump system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379112A (en) * 1976-12-24 1978-07-13 Isuzu Motors Ltd Piston having a combustion chamber
JPS58210149A (en) * 1982-05-29 1983-12-07 Shinichi Enomoto Cast iron
JPS60216966A (en) * 1984-04-10 1985-10-30 Daido Steel Co Ltd Composite ceramic-iron-base alloy body
JPH0180650U (en) * 1987-11-20 1989-05-30
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02298236A (en) * 1989-05-12 1990-12-10 Shinichi Enomoto Low thermal expansion alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379112A (en) * 1976-12-24 1978-07-13 Isuzu Motors Ltd Piston having a combustion chamber
JPS58210149A (en) * 1982-05-29 1983-12-07 Shinichi Enomoto Cast iron
JPS60216966A (en) * 1984-04-10 1985-10-30 Daido Steel Co Ltd Composite ceramic-iron-base alloy body
JPH0180650U (en) * 1987-11-20 1989-05-30
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02298236A (en) * 1989-05-12 1990-12-10 Shinichi Enomoto Low thermal expansion alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421682B2 (en) 2014-12-22 2022-08-23 Spm Oil & Gas Inc. Reciprocating pump with dual circuit power end lubrication system

Also Published As

Publication number Publication date
JP2920004B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
EP0261726B1 (en) Pistons
US4495684A (en) Process of joining a ceramic insert which is adapted to be embedded in a light metal casting for use in internal combustion engines
JPH0250173B2 (en)
JPS6119952A (en) Piston for internal combustion engine
US4709621A (en) Internal combustion engine piston and a method of producing the same
US5144885A (en) Ceramic-metal friction welding member and ceramic cast-in bonded piston made thereof
JPH04356344A (en) Cast-in composite body of ceramics and metal
JPS6055699B2 (en) Engine parts with contact surfaces
JPH028894B2 (en)
JP2591872B2 (en) Silicon nitride cast-in piston
EP0468722A1 (en) Ceramic-metal insert composite
JPH0427379B2 (en)
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
JPH07132362A (en) Cylinder block and its production
JP2002283029A (en) Sleeve for die casting
JP3626827B2 (en) Cylinder liner
JP2613599B2 (en) Piston and method of manufacturing the same
JPS62191607A (en) Valve seat insert and cylinder head using said insert
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPS6245964A (en) Heat insulating piston and manufacture thereof
JPH0372831B2 (en)
JPH05106506A (en) Cylinder head for internal combustion engine
JP3033324B2 (en) Insulated piston
JPS60164648A (en) Piston structure for internal-combustion engine
JPS61207860A (en) Cylinder liner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970902

LAPS Cancellation because of no payment of annual fees