JPS6245964A - Heat insulating piston and manufacture thereof - Google Patents

Heat insulating piston and manufacture thereof

Info

Publication number
JPS6245964A
JPS6245964A JP18478285A JP18478285A JPS6245964A JP S6245964 A JPS6245964 A JP S6245964A JP 18478285 A JP18478285 A JP 18478285A JP 18478285 A JP18478285 A JP 18478285A JP S6245964 A JPS6245964 A JP S6245964A
Authority
JP
Japan
Prior art keywords
heat
piston
metal plate
resistant metal
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18478285A
Other languages
Japanese (ja)
Inventor
Kaneo Hamashima
浜島 兼男
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Masahiro Kubo
雅洋 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18478285A priority Critical patent/JPS6245964A/en
Publication of JPS6245964A publication Critical patent/JPS6245964A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PURPOSE:To manufacture a heat insulating piston having the superior durability in a simple and easy way by arranging a heat-resisting metal plate onto the outermost surface of the piston top surface and forming a heat insulating layer made of the substance such as ceramics having a low thermal conductivity so as to contact with the back surface of the heat-resisting metal plate. CONSTITUTION:The outermost surface of a piston top surface part is formed from the heat-resisting metal plate 2 having a combustion chamber recessed part 1 formed, and the peripheral edge part 2A is bent nearly perpendicularly to the piston top surface, and the top edge 2B of the bent peripheral edge part 2A is turned back further outside. The peripheral edge part 2A is buried into the basic metal such as aluminium alloy which constitutes the piston basic material part 3. Further, a heat insulating layer 5 made of the composite material integrally composed from the basic metal and the low thermal conductivity substance such as ceramics is interposed between the heat- resisting metal plate 2 and the basic material part 3. Said heat insulating layer 5 is installed in the contact state with the back surface of the heat-resisting metal plate 2 at the position of the combustion chamber recessed part 1 and its peripheral surface so as to correspond to the highest-temperature part of the piston top surface.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車に使用されるディーゼルエンジン等の
内燃機関用ピストン、特に頂面部付近を断熱構造どした
ピストンおよびそのビス1ヘンを製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a piston for an internal combustion engine such as a diesel engine used in an automobile, particularly a piston having a heat-insulating structure near its top surface, and a method for manufacturing the bis 1-hen. It is.

従来の技術 近年に至り、ディーゼルエンジンにおいてはその燃焼室
を高温化して燃費の改善を図るとともに始動初期の不完
全燃焼を防止するため、ピストン頂面部を断熱化するこ
とが検討されている。
BACKGROUND OF THE INVENTION In recent years, in diesel engines, in order to raise the temperature of the combustion chamber of the engine to improve fuel efficiency and to prevent incomplete combustion at the initial stage of engine startup, it has been considered to make the top surface of the piston insulated.

ピストン頂百部の断熱化のための手法としては、ピスト
ン頂面にセラミックを溶射する方法、あるいはピストン
頂面にセラミック板を接合する方法、さらにはピストン
頂面を低熱伝導物質で複合化づ−る方法なども提案され
ているが、高い断熱性、耐熱情、耐熱衝撃fl:などて
代表される断熱ピストンに不可欠の緒特性をDlせ持た
せるための最も有効な手段としては、ピストン頂面の直
下に空洞部(エアギャップ部)を形成してその空洞部に
より断熱を図り、かつ断熱による頂面温度上昇に対処す
るために、頂面を耐熱材で形成しておく方法が知られて
いる。
Methods for insulating the top of the piston include spraying ceramic on the top of the piston, bonding a ceramic plate to the top of the piston, and making the top of the piston composite with a low thermal conductive material. However, the most effective means for providing essential characteristics to an insulated piston, such as high heat insulation, heat resistance, and thermal shock resistance, is to improve the top surface of the piston. There is a known method in which a cavity (air gap) is formed directly under the cavity and the cavity is used to provide insulation, and the top surface is made of a heat-resistant material in order to cope with the rise in temperature of the top surface due to the insulation. There is.

具体的には、例えばインコネルの如き超合金などからな
る耐熱材によって頂面を形成し、その頂面耐熱材とピス
トン母材の間に断熱用の空洞部を設けて両者をボルト止
めした構造の断熱ピストンが知られている。
Specifically, the top surface is formed of a heat-resistant material made of a superalloy such as Inconel, and a cavity for heat insulation is provided between the top heat-resistant material and the piston base material, and the two are bolted together. Adiabatic pistons are known.

発明が解決すべき問題点 前述のように断熱用空洞部を頂面耐熱金属板の直下に形
成した従来の断熱ピストンにおいては、耐熱金属板の下
面が空洞であるため、ピストン稼動時の燃焼圧によって
耐熱金属板が変形し易く、これを防ぐためには耐熱金属
板の肉厚を相当に厚くしなければならないが、その場合
ピストン重吊の増大をf?にき、燃費やエンジンP1能
に悪影響を及ぼす問題があり、また高コス]・化を招く
問題もある。さらに前述の従来の空洞断熱型のピストン
では、頂面耐熱金属板をボルト1にめによって母材に接
合しているが、この構造ではピストンmuのボルト座面
やボルト穴の部分がクリープ変形してボルトが緩み、頂
面耐熱材−丹月間の接合強度が次第に低下し、そのため
充分な耐久性が得られないという問題があった。
Problems to be Solved by the Invention As mentioned above, in the conventional heat-insulating piston in which the heat-insulating cavity is formed directly under the top heat-resistant metal plate, since the bottom surface of the heat-resistant metal plate is hollow, the combustion pressure during piston operation The heat-resistant metal plate is easily deformed by the heat-resistant metal plate, and to prevent this, the thickness of the heat-resistant metal plate must be made considerably thicker. There is a problem that it adversely affects fuel consumption and engine P1 performance, and there is also a problem that leads to high cost. Furthermore, in the conventional cavity insulation type piston mentioned above, the top heat-resistant metal plate is joined to the base material by bolt 1, but with this structure, the bolt seating surface and bolt hole of piston mu are subject to creep deformation. There was a problem in that the bolts became loose due to this, and the joint strength between the top heat-resistant material and the tongue gradually decreased, and therefore sufficient durability could not be obtained.

この発明は以上の事情を青銅としてなされたもので、頂
面を耐熱金属板で形成しかつその偵面耐熱合金板とピス
トン用材金属との間に断熱層を介在させた断熱ピストン
において、頂面耐熱金属板の肉厚を薄肉化しても頂面の
変形を充分に防止し得るような構造とし、これによって
ピストン軽量化と頂面の耐変形強度、耐久性の向上とを
同時に達成し得るようにした断熱ピストンを提供するこ
とを基本的な目的とするものである。またこの発明の第
2の目的は、頂面耐熱金属板の母材に対する接合弾痕が
低下しないような構造とし、これによって耐久性を一層
向上させた断熱ピストンを提供覆るにある。さらにこの
発明は、上述のようなピストンを実際に簡単かつ容易に
製造する方法を提供することを目的とする。
This invention has been made to solve the above-mentioned problems using bronze, and provides an insulating piston in which the top surface is formed of a heat-resistant metal plate and a heat-insulating layer is interposed between the curved heat-resistant alloy plate and the piston material metal. The structure is designed to sufficiently prevent deformation of the top surface even if the thickness of the heat-resistant metal plate is reduced, thereby simultaneously achieving weight reduction of the piston and improvement of the deformation resistance and durability of the top surface. The basic objective is to provide a thermally insulated piston with a A second object of the present invention is to provide an adiabatic piston having a structure in which the bonding bullet holes of the top heat-resistant metal plate to the base material do not deteriorate, thereby further improving durability. A further object of the invention is to provide a method for manufacturing a piston as described above, which is actually simple and easy.

問題点を解決するだめの手段 この発明は、ピストン頂面部の最表面に、ピストン用材
金属よりも耐熱性が高い材料からなる耐熱金属板を配置
するとともに、その耐熱金属板の裏面に接するように、
ピストン母材金属・よりも熱伝導率の低い物質とピスト
ン母材金属とを複合一体化した断熱層が形成されている
ことを特徴とするものである。
Means for Solving the Problems This invention provides a heat-resistant metal plate made of a material with higher heat resistance than the piston material metal on the outermost surface of the top surface of the piston, and a heat-resistant metal plate made of a material having higher heat resistance than the piston material metal, and in contact with the back surface of the heat-resistant metal plate. ,
It is characterized in that a heat insulating layer is formed by compositely integrating a substance with a lower thermal conductivity than the piston base metal and the piston base metal.

またこの発明のピストンは、前記耐熱金属板の周縁部を
ピストン母材金属中に埋込むことによって耐熱金属板を
母材に対して固定したものである。
Further, in the piston of the present invention, the heat-resistant metal plate is fixed to the base metal by embedding the peripheral edge of the heat-resistant metal plate in the piston base metal.

さらにこの発明の断熱ピストン製造方法は、加圧鋳造に
よってピストンをIll造するにあたり、鋳造用金型の
底面に接げるように耐熱金属板を配置するとともにその
耐熱金属板の−に面側にピストン用材金属よりも熱伝導
率の低い物質からなる多孔質体を配置し、その状態でピ
ストン母材金属溶湯を金型内に注湯してその母材金属溶
湧を加圧し、これによって多孔質体に母材金属溶湯を含
浸させるとともに前記耐熱金属板を鋳くるむことを特徴
とするものである。
Furthermore, in the method for manufacturing a heat-insulating piston of the present invention, when manufacturing a piston by pressure casting, a heat-resistant metal plate is arranged so as to be in contact with the bottom surface of a casting mold, and the negative side of the heat-resistant metal plate is placed on the negative side of the heat-resistant metal plate. A porous body made of a material with lower thermal conductivity than the piston material metal is placed, and in this state, the piston base metal molten metal is poured into the mold and the base metal molten metal is pressurized. This method is characterized in that the mass is impregnated with molten base metal and the heat-resistant metal plate is cast inside.

作   用 この発明の断熱ピストンにおいては、前述のようにピス
トン頂面部の最表面の耐熱金属板の裏面に接して設けら
れた断熱層が、セラミックの如き低熱伝導率物質と母料
金属とを複合一体化した複合材で構成されている。この
ような複合材はそれ自体の熱伝導率も母料金属より低く
、したがってその複合材断熱層によってピストン頂面を
有効に断熱することができる。しかもその断熱層は既に
述べた従来公知の技術のような空洞部ではなく、複合材
によって高強葭とされているから、ピストン稼動時にお
いて頂面耐熱金属板に加わる燃焼圧力を複合材断熱層で
受けてその頂面耐熱金属板の変形を防止することができ
、そのため空洞断熱構造の場合と比較して格段に頂面耐
熱金属板の厚みを薄くすることができる。したがってこ
の発明の断熱ピストンでは頂面の耐熱金属板を薄くする
ことによって空洞断熱構造のピストンと比較しピストン
重吊を格段に軒昂化することができる。 また頂面の耐
熱金属板の端部を用材金属中に埋設することによってそ
の耐熱金属板を母材に対して固定した構造とすれば、従
来技術の場合のように母Hのクリープ変形によって耐熱
金属板−母材間の接合強度が低下するおそれが少なく、
したがってビス]〜ンとしての耐久性を一層向上させる
ことができる。
Function: In the heat-insulating piston of the present invention, as described above, the heat-insulating layer provided in contact with the back surface of the outermost heat-resistant metal plate on the top surface of the piston is a composite of a low thermal conductivity material such as ceramic and a base metal. Constructed from an integrated composite material. Such a composite material also has a thermal conductivity lower than that of the base metal, so that the top surface of the piston can be effectively insulated by the composite insulation layer. Moreover, the heat insulating layer is not a hollow part as in the conventionally known technology mentioned above, but is made of a composite material with high strength, so the composite heat insulating layer absorbs the combustion pressure that is applied to the top heat-resistant metal plate when the piston is operating. As a result, deformation of the top heat-resistant metal plate can be prevented, and therefore the thickness of the top heat-resistant metal plate can be made much thinner than in the case of a cavity heat-insulating structure. Therefore, in the heat-insulating piston of the present invention, by making the heat-resistant metal plate on the top surface thinner, it is possible to significantly increase the lifting height of the piston compared to a piston having a hollow heat-insulating structure. In addition, if the heat-resistant metal plate on the top surface is fixed to the base material by embedding the end of the heat-resistant metal plate in the material metal, as in the case of the prior art, the creep deformation of the base H will cause the heat-resistant There is little risk of reducing the bonding strength between the metal plate and the base material.
Therefore, the durability as a screw can be further improved.

さらにこの発明の断熱ピストン製造方法においては、ピ
ストンfR祠金属溶湖を加圧鋳造することにJ:って用
材金属と低熱伝導率多孔質体との複合一体化がなされて
その複合材からなる断熱層が母材部分と連続一体に形成
され、同時に頂面最表面を構成する耐熱金属板が母材金
属に鋳くるまれて、用材に対する耐熱金属板の固定がな
される。すなわち、偵面直下の複合材断熱層の形成と頂
面耐熱金属板の固定保持が、母材部分の鋳造成形と同時
になされ、したがって前述のように優れた特性の断熱ピ
ストンを筒中かつ容易に製造することができる。
Furthermore, in the method for manufacturing a heat-insulating piston of the present invention, the piston fR sacrificial metal melt is pressure cast, and the material metal and the porous material with low thermal conductivity are integrated into a composite material. The heat-insulating layer is formed continuously and integrally with the base metal portion, and at the same time, the heat-resistant metal plate constituting the topmost surface is cast into the base metal, thereby fixing the heat-resistant metal plate to the workpiece. In other words, the formation of the composite heat insulating layer directly under the curved surface and the fixation of the top heat-resistant metal plate are performed simultaneously with the casting of the base material, making it possible to easily manufacture a heat insulating piston with excellent properties as described above. can do.

発明の実施のための具体的説明 第1図にはこの発明の断熱ピストンの一構造例を示す。Specific instructions for carrying out the invention FIG. 1 shows an example of the structure of the heat insulating piston of the present invention.

なお第1図では、ピストン頂面に燃焼室四部1が形成さ
れているピストンの例を示す。
Note that FIG. 1 shows an example of a piston in which four combustion chamber parts 1 are formed on the top surface of the piston.

第1図において、ピストン頂面部の最表面は、前記燃焼
室凹部1を型取った耐熱金属板2で形成されており、こ
の耐熱金属板20周縁部2Aはピストン頂面に対しほぼ
直角に折曲げられるとともに、その折曲げられた周縁部
2Aの先端2Bはさらに外周方向へ折返されている。そ
してこのような耐熱金属板2の周縁部2Aは、ピストン
用材部分3を構成するアルミニウム合金等の母材金属中
に埋込まれている。すなわち、ピストン頂面部の最外周
縁部は、母材金属がセラミックmH等の多孔質体に含浸
されてなる複合部4によって形成され、この母材金属/
多孔質体からなる複合部4と一/− Il材部分3との間に耐熱金属板2の周縁部2Aが挾ま
れることにより、その周縁部が母材金属中に埋込まれて
いる。
In FIG. 1, the outermost surface of the top surface of the piston is formed of a heat-resistant metal plate 2 molded with the combustion chamber recess 1, and the peripheral edge 2A of this heat-resistant metal plate 20 is bent approximately at right angles to the top surface of the piston. While being bent, the tip 2B of the bent peripheral edge portion 2A is further folded back toward the outer circumference. The peripheral edge portion 2A of such a heat-resistant metal plate 2 is embedded in a base metal such as an aluminum alloy that constitutes the piston material portion 3. That is, the outermost peripheral edge of the top surface of the piston is formed by a composite part 4 in which a base metal is impregnated with a porous body such as ceramic mH, and the base metal/
The peripheral edge part 2A of the heat-resistant metal plate 2 is sandwiched between the composite part 4 made of a porous body and the 1/- Il material part 3, so that the peripheral edge part 2A is embedded in the base metal.

さらに前記耐熱金属板2と母材部分3との間には、セラ
ミック等の低熱伝導率物質と用材金属とを複合一体化し
た複合材からなる断熱層5が介在されている。この混合
材断熱層5は、ピストン頂面部の最も高温となる部分に
対応するように、燃焼室四部1およびその周囲の位置で
耐熱金属板2の裏面に接する状態で形成されている。
Further, between the heat-resistant metal plate 2 and the base material portion 3, there is interposed a heat insulating layer 5 made of a composite material in which a material with low thermal conductivity such as ceramic and a material metal are integrated. The mixed material heat insulating layer 5 is formed in contact with the back surface of the heat-resistant metal plate 2 at the four combustion chamber parts 1 and its surroundings so as to correspond to the highest temperature portion of the top surface of the piston.

前記耐熱金属板2は、少なくとも母材金属(ΔQ合金等
)よりも耐熱性が優れた材料、すなわち母材金属よりも
高温強度が優れた材料からなるものであれば良く、また
高温耐酸化性、高温耐食性も優れていることが望まれる
。このような観点から、耐熱金属板2の材料としては5
US304等のステンレス鋼、あるいはJIS  SU
H系の耐熱鋼、さらにはインコロイ等のFe基耐熱合金
(Fe基超超合金、インコロイ等のNi基耐熱合金(N
i基超超合金 、N 1vco等のCO基耐熱合金(G
o基超合金)、さらにはJISSCH系のIm、そのほ
かTi合金等を用いることができる。なおこの発明の断
熱ピストンにおいては、頂面を構成する耐熱金属板自体
にもある程度断熱特性を担わせることが望ましく、その
意味から耐熱金属板としては熱伝導率が低い合金を用い
ることが望ましく、したがってFe基、N1基、CO基
等の合金が最適である。
The heat-resistant metal plate 2 may be made of a material that has better heat resistance than at least the base metal (ΔQ alloy, etc.), that is, a material that has better high-temperature strength than the base metal, and also has high-temperature oxidation resistance. It is also desired that the material has excellent high-temperature corrosion resistance. From this point of view, the material for the heat-resistant metal plate 2 is 5
Stainless steel such as US304 or JIS SU
H-based heat-resistant steels, as well as Fe-based heat-resistant alloys such as Incoloy (Fe-based super superalloys, Ni-based heat-resistant alloys such as Incoloy)
CO-based heat-resistant alloys (G
O-based superalloys), JISSCH-based Im, Ti alloys, etc. can be used. In addition, in the heat-insulating piston of the present invention, it is desirable that the heat-resistant metal plate itself constituting the top surface has some degree of heat-insulating properties, and in that sense, it is desirable to use an alloy with low thermal conductivity as the heat-resistant metal plate. Therefore, alloys such as Fe-based, N1-based, CO-based, etc. are optimal.

断熱層5を構成する複合材は、要はAj7合金等の母材
金属と、その母材金属よりも低熱伝導率の物質とが複合
一体化されたものであれば良い。その低熱伝導率物質と
しては種々のものが選択できるが、可及的に熱伝導率が
低くしかも母材金属の融点で安定な物質であることが望
ましく、その意味からはセラミックが最適である。そし
てセラミックのうちでも特に稼動時のピストン頂面温度
(約700〜800℃)においても安定なセラミックを
選定することが望ましく、したがってZ「02を主成分
とするもののほか、例えばTi 02、CaO1Si 
02 、Ti C,BN、 MOSt 2等を主成分と
するものを用いることができ、またこのほか種々の酸化
物、炭化物、窒化物、ケイ化物あるいはこれらの混合物
等を用いることができ、さらにはパーライト、雲母、ム
ライト等の種々の耐火物セラミックを用いることもでき
る。またその低熱伝導率物質の複合化前の形態としては
、粒子状、lll1t状、発泡体、箱状など、種々の形
態で用いることができる。
The composite material constituting the heat insulating layer 5 may be one in which a base metal such as Aj7 alloy and a substance having a thermal conductivity lower than that of the base metal are integrated. Various materials can be selected as the low thermal conductivity material, but it is desirable that the material has as low a thermal conductivity as possible and is stable at the melting point of the base metal, and in this sense, ceramic is most suitable. Among ceramics, it is particularly desirable to select a ceramic that is stable even at the piston top surface temperature (approximately 700 to 800°C) during operation.
02, TiC, BN, MOSt2, etc. can be used. In addition, various oxides, carbides, nitrides, silicides, or mixtures thereof can be used. Various refractory ceramics can also be used, such as perlite, mica, and mullite. Furthermore, the low thermal conductivity material can be used in various forms before being composited, such as particulate, 111t, foam, and box shapes.

なお第1図に示す構造例においては、ピストン頂面部の
最外周縁部が複合部4とされて、この複合部4によって
耐熱金属板2の周縁部2Aが母材金属中に埋込まれてい
るが、このピストン頂面部最外周縁部は複合部とする必
要は必ずしもない。
In the structure example shown in FIG. 1, the outermost peripheral edge of the top surface of the piston is a composite part 4, and the peripheral part 2A of the heat-resistant metal plate 2 is embedded in the base metal by this composite part 4. However, the outermost peripheral edge of the top surface of the piston does not necessarily have to be a composite part.

いずれにしても、耐熱金属板2の周縁部2△を用材金属
中に埋込むことによって、ボルト等の固定手段を別途使
用することなく、耐熱金属板2を母材部分3に強固に接
合・固定することができる。
In any case, by embedding the peripheral edge 2△ of the heat-resistant metal plate 2 into the metal material, the heat-resistant metal plate 2 can be firmly joined to the base metal portion 3 without using separate fixing means such as bolts. Can be fixed.

このように耐熱金属板2の周縁部2Aを母材金属中に埋
込む場合の耐熱金属板端部形状としては、例えば第2図
(A)〜(1)に示すような種々の形状を適用すること
ができる。
When the peripheral edge 2A of the heat-resistant metal plate 2 is embedded in the base metal in this way, various shapes such as those shown in FIGS. can do.

またピストンの頂面形状は、第1図に示すような形状に
限らず、第3図(A)〜(D)に示すような種々の形状
を適用覆ることができる。
Further, the shape of the top surface of the piston is not limited to the shape shown in FIG. 1, but can be applied to various shapes as shown in FIGS. 3(A) to 3(D).

さらに頂面耐熱金属板2と母材部分3との間に介在され
る混合材断熱層5は、要は少なくともピストン頂面の最
も^温となる部分に対応してその部分の耐熱金属板2の
表面に接して形成されていれば良く、第1図に示すよう
な配置のほか、第4図(A)〜(D)に示T J:うな
配置を適用することができる。
Furthermore, the mixed material heat insulating layer 5 interposed between the top heat-resistant metal plate 2 and the base material portion 3 corresponds to at least the hottest part of the top surface of the piston, and the heat-resistant metal plate 2 in that part In addition to the arrangement shown in FIG. 1, the arrangement shown in FIGS. 4(A) to (D) can be applied.

以上のようなこの発明の断熱ピストンを製造するための
方法としては、高圧鋳造等の加圧鋳造法を適用すること
ができる。
As a method for manufacturing the heat insulating piston of the present invention as described above, a pressure casting method such as high pressure casting can be applied.

その高圧鋳造による製造方法の具体例を、第1図に示す
断熱ピストンを製造する場合について説明すると、先ず
例えば第5図に示すように予め頂面形状に成形加工され
た耐熱金属板2ど、複合材断熱層5を形成するための低
熱伝導物質多孔質体51と、ピストン頂面周縁部の複合
部4を形成するための環状多孔質体41とを組合せる。
A specific example of the manufacturing method using high-pressure casting will be described for the case of manufacturing the heat-insulating piston shown in FIG. 1. First, as shown in FIG. A porous body 51 of a low thermal conductivity material for forming the composite heat insulating layer 5 and an annular porous body 41 for forming the composite portion 4 at the peripheral edge of the top surface of the piston are combined.

そしてこれらを第6図に示す如く、耐熱金属板2の頂面
側が金型7の底面に接するように配置して、アルミニウ
ム合金溶泪などのピストン母材金属溶湯8を注渇し、望
ましくは300k(1/c♂程度以上の加圧力を母材金
属溶湯8に加え、その加圧力を母材金属溶湯8の凝固ま
で保持する。なお第6図において9は加圧用パンチ、1
0は鋳物取出用のノックアウトビンである。
Then, as shown in FIG. 6, these are arranged so that the top surface side of the heat-resistant metal plate 2 is in contact with the bottom surface of the mold 7, and the piston base metal molten metal 8 such as aluminum alloy molten water is poured, preferably at a temperature of 300 kg. (A pressure of approximately 1/c♂ or more is applied to the molten base metal 8, and the pressure is maintained until the molten base metal 8 solidifies. In Fig. 6, 9 is a pressurizing punch; 1
0 is a knockout bin for taking out castings.

このようにして高圧鋳造すれば、母材金属溶湯8は低熱
伝導率物質多孔質体51に含浸されてその空隙に侵入し
、低熱伝導率物質と用材金属とが複合一体され、その部
分が複合材断熱層5となる。
When high-pressure casting is performed in this way, the base metal molten metal 8 is impregnated into the porous body 51 of the low thermal conductivity material and enters the voids thereof, and the low thermal conductivity material and the material metal are composited into one, and the part is composited. The material becomes the heat insulation layer 5.

また環状多孔質体41の部分にも用材金属が含浸され、
その部分がピストン頂面周縁部を構成する複合部4とな
る。そして耐熱金属板2はその周縁部が母材金属に埋込
まれた状態で鋳ぐるまれることになる。
Further, a portion of the annular porous body 41 is also impregnated with the material metal,
This portion becomes a composite portion 4 that constitutes the peripheral edge of the top surface of the piston. The heat-resistant metal plate 2 is cast with its peripheral edge embedded in the base metal.

このようにして、頂面最表面を形成する耐熱台12一 層板2の裏面に接するように複合材断熱層5が形成され
かつ耐熱金属板2の周縁部が用材金属中に埋込まれた第
1図に示すような断熱ピストンを得ることができる。
In this way, the composite heat insulating layer 5 is formed so as to be in contact with the back surface of the single-layer plate 2 of the heat-resistant stand 12 forming the topmost surface, and the peripheral edge of the heat-resistant metal plate 2 is embedded in the raw metal. An adiabatic piston as shown in FIG. 1 can be obtained.

なお複合材断熱層5を構成する低熱伝導率物質として、
母材金属との複合化前の形態が例えば粒子の如くそれ自
体では形状維持が困Hな形態である場合には、後述する
実施例1で示すように、その粒子状低熱伝導率物質の形
状を維持するためにセラミックmm成形体等の形状維持
可能な多孔質体によって覆い、その状態で金型内に配置
して加圧鋳造を行なえば良い。この場合には粒子状低熱
伝導率物質の部分が母材金属と複合一体化されて複合材
断熱層となることはもちろん、それを覆っているセラミ
ツク1llft成形体等の多孔質体の部分も母材金属と
複合一体化されて複合材となる。したがってその場合に
は複合材層が2層にわたって形成されることになる。そ
してこの場合、粒子状低熱伝導率物質を覆う別の多孔質
体としても前述のようにセラミック等の低熱伝導率物質
を用いることによってその層をも複合材断熱層とづるこ
とができ、したがって例えば第7図に示すように、2層
の複合材断熱層5A、511が形成されることになる。
In addition, as a low thermal conductivity material constituting the composite material insulation layer 5,
If the form of the particulate low thermal conductivity material before being composited with the base metal is in a form that is difficult to maintain by itself, such as particles, as shown in Example 1 described later, the shape of the particulate low thermal conductivity material is In order to maintain this, it may be covered with a porous body capable of maintaining its shape, such as a ceramic molded body, and placed in a mold in this state and pressure casting may be performed. In this case, not only the particulate low thermal conductivity substance part is integrated with the base metal to form a composite heat insulating layer, but also the part of the porous body such as the ceramic 1llft molded body covering it is also integrated with the base metal. It is combined with material metal to become a composite material. Therefore, in that case, two composite material layers will be formed. In this case, by using a low thermal conductivity material such as ceramic as described above as another porous body covering the particulate low thermal conductivity material, that layer can also be referred to as a composite heat insulating layer, and therefore, for example, As shown in FIG. 7, two composite heat insulation layers 5A and 511 are formed.

実施例 第7図に示すような構造の断熱ピストンを製造した例を
以下に示J−0 第2の複合材断熱層5B用の多孔質体11として第8図
(A)に示づ−ような形状寸法のアルミナ短繊維成形体
(繊維径3 JJm 、繊維長3 mm、成形体かさ密
度0.17(+/ cc )を用意した。また第2の断
熱層5B用の低熱伝導物質としてのジルコニア粉末〈粒
径1戸)とパラフィンとからなる第8図(B)に示すよ
うな形状寸法の成形体(ZrO2体積率50%)52を
用意した。さらに耐熱金属板2どして板厚2mmの5U
S304鋼のステンレス板を用いてこれを第8図(C)
に示ずJ:うな形状、寸法に液圧成形し、さらに複合部
4を形成するための環状多孔質体41として第8図(D
)に示すようなアルミナ短繊維成形体(かさ密度0.1
7(]/cc)を用意した。これらを第9図に示すよう
に組合せた後、その組合せ体21を大気中で400℃に
加熱して成形体52中のパラフィンを完全に燃焼除去し
て、その成形体52の部分を7r02粒子のみからなる
多孔質部51とした。
Example An example of manufacturing a heat insulating piston having the structure as shown in FIG. 7 is shown below. An alumina short fiber molded body (fiber diameter 3 JJm, fiber length 3 mm, molded body bulk density 0.17 (+/cc)) was prepared. A molded body 52 (ZrO2 volume fraction 50%) made of zirconia powder (particle size 1) and paraffin and having the shape and dimensions as shown in FIG. 8(B) was prepared. Furthermore, the heat-resistant metal plate 2 is 5U with a plate thickness of 2 mm.
This is shown in Figure 8 (C) using a stainless steel plate made of S304 steel.
Not shown in Figure 8 (D).
) as shown in the alumina short fiber molded body (bulk density 0.1
7(]/cc) was prepared. After these are combined as shown in FIG. 9, the combined body 21 is heated to 400° C. in the atmosphere to completely burn off the paraffin in the compact 52, and the compact 52 is converted into 7r02 particles. The porous portion 51 was made of only the above-mentioned.

次いでその組合せ体21を第10図に示すにうに、耐熱
金属板2の頂面側が金型底面に接覆るように高圧鋳造用
の金型7内に配置し、湯温720℃のJIS  AC8
Aのアルミニウム合金溶1(Aβ−12%3i−1,2
%CI −1,0%M!+−2%Ni−〇、3%Fe)
8を注湯し、500k(1/antの加圧力を加えて高
圧鋳造した。なおこの加圧力はAβ合金溶潟8の凝固ま
で保持した。これによってA1合金溶温湯をアルミナ短
繊維成形体11およびZr 02粒子多孔質部51の部
分に含浸させて、ZrO2とへ1合金とからなる第1の
複合!4断熱層5Aおよびアルミナ類!lHとへβ合金
とからなる第2の複合材断熱層5Bを形成することがで
き、また環状多孔質体41の部分にA1合金を含浸させ
てその部分を複合部4とし、耐熱金属板2を母材A1合
金中に埋込むことができた。このようにして得られたへ
βビス]〜ン鋳物素材に対し、T7処理(溶体化490
℃×4時間、時効処理220℃×8時間)を行なった後
、ピストンリング溝20等の機械加工を行ない、最終的
に第7図に示すような断熱ピストンを得た。
Next, as shown in FIG. 10, the assembled body 21 was placed in a high-pressure casting mold 7 so that the top side of the heat-resistant metal plate 2 was in contact with the bottom surface of the mold, and was cast in a JIS AC8 molding machine with a hot water temperature of 720°C.
A aluminum alloy melt 1 (Aβ-12%3i-1,2
%CI -1,0%M! +-2%Ni-〇, 3%Fe)
8 was poured and high-pressure casting was performed by applying a pressure of 500 k (1/ant). This pressure was maintained until the Aβ alloy molten lagoon 8 solidified. As a result, the molten A1 alloy was cast into the alumina short fiber compact 11. and Zr02 particles are impregnated into the porous portion 51 to form a first composite!4 heat insulation layer 5A made of ZrO2 and He1 alloy and a second composite heat insulation layer made of alumina!1H and Hebeta alloy. The layer 5B could be formed, and the part of the annular porous body 41 could be impregnated with the A1 alloy to form the composite part 4, and the heat-resistant metal plate 2 could be embedded in the base material A1 alloy. The β-bis casting material thus obtained was subjected to T7 treatment (solution treatment 490
After performing aging treatment at 220° C. for 4 hours and 8 hours at 220° C., the piston ring grooves 20 and the like were machined, and finally an adiabatic piston as shown in FIG. 7 was obtained.

以−Lのようにして得られた第7図の断熱ピストンを、
ディーゼルエンジンに組付けて燃焼特性試験を行なった
ところ、始動時から高負荷稼動時に至るまで、従来の通
常のアルミニウム合金製ピストンと比較して不完全燃焼
ガス(スモーク)の発生時間および量が明らかに減少し
、かつ燃費の向上も達成されており、ディーゼルエンジ
ン用ピストンとして極めて優れていることが判明した。
The adiabatic piston shown in Fig. 7 obtained as above-L is
When installed in a diesel engine and tested for combustion characteristics, it was found that the time and amount of incomplete combustion gas (smoke) was generated compared to conventional aluminum alloy pistons from startup to high load operation. It has been found that the piston is extremely excellent as a piston for diesel engines.

一方、比較のため第11図に示すように頂面耐熱金属板
2の直下に断熱用の空洞部12を有する空洞断熱型のピ
ストンを次のようにして製造した。
On the other hand, for comparison, a hollow heat-insulating piston having a heat-insulating cavity 12 directly below the top heat-resistant metal plate 2 as shown in FIG. 11 was manufactured in the following manner.

すなわち第12図(A)に示すような形状寸法のアルミ
ナ短繊維成形体(かさ密度0.17(1/cc)13と
、第12図(B)に示すような形状寸法のエポキシ樹脂
成形体14と、第12図(C)に示すような5US30
4からなる耐熱金属板2と、第12図(D)に示すよう
な形状寸法のアルミナ短l!iH成形体(0,17o/
cc) 15を用意し、これらを第9図に示す場合に準
じて組合せて高圧鋳造用金型7内に配置し、前記と同じ
条件でJISAC8Aのアルミニウム合金を加圧鋳造し
、第13図に示すようなビス]〜ン素材を得た。なおこ
の状態ではアルミナ短繊維成形体13.15の部分はそ
れぞれアルミニウム合金が含浸されて複合部16.4と
なっており、一方エボキシ樹脂成形体14は未だ実質的
にその形状を保っている。
That is, an alumina short fiber molded body (bulk density 0.17 (1/cc) 13) having the shape and dimensions as shown in FIG. 12(A) and an epoxy resin molded body having the shape and dimensions as shown in FIG. 12(B). 14 and 5US30 as shown in Figure 12(C).
A heat-resistant metal plate 2 consisting of 4 and an alumina short plate 2 having the shape and dimensions shown in FIG. 12(D)! iH molded body (0.17o/
cc) 15 were prepared, and these were combined according to the case shown in FIG. 9, placed in the high-pressure casting mold 7, and a JISAC8A aluminum alloy was pressure cast under the same conditions as above, and as shown in FIG. 13. A screw material as shown was obtained. In this state, the portions of the short alumina fiber molded bodies 13.15 are each impregnated with aluminum alloy to form a composite part 16.4, while the epoxy resin molded body 14 still substantially maintains its shape.

次いで第13図の鎖線で示すように鋳物外部からエポキ
シ樹脂成形体14の部分まで連通ずる内径3Ililの
ガス抜通路17を形成した後、前記と同じ条件でT7処
即を施した。このT7処理によってエポキシ樹脂成形体
14は燃焼除去されて、その部分が空洞部12となった
。その後ガス抜通路17の部分をステンレス製のネジ1
8で埋め、さらにピストンリング溝20等の機械加工を
行なつて最終的に第11図に示Jような空洞断熱型のピ
ストンを得た。
Next, as shown by the chain line in FIG. 13, a degassing passage 17 with an inner diameter of 3 lil communicating from the outside of the casting to the epoxy resin molded body 14 was formed, and then T7 treatment was performed under the same conditions as above. Through this T7 treatment, the epoxy resin molded body 14 was burnt and removed, and that portion became the cavity 12. After that, tighten the gas vent passage 17 with stainless steel screws 1.
8 and further machining the piston ring grooves 20, etc., to finally obtain a hollow heat-insulated piston as shown in FIG. 11.

このようにして得られた比較例の空洞断熱型のピストン
と、この発明の実施例による前述の複合材断熱型のピス
トンについて、それぞれディーゼルエンジンに組付けて
同じ条件でエンジンを稼動さゼた。その結果、アイドリ
ング時には両者共に極めて良好な特性を示したが、毎分
440Orpm。
The cavity insulation type piston of the comparative example thus obtained and the above-mentioned composite material insulation type piston according to the example of the present invention were each assembled into a diesel engine and the engine was operated under the same conditions. As a result, both showed extremely good characteristics at idling, but at 440 rpm.

50時間の高負荷耐久試験を行なった後にピストン状態
を調べたところ、空洞断熱型のピストンでは燃焼室凹部
の周辺部において耐熱金属板2であるステンレス板が変
形していることが認められ、一方この発明の実施例によ
る複合材断熱ピストンではこのような耐熱金属板の変形
が全く認められなかった。
When the condition of the piston was examined after conducting a 50-hour high-load durability test, it was found that the stainless steel plate, which is the heat-resistant metal plate 2, was deformed around the recessed part of the combustion chamber in the hollow insulation type piston. In the composite heat insulating piston according to the example of the present invention, such deformation of the heat-resistant metal plate was not observed at all.

上述の空洞断熱ピストンおよびこの発明による複合材断
熱ビスンはいずれも耐熱金属板2としてのステンレス板
として板厚2n+n+のちのを用いているが、空洞断熱
ピストンの場合燃焼圧力によるステンレス板の変形を用
止するためには4mmの板厚を必要とし、その場合ピス
トン重量にして約20%増加してしまうことが判明した
。このことからこの発明の複合材断熱ピストンは、空洞
断熱型のピストンと比較して軽量化が可能であることが
明らかである。
Both the above-described hollow insulated piston and the composite insulated bison according to the present invention use a stainless steel plate with a thickness of 2n+n+ as the heat-resistant metal plate 2, but in the case of the hollow insulated piston, deformation of the stainless steel plate due to combustion pressure is used. It was found that in order to stop the piston, a plate thickness of 4 mm was required, which would increase the piston weight by about 20%. From this, it is clear that the composite heat insulating piston of the present invention can be lighter in weight compared to a cavity heat insulating piston.

なお断熱性については、この発明によるセラミック断熱
型ピストンも空洞断熱型ピストンと同等の断熱特性を有
していることが確認された。
Regarding heat insulation properties, it was confirmed that the ceramic heat insulation type piston according to the present invention also has heat insulation properties equivalent to that of the cavity heat insulation type piston.

また前記複合材断熱層を構成する低熱伝導率物質として
、前述の7「02粒子の代りに、直径10声、厚さ2声
の円板状の箔状雲母の集合体(体積率30%)を用いて
前記実施例と同様に断熱ピストンを作成したが、この場
合も同様な特性が1qられることが判明した。さらにZ
r 02粒子の代りに、直径0.5mm、体積率30%
の発泡パーライト集合体を用いた場合、また直径3.+
um、良さ1m1llのムライト繊維の成形体(体積率
40%)を用いた場合も同様な特性が得られた。
In addition, as the low thermal conductivity material constituting the composite heat insulating layer, instead of the aforementioned 7"02 particles, an aggregate of disc-shaped foil mica (volume ratio 30%) with a diameter of 10 tones and a thickness of 2 tones is used. An adiabatic piston was made using Z
Instead of r 02 particles, diameter 0.5 mm, volume fraction 30%
When using a foamed pearlite aggregate with a diameter of 3. +
Similar characteristics were obtained when a molded body of mullite fibers (volume ratio: 40%) with a thickness of 1 ml and 1 ml was used.

発明の効果 前述の説明で明らかなようにこの発明のピストンは従来
公知の空洞断熱型のピストンと比較し、断熱性は同等で
あってしかも頂面部の耐変形強度は格段に高く、したが
って充分な耐久性を発揮できるとともに、頂面最表面の
耐熱金属板の厚みを薄くシてピストンを軽量化すること
ができ、そのためエンジン性能や燃費等を向上させるこ
とができる。
Effects of the Invention As is clear from the above explanation, the piston of the present invention has the same heat insulation properties as the conventionally known cavity insulation type piston, and the deformation resistance of the top surface is much higher. In addition to exhibiting durability, the thickness of the topmost heat-resistant metal plate can be reduced to reduce the weight of the piston, thereby improving engine performance, fuel efficiency, etc.

また特に頂面の耐熱金属板の周縁部をピストン母材中に
埋込んだ実施態様においては、耐熱金属板と用材との間
の接合強度を有効に維持して、ピストン耐久性を一層向
上させることができる。
In addition, especially in embodiments in which the peripheral edge of the top heat-resistant metal plate is embedded in the piston base material, the bonding strength between the heat-resistant metal plate and the material is effectively maintained, further improving the piston durability. be able to.

さらにこの発明の製造方法によれば、頂面直下の複合材
断熱層の形成と頂面耐熱金属板の鋳ぐるみによる固定が
、母材部分の鋳造成形と同時になされるため、前述のよ
うに優れた特性を有する断熱ピストンを簡単かつ容易に
製造することができる。
Furthermore, according to the manufacturing method of the present invention, the formation of the composite heat insulating layer directly under the top surface and the fixing of the top heat-resistant metal plate by the casting are performed simultaneously with the casting of the base material, which provides the excellent performance as described above. A heat insulating piston having such characteristics can be simply and easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の断熱ピストンの一例を示す縦断面図
、第2図(A)〜(1)はそれぞれこの発明の断熱ピス
トンにおける耐熱金属板の端部形状の他の例を示す略解
図、第3図(A)〜(D)はそれぞれこの発明の断熱ピ
ストンにおける頂面形状の仙の例を示す略解図、第4図
(A)〜(r))はそれぞれこの発明の断熱ピストンに
おけるセラミック断熱層の配置例を示す略解図である。 第5図および第6図は第1図の断熱ピストンの製造方法
を説明するための図で、第5図は鋳ぐるまれる各部材の
組合せ状態を示す縦断面図、第6図は母材金属注湯時の
状況を示す縦断面図である。第7図はこの発明の断熱ピ
ストンの他の例を示す縦断面図である。第8図(A)〜
(D)はそれぞれ第7図のピストンの製造に使用される
各部材の断面図、第9図は第8図(A)〜(r))に示
される各部材を組合せた状態を示す縦断面図、第10図
は第8図の部材を金型に配置【ノて母材溶湯を注湯した
状態を示す略解的な縦断面図である。第11図は比較例
としての空洞断熱型ピストンの一例を示す縦断面図、第
12図(A)〜(D)は第11図のピストンの製造に使
用される各部材の縦断面図、第13図は第12図(A)
〜(D)に示される各部材を組合ばて高圧鋳造したビス
1−ン素材鋳物の鋳造直後の状態を示す縦断面図である
。 2・・・耐熱金属板、 3・・・母材部分、 5・・・
複合材断熱層、 7・・・金型、 8・・・用材金属温
湯。 出願人  トヨタ自動車株式会ネ1 代理人  弁理士 豊 1)武 久 (ほか1名) 第1図 寸 第5図 第7図 第8図 一一一 −74mm −−1 1+11
FIG. 1 is a longitudinal sectional view showing an example of the heat insulating piston of the present invention, and FIGS. 2 (A) to (1) are schematic diagrams showing other examples of the end shape of the heat-resistant metal plate in the heat insulating piston of the present invention, respectively. , FIGS. 3(A) to 3(D) are schematic diagrams showing examples of the top shape of the adiabatic piston of the present invention, and FIGS. 4(A) to (r)) are schematic illustrations of the adiabatic piston of the present invention It is a schematic diagram showing an example of arrangement of ceramic heat insulating layers. Figures 5 and 6 are diagrams for explaining the manufacturing method of the heat-insulating piston shown in Figure 1. Figure 5 is a longitudinal cross-sectional view showing the assembled state of each member to be cast, and Figure 6 is the base material. FIG. 3 is a longitudinal cross-sectional view showing the situation during metal pouring. FIG. 7 is a longitudinal sectional view showing another example of the heat insulating piston of the present invention. Figure 8 (A) ~
(D) is a cross-sectional view of each member used in manufacturing the piston shown in Fig. 7, and Fig. 9 is a longitudinal cross-section showing the assembled state of each member shown in Figs. 8 (A) to (r)). 10 is a schematic longitudinal cross-sectional view showing a state in which the member shown in FIG. 8 is placed in a mold and molten base metal is poured into the mold. FIG. 11 is a longitudinal cross-sectional view showing an example of a hollow heat-insulated piston as a comparative example, and FIGS. Figure 13 is Figure 12 (A)
It is a longitudinal cross-sectional view which shows the state immediately after casting of the bison material casting which assembled and high-pressure-casted each member shown in - (D). 2...Heat-resistant metal plate, 3...Base material portion, 5...
Composite heat insulation layer, 7...Mold, 8...Metal hot water. Applicant Toyota Motor Corporation Ne1 Agent Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) Dimensions of Figure 1 Figure 5 Figure 7 Figure 8 111 -74mm -1 1+11

Claims (4)

【特許請求の範囲】[Claims] (1)ピストン頂面部最表面に、ピストン母材金属より
も耐熱性が高い材料からなる耐熱金属板を配置するとと
もに、その耐熱金属板の裏面に接するように、ピストン
母材金属よりも熱伝導率の低い物質とピストン用材金属
とを複合一体化した断熱層が形成されていることを特徴
とする断熱ピストン。
(1) A heat-resistant metal plate made of a material with higher heat resistance than the piston base metal is placed on the outermost surface of the top surface of the piston, and a heat-resistant metal plate made of a material with higher heat resistance than the piston base metal is placed so as to be in contact with the back side of the heat-resistant metal plate. A heat insulating piston characterized in that a heat insulating layer is formed by a composite and integrated material of a low-density material and a metal material for the piston.
(2)前記物質がセラミックである特許請求の範囲第1
項記載の断熱ピストン。
(2) Claim 1, wherein the substance is a ceramic.
Insulated piston as described in section.
(3)前記断熱金属板の周端部をピストン母材金属中に
埋設することにより耐熱金属板を固定した特許請求の範
囲第1項記載の断熱ピストン。
(3) The heat-insulating piston according to claim 1, wherein the heat-resistant metal plate is fixed by embedding the circumferential end of the heat-insulating metal plate in the piston base metal.
(4)加圧鋳造によつてピストンを製造するにあたり、 鋳造用金型の底面に接するように耐熱金属板を配置する
とともにその耐熱金属板の上面側にピストン母材金属よ
りも熱伝導率の低い物質からなる多孔質体を配置し、そ
の状態でピストン母材金属溶湯を金型内に注湯してその
母材金属溶湯を加圧し、これによって多孔質体に母材金
属溶湯を含浸させるとともに前記耐熱金属板を鋳ぐるむ
ことを特徴とする断熱ピストンの製造方法。
(4) When manufacturing a piston by pressure casting, a heat-resistant metal plate is placed so as to be in contact with the bottom of the casting mold, and a metal plate with a thermal conductivity higher than that of the piston base metal is placed on the top surface of the heat-resistant metal plate. A porous body made of a low-density substance is placed, and in that state, the piston base metal molten metal is poured into the mold and the base metal molten metal is pressurized, thereby impregnating the porous body with the base metal molten metal. A method for producing a heat insulating piston, comprising casting the heat-resistant metal plate.
JP18478285A 1985-08-22 1985-08-22 Heat insulating piston and manufacture thereof Pending JPS6245964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18478285A JPS6245964A (en) 1985-08-22 1985-08-22 Heat insulating piston and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18478285A JPS6245964A (en) 1985-08-22 1985-08-22 Heat insulating piston and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6245964A true JPS6245964A (en) 1987-02-27

Family

ID=16159198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18478285A Pending JPS6245964A (en) 1985-08-22 1985-08-22 Heat insulating piston and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6245964A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267158A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Piston for internal combustion engine and method for manufacturing the same
JP2012072746A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat-insulating structure
WO2014017586A1 (en) * 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Piston for internal combustion engine and method for manufacturing piston
US10578049B2 (en) 2017-04-28 2020-03-03 Mahle International Gmbh Thermal barrier coating for engine combustion component
JP2021161977A (en) * 2020-04-01 2021-10-11 マツダ株式会社 Combustion chamber structure of engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267158A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Piston for internal combustion engine and method for manufacturing the same
JP2012072746A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat-insulating structure
US8813734B2 (en) 2010-09-30 2014-08-26 Mazda Motor Corporation Heat-insulating structure
WO2014017586A1 (en) * 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Piston for internal combustion engine and method for manufacturing piston
JP2014025418A (en) * 2012-07-27 2014-02-06 Hitachi Automotive Systems Ltd Piston of internal combustion engine and manufacturing method of piston
CN104350265A (en) * 2012-07-27 2015-02-11 日立汽车系统株式会社 Piston for internal combustion engine and method for manufacturing piston
US10006402B2 (en) 2012-07-27 2018-06-26 Hitachi Automotive Systems, Ltd. Piston for internal combustion engine and method for manufacturing piston
US10578049B2 (en) 2017-04-28 2020-03-03 Mahle International Gmbh Thermal barrier coating for engine combustion component
JP2021161977A (en) * 2020-04-01 2021-10-11 マツダ株式会社 Combustion chamber structure of engine

Similar Documents

Publication Publication Date Title
US4972674A (en) Heat insulating ceramic insert-cast articles for use in exhaust channels in internal combustion engines and a process for producing the same
US4264660A (en) Thermally insulated composite article
US4254621A (en) Heat-insulating layer to prevent temperature drop of combustion gas in internal combustion engine
US4495684A (en) Process of joining a ceramic insert which is adapted to be embedded in a light metal casting for use in internal combustion engines
JPS5852451A (en) Heat-resistant and heat-insulating light alloy member and its manufacture
JPH0333428B2 (en)
JPH0159422B2 (en)
JP6392232B2 (en) Internal combustion engine
US4522171A (en) Pre-combustion or turbulence chamber for internal combustion engines
JPS6245964A (en) Heat insulating piston and manufacture thereof
JPH0350830B2 (en)
JP2920004B2 (en) Cast-in composite of ceramics and metal
JPS6027820B2 (en) Method for manufacturing combustion chamber components for internal combustion engines
EP0870919A1 (en) Piston for an internal combustion engine and a method for producing same
JPH0330709B2 (en)
JPH07132362A (en) Cylinder block and its production
JPH01172536A (en) Heat insulating and heat-resistant ceramic porous body conjugate metallic material
JPS60240366A (en) Insert-casting method of ceramic body
JPH01170745A (en) Piston for internal combustion engine
EP0468722A1 (en) Ceramic-metal insert composite
JPS6221456A (en) Production of hollow casting
JPS6224853A (en) Production of casting member having heat insulating part
JPS59229033A (en) Piston for internal-combustion engine
JPS60240854A (en) Piston for internal-combustion engine made of light metal
JPS60166156A (en) Production of ceramic-metal composite material